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Abstract

A new tree-ring detrending program (Spotty) performs analyses of changing growth trends and environmental
signals with tree age. Spotty is particularly useful in understanding the nature of long-term, centennial scale trends in
tree-ring data but has a variety of dendrochronological applications. The program permits the user to define up to fifty
age classes from a file of increments data. Age classes can be defined as ranges (e.g., 25–50, 100–150 years) or as single
years (e.g., 25, 40, 55 years). The program will select the data corresponding to these classes and fit spline functions to
the respective age class, data clouds. The user is allowed to choose a certain spline bandwidth, and can decide to fit
splines to either the raw or Regional Curve Standardization (RCS) detrended data – with the RCS routine being
included in Spotty – thus permitting the analysis of different underlying frequencies for each selected age class.
The individual, age class splines may also be compared for common (or deviating) variance. Spotty facilitates color
graphics and allows saving results for further use in other programs. PC and Mac versions of the program are available
at the WSL Dendro Sciences (www.wsl.ch/forschung/forschungsunits/dendro) and LDEO Tree-Ring Lab
(www.ldeo.columbia.edu/res/fac/trl/public/publicSoftware.html) web pages.
r 2008 Elsevier GmbH. All rights reserved.
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Introduction

Tree-ring detrending methods are necessary to remove
age-related trends in the radial growth rate (Cook and
Kairiukstis, 1990; Fritts, 1976). Of the various ap-
proaches applied in dendrochronology, certain methods
have proven to be particularly useful in retaining
centennial scale variability. These include the Regional
Curve Standardization (RCS; Mitchell, 1967; Briffa
e front matter r 2008 Elsevier GmbH. All rights reserved.
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et al., 1992; Cook et al., 1995; Esper et al., 2003) and
Age Banding (Briffa et al., 2001) methods, both resting
on the basic concept of comparing tree rings of the same
biological (cambial) age.

RCS involves the removal of the age trend archetype
estimated from a collection of tree-ring data series and
constructing a mean chronology of the entire data set.
Age Banding selects data from a certain age class range
(bands) and develops a chronology that is the average of
the desired age classes. Age Banding thus allows the
comparison of timeseries representing specific age class
ranges, but the method can be restricted by low sample
replication over time, challenging the development of a
continuous timeseries.

http://www.wsl.ch/forschung/forschungsunits/dendro
http://www.ldeo.columbia.edu/res/fac/trl/public/publicSoftware.html
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We developed a program ‘‘Spotty’’ that represents a
continuation of these methods, as it relies on the same
principle of associating equal-aged tree rings (Mitchell,
1967), but allows fitting spline functions to age classes
ranging from single years to a single band representing
the entire data set. The splines used in the program
facilitate bridging data gaps and thus allow the
estimation of a continuous timeseries from otherwise
discontinuous data clouds. Time-varying error bars for
all splines are computed and may be considered as an
estimate of the uncertainty of the spline fit. Graphical
comparison of the splines permits identification of
varying long-term trends retained in the growth rates
of different biological age classes.

In this note, we briefly describe the program Spotty
and provide suggestions that may be useful in running
the program. We demonstrate some features of the
program using a data set that was previously analyzed
to reconstruct large-scale temperature changes (Esper
et al., 2002; herein abbreviated as ECS02).
Spotty design and application

Spotty is a top-down program where all parameters
are defined first and then executed. This design permits
continuous looping within the program allowing the
user to change settings as often as desired. All program
prompts are accompanied by brief descriptions or
examples of acceptable input. In nearly every loop
of the main program, intermediate results may be saved
for post-execution display or analysis.

Currently Spotty is dimensioned to handle 2200 series,
with a maximum length of 2100 years. The program can
build up to 50 age classes at a time as long as no more
than 4,620,000 values are provided. Single age classes or
age class ranges defined by the user may contain all
measurements for a single biological age, or all the
measurements in a biological age range. The program
allows the user to select age classes, extract these data
from a file, plot those values over their calendar year of
growth, and then fit splines to the resulting data clouds
for interpretation.

After displaying any plot, Spotty provides an option
for saving the plot as postscript or plot data as ASCII
files. In addition, plot attributes (e.g., symbol color, axis
limits) may be changed to emphasize desired elements in
displayed figures. During program execution there is the
option to begin again with a new chronology type,
define new age classes, or exit the program.

Data types and organization

The essential input to Spotty is an increment file
in decade format (http://www.ncdc.noaa.gov/paleo/
treeinfo.html#formats). This format is able to be easily
interpreted by humans and computers, and conveniently
maximizes the number of measurements per line while
minimizing the total number of lines per record. In
addition Spotty will accept an ASCII file of pith offsets
(i.e., estimates of the number of years missing to the
pith) to more precisely align the tree-ring data by
cambial age (Esper et al., 2003). The only requirements
of this pith-offset file are that it must contain one title
line at the top, and that the number of rows (pith-offset
estimates) and their order be identical to the number of
series in the increment (data) file. If no file of pith
estimates is provided, the program assumes all measure-
ments begin at the biological age of one.

For illustration, we use samples from living trees and
relict wood integrating several species and sites from the
Northern Hemisphere extratropics (Cook et al., 2004;
Frank et al., 2007). These data were previously analyzed
and split into a ‘‘linear’’ and ‘‘non-linear’’ data set based
on the shape of tree-age-related growth trends (Esper
et al., 2002). Chronologies from these data sets were
developed using RCS, and the mean timeseries back-
transformed into mm units to highlight stem growth
variations, which can potentially be associated with tree
biomass (Fig. 1). As the average age/growth of the non-
linear data is lower/higher (195 years/0.60mm) than that
of the linear data (300 years/0.42mm), the rescaled RCS
timeseries from the non-linear data is mostly above
its linear counterpart. Besides this difference in stem
productivity, the data indicate higher growth rates
during Medieval times, reduced growth during an
extended period �1300–1800, and increasing growth
towards present.

Using Spotty, these long-term changes are here
assessed by analyzing the constituent growth trends
retained in the various age classes of the underlying data
(Fig. 2). For this purpose, the user may choose to work
with one of three different variables selected from the
Data-Transformation-Menu. The choices are: (i) the
original raw data (Fig. 2B), (ii) smoothed estimates
of the original raw data (Fig. 2C) or (iii) RCS detrended
data (Fig. 2D). Methodological variations of RCS
detrending, such as the degree of smoothing for the
regional curve construction and the choice of computing
ratios or residuals (Esper et al., 2003; Büntgen et al.,
2005), can be chosen within the program. While all
subsequent analyses shown here are performed on the
raw ECS02 measurements (Fig. 2B), the data input type
can be changed by revisiting the Data-Transformation-
Menu.
Age class data clouds

The next window is the Main-Program-Menu from
which desired data clouds are built. A data cloud is the

http://www.ncdc.noaa.gov/paleo/treeinfo.html#formats
http://www.ncdc.noaa.gov/paleo/treeinfo.html#formats
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Fig. 1. RCS chronologies of trees classified as ‘‘linear’’ and ‘‘non-linear’’ based on the shape of their growth trends from ECS02.

Chronologies are expressed as records of radial stem productivity (in mm) of high elevation and high latitude NH forests since AD

800. Curves at the bottom show the number of ring width measurements integrated in the chronologies.
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graphical representation of all measurements of one or
more user-defined biological ages or age ranges. For
example, the data cloud of age class 1 consists of all
measurements from trees containing values for cambial
age 1. A data cloud of the age class 100–200 will contain
only values from trees in their 100th–200th years of
growth. The program can plot and analyze up to 50
of these data clouds at a time allowing one to compare
tree growth for multiple age classes.

There are three different methods by which the user
may build a single or multiple age class definitions: (i)
Random, (ii) Automatic or (iii) Manual. The Random
age class definition routine requires a start and stop age,
the number of classes to build within the start and stop
age-span, and a random number seed. Spotty will then
make the desired number of contiguous age classes, of
random length, between the start and stop ages. The
Automatic mode requires a start and stop age for the
youngest age class, then an increment by which to define
the next age class, and finally the maximum age of the
last class. In Manual mode, the program first prompts
for the total number of age classes to build, and then the
start and stop ages of each. Values used to select data
shown in Fig. 3 were: S1/ (start), S1/ (stop), S100
/ (increment), S550/ (maximum); automatic mode.
Splines and error

Once age classes are defined and the corresponding
data selected, the program fits a user specified spline
to each cloud to emphasize age class specific growth
behavior. The variability of the splines is, however, not
only bandwidth defined, but also changes with the
number of values available in each age class. This is
highlighted in the 100-year splines fit to the 1, 101, 201,
301, 401, and 501 clouds that appear less flexible as
fewer data points are available (Fig. 3). In addition to
the splines commonly used in dendrochronology (Cook
and Peters, 1981), Spotty offers the application of a
generalized cross validation [gcv] spline (Hutchinson
and De Hoog, 1985) that attempts to ‘‘automate’’ the
bandwidth selection by minimizing the gcv statistic (see
the Appendix).

Besides highlighting specific data clouds and spline
fits, Spotty also provides an estimate of the error of the
spline fit (see the Appendix). The error is generally
smaller with stiffer splines, as seen for the 10- and 100-
year splines fit to age class 1 of ECS02 (Fig. 4).
Naturally the error is also larger during periods that
contain little data, such as the beginning of the 11th

century or the end of the 12th century in Fig. 4A.
Estimates of spline uncertainty can be employed for
spline selection, further refinement of age class selection,
and as an aid in interpretation.
Common variance analysis

A combined illustration of data clouds and their
splines – shown with changing colors and symbol types
in Spotty – helps identify common (and uncommon)
lower frequency signals in different aged tree rings. For
the ECS02 data used here, a trend of decreasing spline
variability towards the older (and less replicated) age
classes, as well as a trend of decreasing ring widths with
aging, i.e. splines are ordered by age (Fig. 5A), is visible.
The latter can be removed by centering or normalizing
the data clouds and their splines, by removing the
common period (or some user-defined) mean, or both
the common period mean and standard deviation as in
Fig. 5B.

The normalized data clouds and splines in Fig. 5B
indicate changing long-term growth trends with aging.
The splines fit to the young age classes are characterized
by generally higher growth values at around 1500, their
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Fig. 2. Non-linear ECS02 data aligned by calendar years (A), and cambial growth years (B–D). (E) The sample replication of the

age-aligned data. Spotty allows working with raw (B), smoothed (C), and RCS detrended (D) data. For RCS detrending, a 10-year

spline was fit to the age-aligned data, and residuals from this regional curve calculated.

J. Esper et al. / Dendrochronologia 27 (2009) 75–8278
counterparts fit to older age classes show increased
growth values at the beginning and/or towards the end
of the past millennium, though old classes are repre-
sented by less data points and appear less flexible.

An alternative comparison of splines – this time fit to
the RCS detrended ECS02 data (RCS detrending effects
are similar to data cloud normalization) – supports the
finding from the previous experiment (Fig. 6). Splines
fitted to the ‘‘younger’’ age classes 1–151 and 161–241
tend to show more decadal scale variance – including
some opposing deviations in the 12th century – but less
centennial scale trends. The ‘‘older’’ and less replicated
age classes 251–361 and 371–491 are characterized by a
different long-term behavior including synchronous
centennial scale trends and high growth values at the
beginning and end of the past millennium. The reduced
long-term variability in the youngest age classes perhaps
suggests that low frequency variance is less common in
these data. This could be due to, for example, increased
mechanical stresses adding noise to the ring width
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Fig. 3. Data clouds of age classes 1, 101, 201, 301, 401, and 501 of ECS02. Curves are 100-year splines.
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data from young and small trees (Esper et al., 2008),
and systematically poorer fits to the juvenile rings
particularly when not utilizing pith-offset data. The
older age class splines appear to be influenced by the
lower sample replication, reduced flexibility, and in-
creased error.
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Fig. 4. Spline error estimates for age class 1 of the non-linear ECS02 data for (A) 10-year and (B) 100-year splines, both over the

1000–1200 period.

Fig. 5. (A) Value distributions of age classes 1, 21, 41,y, 581 in mm, together with the 100-year splines fit to these data. (B) Same

splines, but normalized by removing both the means and standard deviations over the maximum individual series lengths (max.

800–1990).
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Calculations of 2-year splines in Spotty, this time
fitted to larger age ranges 1–150, 151–240, and 241–500
years (Fig. 6C), allows a more detailed assessment of the
changing variance stored in these data portions. These
splines indicate, for example, that the increased growth
values in the 12th century are restricted to the middle
(151–240) age class. The positive deviations around 1400
and in the late 18th century are recorded in the middle
and old (241–500) age classes. Also the recent increase
since about the middle of the 19th century is stronger in
the old tree-ring data 4240 years.
Conclusions

Spotty enables analyses of common variance in tree-
ring data as a function of biological age. It allows
the user to define age classes from a file of increment
data, then fit a spline to the cambially adjusted age class
data clouds for analysis of underlying, age-related, low
frequency variability. The program might be particu-
larly useful to analyze lower frequency trends in tree-
ring data, and can be used to identify data fractions that
might add uncommon, perhaps biasing variance to
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Fig. 6. Hundred- and 2-year splines fit to age classes (years and ranges) of the RCS detrended non-linear ECS02 data. (A) Hundred-

year splines fit to age classes 1, 11,y, 151 in red, and to age classes 161, 171,y, 241 in black. (B) Hundred-year splines fit to age

classes 251, 261,y, 361 in green, and to age classes 371, 381,y, 491 in blue. (C) Two-year splines fit to age class ranges 1–150 (red),

151–240 (black), and 241–500 (black). (For interpretation of the references to color in this figure legend, the reader is referred to the

web version of this article.)
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mean chronologies (Esper et al., 2007). Spotty may be
readily applied in ecological studies where detrending
growth increments is not desirable and where one may
wish to avoid the confounding effects of tree age
(Rolland et al., 1998; Sarris et al., 2007). An improved
understanding of tree-age-related variability and signal
changes should be useful in a variety of dendrochrono-
logical related applications.
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Appendix

URL: Spotty can be downloaded at
www.wsl.ch/forschung/forschungsunits/dendro/
www.ldeo.columbia.edu/res/fac/trl/public/
publicSoftware.html
Splines: In Spotty splines can be fit to individual tree-

ring sequences to calculate indices or residuals, and to
data clouds of specified age classes for comparative
analyses of common variance. The user is allowed to
specify a bandwidth for each data sequence or to have
the program find a minimum generalized cross valida-
tion [abbreviated gcv in Spotty] spline.

The gcv spline has been discussed by Wahba (1983)
and others as an objective way to select a stiffness
parameter for fitting a smoothing spline to noisy data.
Gcv is a statistic that is computed from the fit. It varies
smoothly with the bandwidth and should have a well-
defined and unique minimum for a given data set. This
minimum value and the corresponding bandwidth define
the minimum gcv spline through the data and it is
thought to be in some sense optimal (details in
Hutchinson, 1986; Wahba, 1983).

Fit statistics: In cases where a spline is fit to a selected
age class, the data may need to be modified so that there
is only one data point (raw or otherwise) for each year
for which there is data, and for each such year a weight
is computed as 1/sqrt(n), where n denotes the number of
data points for that year. Thus the number of points
splined [abbreviated nps in Spotty] for a cloud will be

http://www.wsl.ch/forschung/forschungsunits/dendro/
http://www.ldeo.columbia.edu/res/fac/trl/public/publicSoftware.html
http://www.ldeo.columbia.edu/res/fac/trl/public/publicSoftware.html
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not more than the total number of data points in a cloud
(usually less), and the mean squared weight of the
splined data points [msw] will be not more than one
(also usually less). These weights ensure a closer fit for
averages based on more than one cloud point. For a
single tree-ring sequence these statistics are both one.
The mean square residual [msr] to the fit is computed as
usual and its square root gives a measure of average
spread of the data points about the spline curve. The
degrees of freedom [df] associated with the mean square
residual and other statistics depends on the bandwidth.
It is zero for a spline that fits the splined points exactly
(an interpolating spline), equal to nps for a straight line
fit, and in general increases smoothly with bandwidth.
The square root of the mean square error [MSE] of the
fit is an estimate of the average error associated with the
spline curve itself. If it is added to the msr the result [EV]
is an estimate of the average total squared error of using
the spline curve as the ‘‘true’’ ring width for a particular
year. EV is used to estimate the standard errors of the
spline curve at each year.

Error: The errors depend on the bandwidth in at least
two ways. The smoothing parameter, which is computed
from the bandwidth, is a constant scale factor for all
the errors. It is smaller for larger bandwidth. Also, the
particular value of the bandwidth determines the
localness of the spline smoothing. A small bandwidth
results in a flexible spline and larger and more variable
errors because fewer data points are used to compute
both the fit and the errors. The errors also depend on the
data density, being larger near gaps in the data, and in
particular near the ends of the data. Finally, the errors
also depend on the weight, which is assigned to the
composite data point for each year, which is 1/sqrt(n).
A bandwidth of 100 years for 200 years of data is not
extreme, so the errors should vary some, but smoothly.
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Esper, J., Frank, D.C., Büntgen, U., Verstege, A., Luterba-

cher, J., Xoplaki, E., 2007. Long-term drought severity

variations in Morocco. Geophysical Research Letters 34.

Esper, J., Niederer, R., Bebi, P., Frank, D.C., 2008. Climate

signal age effects-evidence from young and old trees in the

Swiss Engadin. Forest Ecology and Management 255,

3783–3789.

Frank, D., Esper, J., Cook, E.R., 2007. Adjustment for proxy

number and coherence in a large-scale temperature

reconstruction. Geophysical Research Letters 34.

Fritts, H.C., 1976. Tree Rings and Climate. Academic Press,

New York, 567pp.

Hutchinson, M.F., 1986. A fast procedure for calculating

minimum cross validation cubic smoothing splines. ACM

Transactions on Mathematical Software 12, 150–153.

Hutchinson, M.F., De Hoog, F.R., 1985. Smoothing noisy

data with spline function. Numerische Mathematik 47,

99–106.

Mitchell, V.L., 1967. An investigation of certain aspects of tree

growth rates in relation to climate in the central Canadian

boreal forest. Department of Meteorology, University of

Wisconsin, Technical Report, 33pp.

Rolland, C., Petitcolas, V., Michalet, R., 1998. Changes in

radial tree growth for Picea abies, Larix decidua, Pinus

cembra and Pinus uncinata near the alpine timberline since

1750. Trees 13, 40–53.

Sarris, D., Christodoulakis, D., Körner, C., 2007. Recent

decline in precipitation and tree growth in the eastern

Mediterranean. Global Change Biology 13, 1187–1200.

Wahba, G., 1983. Bayesian ‘‘confidence intervals’’ for the

cross-validated smoothing spline. Journal of the Royal

Statistical Society: Series B 45, 133–150.


	Exploration of long-term growth changes using the tree-ring detrending program ’’Spotty’’
	Introduction
	Spotty design and application
	Data types and organization
	Age class data clouds
	Splines and error
	Common variance analysis

	Conclusions
	Acknowledgements
	References


