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Recent European drought extremes beyond
Common Era background variability
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Europe's recent summer droughts have had devastating ecological and economic consequences, but the severity and cause of
these extremes remain unclear. Here we present 27,080 annually resolved and absolutely dated measurements of tree-ring
stable carbon and oxygen (6C and 6'®0) isotopes from 21 living and 126 relict oaks (Quercus spp.) used to reconstruct central
European summer hydroclimate from 75 sce to 2018 ce. We find that the combined inverse 6"C and §®0 values correlate with
the June-August Palmer Drought Severity Index from 1901-2018 at 0.73 (P < 0.001). Pluvials around 200, 720 and 1100 cg, and
droughts around 40, 590, 950 and 1510 ce and in the twenty-first century, are superimposed on a multi-millennial drying trend.
Our reconstruction demonstrates that the sequence of recent European summer droughts since 2015 ce is unprecedented in
the past 2,110 years. This hydroclimatic anomaly is probably caused by anthropogenic warming and associated changes in the

position of the summer jet stream.

he severe summer heat waves and drought spells in 2003,
2015 and 2018 affected Europe’s agricultural, vinicultural
and silvicultural sectors'. Reduced harvests, together with
increased pathogens, insect outbreaks and forest mortality, have
impacted economies, ecosystems and carbon cycle dynamics at
various spatiotemporal scales’. Record-low river runoff constrained
shipping traffic and even the cooling of nuclear power stations’.
Climate-induced death tolls were highest in southern Europe®,
where an estimated 70,000 people died in response to the unusually
hot summer of 2003°. A further increase in the frequency and sever-
ity of heat waves under projected global warming implies a multi-
tude of harmful direct and indirect impacts on human health'®!".

Reconstructed and simulated European hydroclimate

Placing the wide range of ecological and societal consequences
of Europe’s most recent hydroclimatic extremes in the long-term
context of pre-industrial variability depends on the dating preci-
sion and resolution, as well as the signal-to-noise ratio and over-
all timespan of the available proxy data. The Old World Drought
Atlas (OWDA)"?, arguably the state-of-the-art tree-ring-based
spatial field reconstruction of summer wetness and dryness over
Europe and the Mediterranean Basin, is restricted to interannual
and decadal variations between medieval times and 1978 ce (that
is, the most recent four decades are not covered). And, during the
first half of the Common Era, the OWDA does not capture the full
range of natural hydroclimate variability. In addition to the vari-
ous constraints of existing moisture-sensitive proxy records', the
current suite of palaeoclimatic Earth system model simulations is

limited in their ability to realistically estimate past precipitation
and soil moisture fluctuations'*"”. Sensitivity studies with climate
model simulations that use different combinations of external and
internal forcing factors struggle to distinguish the dominant pro-
cesses of synoptic summer droughts'®". This caveat is partly due
to the coarse resolution of current Earth system models and the
challenge of dynamically downscaling hydrological changes in the
palaeoclimatic context. Although the importance of soil moisture
and evapotranspiration for summer droughts has been acknowl-
edged'®”, and improvements have been made by forcing regional
climate models with reanalysis data®, Earth system models are still
not able to mimic monthly soil moisture deficits at ecologically and
economically relevant scales. In summary, the existing generation of
proxy reconstructions and model simulations (or any combination
thereof) are unable to place the alarming sequence of Europe’s recent
drought extremes in the context of Common Era hydroclimate vari-
ability, or quantify the relative roles of natural and anthropogenic
forcing factors that conspire to amplify the severity of current and
future extremes'>*'.

Hydroclimatic sensitivity of tree-ring stable isotopes

Here, we use 13,496 80 measurements and 13,584 8"*C measure-
ments that are annually resolved and absolutely dated from 147
oaks (Quercus spp.) that grew over the past 2,110years in what
are today the Czech Republic and parts of south-eastern Bavaria
(Fig. 1, Extended Data Fig. 1 and Supplementary Data 1). We
argue that tree-ring stable isotopes (TRSI) are a superior archive
for high-resolution reconstructions of hydroclimate variability in
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Fig. 1| Growth characteristics and temporal coverage of the central European oak stable isotope dataset. a, Temporal distribution of 147 living, historical,
archaeological and subfossil oaks (green bars). The photographs at the bottom show examples of archaeological remains, subfossil materials, historical
constructions and living oaks, and the grey shading on the right refers to the industrial period during which anthropogenic fossil fuel emissions affect the
isotopic composition of CO,. b, Annually resolved TRW (left), 880 (middle) and 8™C (right) measurement series aligned by their cambial ages (series
length). The mean TRW, 80 and &"C values are 1.6 mm, 27.8%o and —24.4%o, respectively (Extended Data Fig. 2). €, Microscopic amplification of an

oak core sample that shows a sequence of well-defined tree rings. Non-pooled TRSI measurements were extracted exclusively from the latewood alpha

cellulose (long-term behaviour is shown in Supplementary Fig. 1).

temperate areas where conventional tree-ring parameters often
fail*>**. Our new composite chronology integrates a total of 27,080
non-pooled TRSI measurements from latewood alpha cellulose.
The wood material originates from 21 living oaks, which cover wide
geographical and ecological ranges to avoid statistical overfitting
during the calibration period*. We also collected 126 core and disc
samples from construction timbers, subfossil remains and archaeo-
logical excavations of the same genus. Sample replication between
75BCE and 2018cCE, including year zero, ranges from 5-21 oaks
(Fig. 1), with an average of 7.2 trees per year. The mean series length
is 106 years with a standard deviation of 43 years (Extended Data
Fig. 2). Sample selection resulted in enough overlap between the
individual series and an equal distribution of juvenile and adult
wood over time. The even sample distribution of living and relict
oaks in space and time precludes any clustering and associated bias
during both calibration and reconstruction®. In contrast to the het-
eroscedastic oak tree-ring width (TRW) series (Fig. 1b), both car-
bon and oxygen TRSI measurements are free of age-related trends®,
and therefore do not require standardization for chronology
development (Methods). Calculated as the difference between
annual 8"C values in atmospheric CO, relative to a pre-industrial
standard level of —6.4%o0, we applied a correction factor to the 31
most recent 3°°C series that extend beyond 1850 cE (ref.”). This
is necessary because the long-term change in the isotopic compo-
sition of CO, is not directly related to climate and would distort
correlations to drought if unaccounted for. The correction for atmo-
spheric 8“C depletion from anthropogenic fossil fuel emissions

(that is, a change in the ratio between *CO, and *CO,) was based
on the compilation of ice core data until 1977 and direct measure-
ments from Mauna Loa until 2014, and we used a linear regression
to extrapolate annual 8"°C values afterwards. The raw TRSI mea-
surement series reveal the expected degree of parameter-specific
coherency between 91BCE and 2018cE (Supplementary Fig. 1).
Variation between the individual 8“C TRSI measurements is
largest in the most recent decades and from around 200-600 CE.
The individual §"®0 TRSI measurements exhibit increased variance
around 200cE and from 700-900ck. Although the median and
mean of the raw 8”°C and 8'®0 values correlate at 0.92 and 0.93 with
each other (Supplementary Fig. 1), the median is less affected by
individual outliers.

Comparison of the inverse median of the individual 80O and
8"C measurements, as well as the variance-stabilized average of
all 294 TRSI values (147 oxygen and 147 carbon) against monthly
and seasonal means of the self-calibrated Palmer Drought Severity
Index (scPDSI)*, reveals high correlations between the TRSI data
and central European summer hydroclimate (Fig. 2). As the over-
all shape of the response patterns of the individual and combined
TRSI values is almost identical (that is, no effects before and after
the growing season), the combined 8“C and 6'°0O values (hereinaf-
ter compound TRSI) almost always exhibit a substantially higher
drought signal. The inverse compound TRSI chronology correlates
well (Pearson’s r>0.7) with monthly June, July and August scPDSI
(1901-2018), as well as all seasonal combinations between March
and October. The significant correlation of 0.73 (P <0.001), found
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Fig. 2 | Temporal changes in the relation between oak stable isotopes and central European drought. Pearson’s correlation coefficients (r) of the
variance-stabilized inverse median of all 147 §®0 and 147 8C measurement series (blue and red dots) are shown, as well as their simple average (green
circles), against monthly (from previous year January (J) to current year December (D)) and seasonal (all possible 28 monthly pairings between March
and October of the growing season as described in the Extended Data Fig. 3) scPDSI averaged over central Europe (49-50° N and 15-18°E). Correlations
are calculated over the early (left), late (middle) and full (right) periods of proxy-target overlap. Black arrows refer to the JJA mean.

between the compound TRSI and the mean June-August (JJA)
scPDSI, changes to 0.58 and 0.75 when independently calculated
over two contiguous instrumental periods: early (1901-1959) and
late (1960-2018), respectively. The slightly lower correlations for
carbon compared with oxygen in the late period could be caused
by industrial pollution?’, whereas the recent increasing sensitivity
of 5'%0 could result from overall warmer and drier climate condi-
tions. We assume that the lower-frequency hydroclimate signal in
the oak TRSI is largely driven by temperature changes (Extended
Data Fig. 3), and to a lesser extent by cloud cover and precipita-
tion (Supplementary Fig. 2). Increasing temperatures and decreas-
ing scPDSI since 1901 reveal similar first-order autocorrelation
(AC1=0.5), whereas instrumental precipitation fluctuations basi-
cally resemble a ‘white noise’ process without temporal memory
(AC1=-0.1)*. It should be noted that the quantity and quality of
instrumental precipitation measurements declines disproportion-
ally back in time.

European summer drought from tree-ring stable isotopes

The original TRSI timeseries correlate with each other at 0.31
between 75BCE and 2018 ct (Extended Data Fig. 4a). This posi-
tive association remains stable after 10yr high- and low-pass fil-
tering (r=0.32 and 0.30, respectively), and the correlation further
increases after 50yr low-pass filtering (r=0.37). Both TRSI time-
series exhibit comparable first-order autocorrelation coefficients
(AC1=0.51 and 0.73 for the oxygen and carbon values). Owing to
a substantial degree of covariance between 8"°C and 80 (refs. ***),
as well as the enhanced hydroclimatic signal of our compound
TRSI record and its notable interannual to multi-centennial coher-
ency during the past 2,110years (Extended Data Fig. 4a), we use
the inverse average of the non-pooled, variance-stabilized 8"°C and
880 medians to reconstruct JJA scPDSI (Supplementary Data 2).
Our evidence-based decision to combine both TRSI timeseries to
reconstruct summer hydroclimate is corroborated by independent
findings from both controlled plant experiments and theoretical
fractionation models”, which suggest that moisture-limited condi-
tions result in an enrichment of the heavy isotopes for both TRSI.
Plants need to reduce stomatal conductance under drought to save
water (which leads to higher 8"°C), and although different frac-
tionation mechanisms are involved, climate has a similar effect on
8"0. The influence of temperature on the oxygen isotopic signal
of precipitation and higher leaf water isotope enrichment under
increased vapour pressure deficit and thus drought are reflected in
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8'%0 (ref.??). Consequently, the compound TRSI, which probably
reflects different tree physiological processes®, results in a stron-
ger hydroclimatic signal compared with the two TRSI considered
independently”*. Despite some degree of spatiotemporal and
species-specific variation in the climate sensitivity of TRSI (ref.*),
8*C and 80 values in temperate oaks generally reflect changes in
growing season temperature and precipitation’>*>*. The compound
TRSI therefore provides a superior drought proxy that reflects the
plant-relevant relationship with temperature and precipitation (that
is, scPDSI)*, which is corroborated by our findings.

Using a split period calibration/verification technique (Methods),
our reconstruction captures the full range of instrumental sum-
mer hydroclimate between 1901 and 2018 (Fig. 3). All calibration/
verification statistics confirm the temporal stability of the highly
significant agreement between the reconstructed and measured
JJA scPDSI (Extended Data Fig. 5). Most striking are the positive
reduction of error/coefficient of efficiency and Durbin-Watson
values of 0.52/0.24 and 2.31 of the final, full-period calibration
model (Methods). An overall decrease in the quality and quantity
of meteorological measurements back in time, however, may affect
the slightly lower proxy-target fit in the first half of the twentieth
century (Supplementary Fig. 2). Similar first-order autocorrelation
(AC1=0.5) of both the proxy and target data further demonstrates
the reconstruction skill on interannual to multi-decadal timescales.
Although there is a slight proxy-target offset from 1914-1918,
during the First World War, most of the measured extremes and
longer-term trends are mirrored by the reconstruction (Fig. 3a). Wet
and cold summers such as 1941 and 1997 coincide with increased
cloud cover, precipitation and soil moisture (Supplementary Fig. 2),
whereas the dry and warm summers of 1904, 1934 and 1976 are con-
sistent with a decline in cloud cover, precipitation and soil moisture.
Both the reconstructed and measured JJA scPDSI exhibit generally
wetter conditions during the first half of the twentieth century, fol-
lowed by a gradual drying trend since the early 1940s. Moreover,
we find a clear negative relationship between measured and recon-
structed JJA scPDSI and changes in annual crop yields during the
twentieth century (Methods). Dry and warm conditions—not only
wet and cold—can also affect the harvest of barley, wheat and grapes
when exceeding plant physiological thresholds”. Our reconstruc-
tion also seemingly contains a broad spatial component reflective
of the average synoptic summer conditions over the Czech Republic
and neighbouring regions in Poland, Germany, Austria, Hungary
and Slovakia. (Fig. 3b). Spatial correlation maps of the proxy and


http://www.nature.com/naturegeoscience

a Calendar year (ce)
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020
| | | | | | | | | | | | |
4 r r=0.73 (1901-2018)
r=0.58 (1901-1959)
r=0.75 (1960-2018)
2 [ A
@ | |/
g /\ |
g 0 T
< \
3
-2
AC1 =0.50/0.49
_4 [
b
65°N ~ % - 65°N
0.6
55° N - 0.5 L 550N
0.4
0.3
45°N 4 0.3 - 45°N
-0.4
-0.5
35°N 4 -0.6 F 35°N
T T T T T 1
10°W 0° 10°E 20°E 30°E 40°E 10°W 0 10°E 20°E 30°E 40° E

Fig. 3 | Temporal and spatial agreement between the oak stable isotopes and European summer drought. a, Actual (grey; averaged over 49-50°N and
15-18° E) and reconstructed (green; compound TRSI) JJA scPDSI. AC1 of the proxy and target data is provided at bottom left, whereas r values between
the proxy and target data over the full and two early/late split periods are provided at the top right. b, High-resolution, 0.5° spatial correlation coefficients
(colour scale) between the TRSI proxy data and the gridded European-wide scPDSI target data (left) and the regional average of the gridded scPDSI target
data and European-wide gridded scPDSI target data (right) over the common period 1901-2018 ck.

target data jointly indicate a dipole structure between central
Europe and northern Scandinavia. Continuous moisture supply
during the growing season, when tree physiological processes are
mainly controlled by atmospheric vapour pressure, probably con-
tributes to the excellent signal-to-noise ratio of our new JJA scPDSI
reconstruction.

We provide statistically robust evidence that the most recent
drought extremes between 2015 and 2018 are not only unprec-
edented during the period of proxy-target overlap, but also in the
context of the past 2,110years (Fig. 4 and Supplementary Data 2).
Clusters of exceptionally wet summers during Roman and medi-
eval times, around 200, 720 and 1100 CE, are contrasted with pro-
longed dry spells centred over 40, 590 and 950 ce. The most striking
drought episodes of the Common Era occurred from around
1490-1540 ct and from the mid-1970s to present (Fig. 4), with the
corresponding extremes in 1508-1509 and from 2015-2018cCE,
respectively (Extended Data Fig. 6). The five lowest reconstructed
JJA scPDSI values are —4.81, —4.76, —4.67, —4.53 and —4.52 in
1509, 1508, 2018, 2016 and 2017 cE, respectively. The driest 4-yr
and 5-yr periods start in 2015 and 2014 CE, respectively. Moderately
low soil moisture availability in the last century before the Common
Era and the first century of the Common Era coincide with the
end of the Celtic dominance in central Europe (that is, the Celtic
Drought). Another period of prolonged aridity surrounds the Late
Antique Little Ice Age in the sixth century® (that is, the LALIA
Drought), when human migrations within and beyond Europe

peaked. Summers during the Great Moravian Empire, which ruled
most of our study area from 833 to approximately 907 CE, were gen-
erally wetter (that is, the Early Medieval Pluvial). In contrast, the
most pronounced drought spell in the early sixteenth century partly
overlaps with the development of more than 70,000 artificial water
bodies, fish farms and long-distance water channel systems across
the Czech Lands (that is, the Renaissance Drought). Overall wetter
conditions characterized the Little Ice Age from around 1600 CE to
the late eighteenth century (the Little Ice Age Pluvial). On an annual
scale, cold and wet summers match the sudden withdrawal of the
Mongols from Hungary in 1242 ck (ref. ), as well as the rapid spread
of the Black Death between 1348 and 1351 ck (ref. *°), whereas warm
and dry conditions are reconstructed for the so-called megadrought
in 1540 cke. All these distinguishable high- to low-frequency signals
are accompanied by asymmetric and temporally varying confidence
limits (Fig. 4). The reconstruction error includes the annual stan-
dard error of all 27,080 non-pooled TRSI measurements between
75BCE and 2018 CE, as well as the root mean squared error of the
1901-2018 calibration period (Methods). The reconstruction error
is particularly narrow in the twentieth and early twenty-first cen-
tury when sample size is highest (Extended Data Fig. 7a—c). The
confidence limits are largest in the second century and again from
around 610-820 CE, when the internal signal strength of 5"°C and
880 is lowest (Supplementary Fig. 1).

Our JJA scPDSI reconstruction is in line with existing
precipitation-related proxies from Europe (Table 1 and

NATURE GEOSCIENCE | www.nature.com/naturegeoscience


http://www.nature.com/naturegeoscience

NATURE GEOSCIENCE ARTICLES

Calendar year (BCE/CE)

100 0 100 200 300 400 500 600 700 800 900

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000
I I I I I I I I I I ]

Early !\/Iedleva\ Pluvial

“\ ;

¢ Pluvial ,

h !“\ l

WI U “["w‘ l‘”l “\Mll .

VM‘

I Late Roman

J ‘\
‘ \]a i

\"

W H‘ ‘"I ‘l

JJA scPDSI

i i

-2+

i
\“‘\‘ ‘] W\ ”
‘ \”\I \‘\ J‘

Late Medieval
Pluvial

)

AL L
IH “ \ ”‘F ln!ll i ’ ‘H‘ nu,:!“.ﬂf ’

| Il
| 1“

Little Ice Age
Pluvial
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reconstructed values, respectively (Extended Data Fig. 6). The grey shading refers to the confidence limits after smoothing, and the dashed line represents

the highly significant long-term drying trend (y=—0.0012x + 2.4561, R*=

0.1281).

Table 1| Comparison of our new JJA scPDSI reconstruction with warm-season precipitation-related records and temperature

palaeoclimatic records from central Europe

This study Brazdil et al.  Mozny et al.* Cooketal.”? Biintgen Dobrovolny Biintgen Biintgen  Luterbacher
etal.®® et al.** et al.® etal.®® et al.¢
Proxy TRSI Documentary  Grape harvest TRW TRW Documentary MXD TRW TRW and
evidence evidence MXD
Region Central Europe  Czech Republic  Czech Republic  Czech Central  Czech Republic  European Central Europe
Republic Europe Alps Europe
Parameter scPDSI Z index SPEI scPDSI precip. temp. temp. temp. temp.
Season JIA JIA AMIJJA JIA AMJ JIA JJIAS JJA JA
Period 758cE-2018 ce 1501-2014 ce 1499-2012 ce 1-2012 ce 3988ce- 1500-2016 ce 755- 4998ce- 137 BCE-
2008 ce 2004ce  2003ce 2003 ce
Original AC1  0.43 0.10 0.18 0.36 0.42 0.21 0.67 0.70 0.47
Original r 0.46 0.37 0.34 0.20 -0.39 -0.25 -0.23 -0.30
50vyr spline r 0.36 0.61 0.38 0.51 -0.48 -0.35 -0.32 -0.42

See Supplementary Figs. 3 and 4 for details. Pearson’s r and AC1 were computed from 1500 ct to present. MXD, maximum latewood density; scPDSI, self-calibrated Palmer Drought Severity Index; Z index,
short-term Palmer Index; SPEI, Standardized Precipitation-Evapotranspiration Index; original, unfiltered; precip., precipitation; temp., temperature.

Supplementary Fig. 3)'2*'-*. Positive correlations with four
high-resolution hydroclimate reconstructions range from 0.20
to 0.46 for the original data (1500 CE-present), and increase to
0.38-0.61 after 50yr smoothing. Negative correlations with four
annually resolved temperature records*** range from —0.23 to
—0.39, and increase to —0.32 to —0.48 after smoothing (Table 1
and Supplementary Fig. 4). In both cases, the highest agreement
with our new reconstruction comes from documentary evidence
of the Czech Lands**. In contrast to the negative pre-industrial
insolation signal found in a summer temperature reconstruction
from northern Scandinavia®”, the physically driven long-term
decline in our moisture record not only appears significant before
1850 ce (Extended Data Fig. 8), but also over the entire 2,110 years
of the reconstruction. Similar long-term changes in soil moisture
availability have been suggested by low-resolution stalagmite and
pollen data from eastern China**-*, but have so far been absent in
the available 2,000-yr-long central European proxies'>* (Extended
Data Fig. 9).
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Forcing factors of European summer droughts

The recent anthropogenic warming, antithetical to a long-term orbital
summer cooling that is particularly strong at the high-northern
latitudes”, probably weakens the latitudinal temperature gradi-
ent and reduces mid-latitude moisture transport and net precipita-
tion®’. In contrast to findings from western Europe and the western
Mediterranean Basin*, we see no effect of large volcanic eruptions
in the reconstructed JJA scPDSI (Extended Data Fig. 10). None of
the four largest, best-documented and precisely dated historical erup-
tions—536 cE (unknown), 1257 ce (Samalas), 1783-1784 cg (Laki)
and 1815cE (Tambora)—seem to have affected central European
summer hydroclimate at any detectable level (Extended Data Fig.
10a). A more systematic assessment of the 12 (17) largest volca-
nic eruptions™ that occurred between 100 and 1200cE (1200 and
1900 k) also finds no substantial impact (Extended Data Fig. 10b).
A decade-long drying trend is, however, found after 12 Icelandic
eruptions. The absence of post-volcanic anomalies in our hydrocli-
mate reconstruction is not surprising in the light of generally less
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pronounced and spatially more variable precipitation responses
to volcanic eruptions, and the inability of TRSI to capture severe
ephemeral summer cooling. Anthropogenic greenhouse gas emis-
sions and associated changes in internal atmospheric dynamics, such
as an increase in anticyclonic blocking'~, most probably contributed
to the recent cluster of central European heat waves and summer
droughts between 2003 and 2018. Disentangling their relative roles,
however, remains challenging. Both the location of the summer jet
stream and the corresponding position and duration of high-pressure
cells over northern and central Europe may affect the spatiotemporal
scale of pan-European summer droughts™. The relative contribu-
tions of atmospheric and ocean circulation patterns over the North
Atlantic on European summer droughts, especially their preceding
dynamical constraints during winter and spring, are still broadly
unknown. Despite the general lack of negative forcing from solar
minima and volcanic eruptions, possible drivers of the Renaissance
Drought in the first decade of the sixteenth century also remain
unclear. The coupled palaeoclimatic model simulations™ from the
Coupled Model Intercomparison Project Phase 5 and Palaeoclimate
Modelling Intercomparison Project Phase 3 produce large differences
in the regional extent and amplitude of soil moisture during the pre-
and post-1850 periods (Supplementary Fig. 5). The current genera-
tion of Earth system models is not able to reproduce any long-term,
pre-industrial moisture decline, and the simulated amplitude changes
since 1850 differ substantially. Although much work remains before
we can expect models to simulate regional hydroclimate variability
more accurately, our study demonstrates the ability of TRSI to capture
regional drought extremes and place them in a long-term context.
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Methods

Dendrochronological data. Following a random sampling design to avoid
statistical overfitting during the calibration period*, the material used in this study
represents the natural oak distribution in the Czech Republic and south-eastern
Bavaria (Extended Data Fig. 1). The samples are composed of two main oak
genera, Q. robur and Q. petraea, which are the most widespread oak genera
across central Europe. The Bohemian and Moravian lowlands in the western and
eastern parts of the Czech Republic are characterized by relatively warm and dry
climate conditions. Both regions exhibit annual temperature means of ~9—10°C
and annual precipitation totalling ~450—500 mm. Owing to substantial summer
evapotranspiration”’, oak growth is mainly limited by soil moisture availability
during the vegetation period from late spring to early autumn®-*’, with the main
water shortage usually occurring between June and August.

A single increment core was extracted at ~1.3 m stem height from each of 21
oaks at 7 different localities between 170 and 495 m above sea level (Extended Data
Fig. 1). Across the Czech Republic and neighbouring south-eastern Bavaria, core
and disc samples from 136 historical, subfossil and archaeological features were
also collected. Much of the historical material originates from belfry constructions
in church towers, whereas the archaeological samples were extracted in close
collaboration with several commercial entities during rescue excavations. Subfossil
oaks were excavated from gravel and sand pits along the Elbe, Morava, Oder and
Vltava rivers (Extended Data Fig. 1). Ring widths of all 147 samples were measured
using a VIAS TimeTable measuring system (SCIEM) at a precision of 0.01 mm.
TRW measurements were synchronized and cross-dated visually using PAST4
(ref.") and the results were statistically controlled via COFECHA (ref.*). The most
recent version of the Czech oak TRW composite chronology™’ was used as the
reference chronology for cross-dating.

Isotopic data. The latewood alpha cellulose of each tree ring was careful split with
a scalpel under a stereomicroscope. For isotopic measurements”*, we followed
the modified Jayme-Wise isolation method®. Originating from either cores or
discs, the ~0.5-mm-wide individual wood samples were packed into Teflon filter
bags and washed with a 5% NaOH solution twice for 2h at 60 °C, followed by an
additional wash with 7% NaClO, solution for another 30h at 60 °C. Acetic acid
(99.8%) was added to the solution to keep the pH between 4 and 5. After washing,
the bags with extracted cellulose were rinsed three times in hot distilled water
(90°C). Each sample was dried subsequently at 50 °C for 24 h, locked in Eppendorf
microtubes and stored in the dark under temperature-controlled conditions at
21°C before any further analysis.

For the independent determination of 8"°C and 80, alpha cellulose samples
weighing between 0.2 and 1.0 mg were placed in tin and silver capsules, respectively.
For 8C (8'"*0), samples were combusted (pyrolysed) in CO, (CO) at 960°C
(1,450°C). Stable isotopes in the CO, and CO gases were measured in a continuous
flow isotope ratio mass spectrometer ISOPRIME100 (Isoprime). Before each
run of new isotopic measurements, the ion source of the mass spectrometer was
centred, tuned and tested for stability (standard deviation <0.04%c on 10 pulses
over 3 consecutive runs) and linearity (<0.03%0nA") over the entire range of
expected ion currents obtainable from the measurements of the test samples. The
standard deviation was <0.06%o for 8"*C and <0.10%o for §'*O on 5 consecutive
measurements of the same alpha cellulose sample. The system was calibrated using
certified reference materials with known isotopic ratios from the International
Atomic Energy Agency (IAEA) and the United States Geological Survey (USGS).
The 8"C values were referenced to caffeine (IAEA-600) and graphite (USGS24).
The 80 values were referenced to benzoic acid (IAEA-601 and ITAEA-602). The
8C and 80 values (in %0) were calculated as the deviation from the Vienna
Pee Dee Belemnite (VPDB) and Vienna Standard Mean Ocean Water (VSMOW)
standards, respectively, according to the formula R= (Ry,pe/ Ryancara = 1)1,000, where
R is the ratio of the heavy to light isotope (*C/2C, *O/'*O). A correction factor for
atmospheric 8"C depletion from anthropogenic fossil fuel emissions was applied to
the 31 8"*C carbon series that have values after 1850 CE (ref.>).

Climate reconstruction. As none of the TRSI values exhibit any statistically
discernible long-term trend over their lifespan (Fig. 1b and Supplementary Fig.
1), which is in line with recent evidence?**, we calculated the median of the 147
§"°C measurements and the median of the corresponding 6'*O measurements for
each year between 75 BCE and 2018 cE (including year zero). After normalization
(that is, all timeseries transformed to have a mean of zero and a standard deviation
of one), the variance of the two median records was stabilized according to their
30yr moving standard deviation (that is, the original values were divided by their
standard deviations)®. The inverse average of the non-pooled, variance-stabilized
§C and 8'*0 median timeseries was used as final input data for the JJA scPDSI
reconstruction from 75BCE to 2018 cE (Extended Data Fig. 4c).

To test the robustness of our compound TRSI record, we produced a composite
chronology of the combined 147 8'*O and 147 §"°C measurement series in one
single run of the regional curve standardization (RCS) and signal-free (SF)
detrending methodologies***%, as implemented in the SF chronology development
program RCSsigFree_v45h (ref. ). The initial RCS curve was derived using an
age-dependent spline, with an initial frequency response of 40 yr (ref.”’) and
applied within the SF framework to compute simple ratios from each sample’s

radial time series of TRSI measurements. The variance of the final TRSI
chronology was stabilized using the program’s default running Rbar option with
a window length of 51yr and the optional age-dependent spline stabilization®””".
Correlating at 0.98 with our original non-pooled, variance-stabilized compound
TRSI chronology that uses the average of the non-standardized carbon and
oxygen medians, the RCS-SF chronology confirmed the high- to low-frequency
skill of our record.

On the basis of the initial non-pooled, variance-stabilized compound TRSI
chronology, the final JJA scPDSI reconstruction was produced following the split
period, a reconstruction methodology introduced by Cook et al.”” and expanded
on in a later paper'? without the principle component expansion module. The
process began with a calibration and verification exercise using the original (raw)
and prewhitened chronology (predictor) and drought (predictand) values over the
period 1901-1959. This was the early period of the split period calibration and
verification test. If both regression experiments, using the raw and prewhitened
data, calibrated and verified significantly (P <0.05 or less), the same experiment
was repeated between the original predictand data and the prewhitened predictor
data that had the persistence structure of the predictand given to it. If the
early-period, persistence-enhanced predictor data also calibrated and verified
significantly, then this rigorous three-part testing was repeated a second time with
the withheld data over the late period (1960-2018) and a final time for the entire
common period (1901-2018). For obvious reasons, there are no independent
verification statistics available for the final reconstruction, consequently diagnostic
indicators of model fit such as the calibration correlation and verification R? as
well as the verification period coefficient of efficiency and verification period
reduction of error, will be the same or close to the same value. The little difference
that may exist was due to the added persistence contributed by the predictand.
The calibration and verification statistics for the equally long early and late periods
(1901-1959 and 1960-2018) and the final full-period calibration (1901-2018) are
presented in Extended Data Fig. 5.

Data availability statement

The raw tree-ring stable isotope measurements (Supplementary Data 1) and the
final drought reconstruction (Supplementary Data 2) are freely available from the
NOAA National Centers for Environmental Information (NCEI) at https://www.
ncdc.noaa.gov/paleo/study/32292.
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Extended Data Fig. 1| Oak network. Spatial distribution of 147 living, historical, archaeological and subfossil oaks between 91 BCE and 2018 CE, for which
TRW, %0 and 8™C were measured at annual resolution. While the vast majority of samples originates from the Czech Republic, a few archaeological
samples come from Bavaria in south-eastern Germany.
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series years start end msl min mean max stdev sens acl
13C 147 2110 91BCE  2018CE 104  -26572  -24472  -21695 0795 0.021 0572
13Ccorr 147 2110 91BCE  2018CE 104  -26487  -24302 -20099 0789 0.021 0.567
o18 147 2110 91BCE  2018CE 102 23435 27752 29904 1225 0.421 0.222
_?;gpound 294 2110 91BCE  2018CE 103 03340 00047 03594 1222 0.220 0.652
TRW 147 2110 91BCE  2018CE 106 00542 01613 03752 0634 0212 0631

Extended Data Fig. 2 | Dendro inventory. Number of individual tree-ring samples (series), the total chronology length and its start and end year (year,
start, end), the mean series length (msl), the minimum, mean and maximum raw measurement values (min, mean, max), as well as the standard
deviation, mean sensitivity and first-order autocorrelation coefficient (stdey, sens, ac1), of the four dendro parameters: §°C, §"C corrected, §®0 and
tree-ring width (13C, 13Ccorr, 180, TRW). The compound TRSI data are z-scores (mean of zero and standard deviation of one). Carbon and oxygen isotope
ratios are reported in per mil (%o) using the usual delta (8) notation relative to the VPDB (8"C) and VSMOW (8'®0) standards’>.
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Extended Data Fig. 3 | Temperature sensitivity. Pearson’s correlation coefficients between the non-standardized §®0O (blue dots) and 8™C (red dots)
records (using the median of the individual measurements), as well as their simple average (green circles), and monthly (from previous year January to
current year December) and seasonal (all possible 28 monthly pairings between March and October of the growing season: Mar-Apr, Mar-May, Mar-Jun,
Mar-Jul, Mar-Aug, Mar-Sep, Mar-Oct, Apr-May, Apr-Jun, Apr-Jul, Apr-Aug, Apr-Sep, Apr-Oct, May-Jun, May-Jul, May-Aug, May-Sep, May-Oct, Jun-Jul,
Jun-Aug, Jun-Sep, Jun-Oct, Jul-Aug, Jul-Sep, Jul-Oct, Aug-Sep, Aug-Oct, Sep-Oct) temperature averages over 49-50°N and 15-18°E. Correlations are
calculated over the early, late and full period of proxy-target overlap (from left to right).
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Extended Data Fig. 4 | Isotopic behaviour. (a) Comparison of the non-standardized, inverse 80 record (blue) against the non-standardized, inverse and
corrected 8"C records (red) using the median of the individual measurements. (b) Difference between the annual 80 and §"C values, with the straight
line referring to their long-term trend (equation in brackets). (¢) Simple average and long-term trend of the annual §'®0 and 8"C data. All timeseries cover
the period 75 BCE to 2018 CE, during which at least ten samples are included each year. The smoothed curves in (a) and (c) are 50-year low-pass filters.
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Pearson Robust Spearman RE CE Xprod Mean

Full Calibration

Corr  Pct Corr  Pot Corr  Pct RE/Med RE CE/Med CE tstat  Pct
Original 0.727 0.000 0.732 0.000 0.748 0.000 0.524/0.522 0.24/0.517 6.960 0.000
1st Diff 0.627 0.000 0.646 0.000 0.642 0.000 0.392/0.389 0.392/0.384 5.889 0.000
Early Calibration

Corr  Pct Corr  Pot Corr  Pct RE/Med RE CE/Med CE tstat  Pct
Original 0.579 0.000 0.573 0.000 0.544 0.000 0.316/0.309 0.316/0.298 3.305 0.001
1st Diff 0.571 0.000 0.580 0.000 0.605 0.000 0.325/0.319 0.325/0.306 3.992 0.000
Late Verification

Corr  Pct Corr  Pot Corr  Pct RE/Med RE CE/Med CE tstat  Pct
Original 0.753 0.000 0.757 0.000 0.770 0.000 0.657/0.661 0.187/0.176 3.441 0.001
1st Diff 0.708 0.000 0.716 0.000 0.705 0.000 0.489/0.491 0.487/0.481 5.009 0.000
Late Calibration

Corr  Pct Corr  Pot Corr  Pct RE/Med RE CE/Med CE tstat  Pct
Original 0.753 0.000 0.757 0.000 0.770 0.000 0.565/0.571 0.565/0.564 5.269 0.000
1st Diff 0.708 0.000 0.716 0.000 0.705 0.000 0.498/0.499 0.498/0.487 4.887 0.000
Early Verification

Corr  Pct Corr  Pot Corr  Pct RE/Med RE CE/Med CE tstat  Pct
Original 0.569 0.000 0.563 0.000 0.544 0.000 0.622/0.625 0.019/0.003 3.276 0.001
1st Diff 0.571 0.000 0.580 0.000 0.605 0.000 0.317/0.311 0.316/0.291 3.993 0.000

Durbin-Watson of the Full / Early / Late Calibration: 2.310 / 2.563 / 2.035

Extended Data Fig. 5 | Calibration-verification statistics. Statistical information of the full (1901-2018) calibration model, as well as using two
equally-long early/late (1901-1959 and 1960-2018) split period calibration windows, for which the corresponding verification results are provided as well.
Each column represents a different measure of interaction between the climate target and proxy variable along with, where appropriate, the probability
(Pct) of obtaining that value by chance alone, the exceptions being RE (Reduction of Error), and CE (Coefficient of Efficiency). The four measures are, the
Pearson, Robust Pearson, and Spearman correlations, and the statistical significance of the Cross Product (Xprod) between X and Y (Corr=correlation,
Med = Median, tstat = t-statistic).
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20 Wettest Summers 20 Driest Summers
Year scPDSI Error Error Year scPDSI Error Error
(CE) (JJA) (negativ) (positiv) (CE) (JJA) (negativ) (positiv)
183 7.80 5.89 9.71 1992 -3.55 -5.16 -1.94
899 7.33 5.65 9.00 980 -3.60 -5.26 -1.94
728 6.94 4 .88 9.01 1472 -3.67 -5.32 -2.02
805 6.89 415 9.62 1836 -3.77 -5.54 -2.00
678 6.66 473 8.58 1507 -3.80 -5.49 -2.11
725 6.52 4 .69 8.38 1510 -3.85 -5.60 -2.10
724 6.53 442 8.63 1835 -3.87 -5.57 -2.11
723 6.38 424 8.51 1521 -3.94 -5.65 -2.23
171 6.34 3.93 8.74 1976 -3.98 -5.72 -2.25
704 6.33 457 8.09 1361 -4.14 -5.81 -2.46
747 6.32 452 8.11 1512 -4.14 -5.93 -2.36
212 6.29 431 8.28 1305 -4.16 -5.78 -2.54
1107 6.28 453 8.02 1530 -4.22 -6.07 -2.38
199 6.27 425 8.30 2015 -4.28 -5.93 -2.63
696 6.21 448 7.94 1492 -4 .43 -6.18 -2.69
806 6.18 3.50 8.87 2017 -4.52 -6.12 -2.91
727 6.08 3.93 8.22 2016 -4.53 -6.22 -2.85
194 6.04 433 7.74 2018 -4.67 -6.36 -2.99
370 6.03 423 7.82 1508 -4.76 -6.45 -3.06
709 6.02 4 .41 7.63 1509 -4.81 -6.58 -3.03
Two Wettest 4yr periods Two Driest 4yr periods
728 6.12 4.09 8.15 1510 -4.30 -6.03 -2.58
186 5.97 4.07 7.88 2018 -4.50 -6.16 -2.84
Two Wettest 5yr periods Two Driest 5yr periods
728 6.20 412 8.25 1510 -4.06 -5.77 -2.35
187 5.86 3.97 7.75 2018 -4.09 -5.74 -2.44

Extended Data Fig. 6 | Reconstructed hydroclimatic extremes. The 20 highest (that is, wettest) and lowest (that is, driest) annual JJA scPDSI values
between 75 BCE and 2018 CE (including year zero). The two wettest and driest 4-year and 5-year periods of consecutive JJA scPDSI values (for example,
2018 refers to 2015-2018 and 2014-2018 for the four- and five-year periods, respectively).
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Extended Data Fig. 7 | Reconstruction uncertainty. (a) Temporal evolution of the reconstruction’s annual error range that combines measurement
(Standard Error) and calibration (Root Mean Squared Error) uncertainties. Note that the error range is consistently decreasing towards present, that is,
uncertainty was generally lager in the first half of the Common Era (y=-0.0007x + 3.6204, R*=0.0551). (b) Expressed Population Signal (EPS) of the
combined 8'®0 and 8"C dataset (compound TRSI), and calculated over 50-year windows, lagged by 25 years. (¢) Sample size of all TRSI ranges between
10 and 42 series per year.
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Extended Data Fig. 8 | Trend behaviour. (a) Linear regression fitted to the JJA scPDSI reconstruction from 75 BCE to 2018 CE (with 2094 degrees of
freedom). The Root Mean Squared Error (RMSE) is 1.93, the R-squared value is 0.112, the adjusted R-Squared is 0.112, and the F-statistic versus constant
model is 266 (p-value = 1.78e-56). (b) Liner trends of the full the JJA scPDSI reconstruction and three pre-industrial periods (orange), as well as three
industrial periods (red). Results from the Mann-Kendall test”, modified to account for autocorrelation on the timeseries, reveal there is a significant
(p<0.01) negative trend in the reconstructed values.
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Extended Data Fig. 9 | Common Era climate history. (a) This study compared against (b) central European JJA scPDSI from the OWDA (ref. %) centred
over 49.5°N and 16.5°E, and (¢) European JJA temperature anomalies“. Thick curves are 50-year cubic smoothing splines and dashed lines long-term
trends.
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Extended Data Fig. 10 | Volcanic forcing. (a) Reconstructed JJA scPDSI during five periods of strong volcanism. (b) Superposed composites of the JJA
scPDSI reconstruction aligned over the 12 (17) strongest individual volcanic forcing events before (after) 1200 CE, as well as using 12 known Icelandic
eruptions between 1200 and 1900 CE and a subset of 24 of the strongest non-Icelandic eruptions®. Peak volcanic forcing either appears in year zero
or year one following the volcanic eruption depending on the latitude and season. Forcing and response are calculated relative to a pre-event 5-year
background period presumably undisturbed by volcanic forcing (for example, 1804-1808 for the 1809 and 1815 volcanic eruptions, respectively). Data
after secondary eruptions (for example, data from lag +6 years following the 1809 eruption) are removed prior to data aggregation.
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