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Chronology Development, and Climate Signal based on criteria published by Esper et al. (2016) to assess tree-
ring based temperature reconstructions. The compilation of 46 individually calibrated site reconstructions
includes 37 different tree species and stem from North America (n = 29), Asia (n = 10); Europe (n = 5),
northern Africa (n = 1) and southern South America (n = 1). For each criterion, the individual re-
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Paleoclimate constructions were ranked in four groups, and results showed that no reconstruction scores highest or
Dendrochronology lowest for all analyzed parameters. We find no geographical differences in the overall ranking, but re-
Dendroclimatology constructions from arid and semi-arid environments tend to score highest. A strong and stable hydro-
Hydroclimate climate signal is found to be of greater importance than a long calibration period. The most challenging
Proxy data trade-off identified is between high continuous sample replications, as well as a well-mixed age class
Past millennium distribution over time, and a good internal growth coherence. Unlike temperature reconstructions, a high
Climate change proportion of the hydroclimate reconstructions are produced using individual series detrending methods

removing centennial-scale variability. By providing a quantitative and objective evaluation of all available
tree-ring based hydroclimate reconstructions we hope to boost future improvements in the development

of such records and provide practical guidance to secondary users of these reconstructions.
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1. Introduction

Tree-ring chronologies built from living and dead trees offer a
valuable source of information for understanding different aspects
of natural and human history, ranging from archeological dating to
past climate conditions. Tree-ring chronologies are both annually
resolved and precisely dated (Douglass, 1909, 1920, 1928; 1941;
Stokes and Smiley, 1968; Fritts, 1976; Schweingruber, 1988; Speer,
2010; Anchukaitis, 2017; Biintgen et al., 2018). Long chronologies
can be developed in most temperate and subtropical areas of the
world across almost all types of habitats (St George, 2014; St George
and Ault, 2014). The availability of numerous tree-ring data sets
from different sites and tree species, from diverse natural envi-
ronments, allows for comprehensive statistical analyses (e.g.,
Bjorklund et al., 2017; Seftigen et al., 2018; Babst et al., 2019;
Biintgen et al., 2019).

Depending on the dominant growth-limiting climate factor in a
particular site, tree-ring data can be used to reconstruct either
growing season temperature or hydroclimate variability (Fritts,
1976). Millennium-long temperature reconstructions, entirely or
partly derived from tree-ring data, have gained the widest atten-
tion through their almost iconic status in the current global
warming discourse (see, e.g., Frank et al., 2010; Masson-Delmotte
et al,, 2013; Smerdon and Pollack, 2016; Esper et al., 2018). Tree-
ring based hydroclimate reconstructions are perhaps less widely
known, but they play an equally important role in contributing to
our understanding of climate variability over the past one to two
millennia. The use of tree-ring data to understand past hydro-
climate variability has also a considerably longer history than the
use of tree-ring data to address temperature variability, as the
science of dendrochronology was developed in the moisture-
limited growth environment of the southwestern United States
(Douglass, 1929, 1941). Notable earlier works in the field include
Bogue (1905), Douglass (1917), Hawley and Clark (1940), Schulman
(1956), and Fritts (1976). Some of the earliest examples of long
calibrated precipitation, drought and streamflow reconstructions
can be found in Schulman (1945), Meko et al. (1980), Cook and
Jacoby (1983).

Reconstructing hydroclimate is more challenging than recon-
structing temperature as precipitation and drought are highly
affected by topography and local features (Feng et al., 2013) and
have greater spatial variability (Osborn and Hulme, 1997; Datta
et al., 2003; Hofstra and New, 2009; Biintgen et al., 2010a,b; Wan
et al.,, 2013). Precipitation shows significant spatial correlations of
~500—700 km at decadal time-scales (Cook et al., 2004; Ljungqvist
et al., 2016; Schneider et al., 2019) compared to up to several
thousand kilometers for temperature (Jones et al., 1997;
Christiansen and Ljungqvist, 2017).

Despite these challenges several large-scale gridded hydro-
climate reconstructions, covering major portions of continents,
have been produced using tree-ring data: e.g. the North Amer-
ican Drought Atlas (Cook et al., 2004), the Monsoon Asia Drought
Atlas (Cook et al., 2010), the Old World Drought Atlas (Cook et al.,
2015a, b), the Mexican Drought Atlas (Stahle et al., 2016), the
Eastern Australia and New Zealand Drought Atlas (Palmer et al.,
2015) and recently the combined Global Drought Atlas (Marvel
et al., 2019) covering large portions of the world back to 1400
CE and offering reasonable coverage for parts of the Northern
Hemisphere back to 1000 CE. However, the majority of tree-ring
chronologies included in these gridded reconstructions have not
been published as individual quality-assessed hydroclimate re-
constructions. Although the chronologies in the drought atlases,

when used together, provide a skillful drought reconstruction
over space and time, their strength lies in the representation of
the general hydroclimatic condition in a region due to the
applied aggregation, and thus interpolation, approach. Comple-
mentary to those drought atlases, however, it is important to use
individual tree-ring based site reconstructions to understand the
underlying data and investigate local hydroclimatic conditions.
This is of paramount importance especially when the local
hydroclimate—tree growth relationship deviates in season or in
hydroclimatic metric from the one used in the drought atlases.

The network of millennium-long hydroclimate tree-ring based
reconstructions is geographically confined to a few regions (Fig. 1)
with the largest concentration in the southwestern United States,
and a smaller cluster on the edge of the northeastern Tibetan
Plateau. Considering the drought change difference between
1983—-2016 and 1950—1982, one finds hydroclimate re-
constructions distributed over both regions that tend to get wetter
and regions that tend to get drier (Fig. 1). It is obvious that the
present network of millennium-long reconstructions is woefully
inadequate for capturing the spatially heterogeneous nature of
hydroclimate variability.

1.1. Objectives

Future hydroclimate changes are arguably the largest uncer-
tainty connected with global warming that, at the same time,
likely have the largest environmental and societal impacts (Field
et al., 2014; Schewe et al., 2014; Lehner et al., 2017; Trnka et al.,
2018). State-of-the-art climate model simulations provide highly
uncertain projections of hydroclimate changes at regional to
continental scales (Stephens et al, 2010; Orlowsky and
Seneviratne, 2013; Christensen et al, 2014; Nasrollahi et al.,
2015). Climate model evaluation through paleoclimate
reconstruction—simulation comparison studies is thus of utter-
most importance to improve the models’ skill (e.g., Ault et al,
2013, 2014; Coats et al., 2015; Cook et al, 2015a, b, 2016;
Smerdon et al., 2015; Ljungqvist et al., 2016, 2019; Xoplaki et al.,
2016, 2018; Seftigen et al., 2017; Bothe et al., 2019). Hydro-
climate reconstructions are therefore highly important for a
deeper understanding of past, present and future hydroclimatic
conditions and it is critically important to objectively assess and
communicate the strengths and weaknesses of each individual
record.

In this article, we evaluate and rank 46 millennium-long tree-
ring based hydroclimate reconstructions by considering their Data
Homogeneity, Sample Replication, Growth Coherence, Chronology
Development, and Climate Signal using an ordinal scoring scheme
set forth in Esper et al. (2016) for ranking tree-ring based temper-
ature reconstructions. We discuss the implications of the ranking,
provide recommendations for how to select hydroclimate re-
constructions to use for different purposes, and make recommen-
dations for the development of new hydroclimate reconstructions.
In addition, we compare the results of the two rankings of hydro-
climate and temperature reconstructions.

1.2. Reconstructed hydroclimatic metrics

Our compilation of tree-ring based hydroclimate re-
constructions, extending back to 1000 CE, includes 24 re-
constructions of precipitation, 11 reconstructions of streamflow, 6
reconstructions of the Palmer Drought Severity Index (PDSI;
Palmer, 1965; van der Schrier et al.,, 2011), 3 reconstructions of
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Fig. 1. Map of the locations of the 46 calibrated millennium-long hydroclimate tree-ring based reconstructions as filled circles showing the instrumental correlation values
superimposed on annual mean scPDSI (van der Schrier et al., 2011) values of the period 1983—2016 minus the period 1950—1982.

moisture availability/balance, 1 reconstruction of the Standardized
Precipitation Index (SPI; McKee et al., 1993), and 1 reconstruction of
Palmer Hydrological Drought Index (PHDI) (Karl, 1986). Precipita-
tion is the most easily available metric as it is directly derived from
meteorological station data, although it does not fully reflect the
complex hydrological systems. Furthermore, tree-ring hydro-
climate sensitivity might vary depending on soil characteristics and
evapotranspiration rates, making different drought metrics more or
less suitable.

PDSI integrates precipitation and temperature to estimate
relative dryness ranging from —10 (very dry) to +10 (very wet)
(Palmer, 1965; Dai et al., 2004; Wells et al., 2004; van der Schrier
et al., 2011). It tracks long-term changes in physiological drought,
relative to the mean conditions in a given region, as it combines a
physical water balance model with temperature and thus con-
siders potential evapotranspiration (Hobbins et al., 2008). PHDI
captures the slower impacts of drought and was developed to
quantify long-term hydrological effects better than the PDSI
(Jacobi et al., 2013).

SPI quantifies the observed precipitation as a standardized de-
parture from the long-term mean (Keyantash and Dracup, 2002).
One potential weakness with SPI is that it does not consider
changes in evapotranspiration since it only reflects changes in
water supply. The metric relates well to soil moisture on shorter
timescales and to groundwater and reservoir storage on longer
timescales (McKee et al., 1993). It is typically a more comparable
metric across regions than PDSI, albeit this limitation of PDSI is
greatly relieved in self-calibrated PDSI variant (scPDSI; Wells et al.,
2004; van der Schrier et al., 2011).

Streamflow can be reconstructed from tree-ring data, as both
river discharge and tree growth could be modulated by common
precipitation and evaporation patterns at a local to regional scale
(Schulman, 1945; Stockton, 1975; Stockton and Jacoby, 1976;
Woodhouse et al., 2006; Ho et al., 2016). However, streamflow
has its own characteristics: after a heavy precipitation, discharge
typically reaches a peak, and then gradually subsides to base
flow.

2. Materials and methods
2.1. Tree-ring based hydroclimate reconstructions

A literature review (completed in February 2019) resulted in
the identification of 48 tree-ring width based hydroclimate re-
constructions extending back to at least 1000 CE, each with a
minimum replication in any given year of at least three mea-
surement series. Only 46 of these 48 reconstructions are included
in this assessment since the raw data and sufficient information
from two reconstructions — the Northeastern Tibetan Plateau
precipitation reconstruction by Liu et al. (2006) and the Qaidam
Basin moisture availability reconstruction by Yin et al. (2008) —
could not be obtained. All data used here were otherwise either
accessible from public repositories or made available to us by the
original authors. We did not include older reconstructions using
mainly the same tree-ring material as in a newer version.'
Moreover, all tree-ring isotope based reconstructions (see e.g.,
Duffy et al., 2019) were excluded from this assessment as they
either lack annual resolution (e.g., Edwards et al., 2008, 2017;
Wang et al., 2013; Kress et al., 2014) or the reconstruction was
derived from annually pooled samples (e.g., Treydte et al., 2006;
Griefinger et al., 2017), precluding the calculation of key metrics
used in this assessment.

Out of the 46 tree-ring width based hydroclimate re-
constructions, 10 are from Asia, 5 from Europe, 1 from (northern)
Africa, 29 from North America, and 1 from (southern) South
America. The five reconstructions from Europe and the one from
(northern) Africa are treated as one group (Fig. 1; Table 1). The 46
reconstructions are derived from 37 tree species representing 16
different genera, with Pinus (n = 21), Pseudotsuga (n = 14), and
Juniperus (n = 11) being the most common. Most species (n = 22),
however, occur only in one single reconstruction. The majority of
the reconstructions (n = 29) are composed of one tree species,
but 11 include two species, and six combine three or more spe-
cies (Table 1). Only seven reconstructions are composed of ring
width data solely from living trees, mainly from China, while 39

! For example, the Heihe River, China, streamflow reconstruction by Qin et al.
(2010) is superseded by that in Yang et al. (2012).
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Table 1

List of all the 46 tree-ring reconstructions, extending back at least to 1000 CE, published as calibrated hydroclimate reconstructions. The abbreviation code for tree species
follows the standard used in the International Tree-Ring Data Bank (ITRDB; Grissino-Mayer and Fritts, 1997) as listed in Grissino-Mayer (1993). Abbreviations:
EW = earlywood; LW = latewood.

Reconstruction Reference Long. Lat. Species Signal Season
1. Albemarle Sound, USA (EW) Stahle et al. (2013) —76.00 36.00 TADI PHDI July
2. A'nyémaqeén, China Gou et al. (2010) 99.50 34.50 JUPR Streamflow August—]July
3. Atlas Mountains, Morocco Esper et al. (2007) —5.07 33.02 COAL PDSI February—June
4. Barranca de Amealco, Mexico Stahle et al. (2011) —100.07 20.21 TACU PDSI June
5. Bear River, USA DeRose et al. (2015) -110.85 40.97 JUOS Streamflow October
—September
6. Central Chile Garreaud et al. (2017) —70.34 -34.35 AUCH Precipitation June—December
7. Central Europe Biintgen et al. (2011) 9.00 50.00 QUSP Precipitation
8. Choctawhatchee River, USA  Stahle et al. (2012) —85.88 3047 TADI Precipitation April-May
(EW)
9. Choctawhatchee River, USA  Stahle et al. (2012) —85.88 30.47 TADI Precipitation June—July
(Lw)
10. Colorado River, USA MacDonald et al. (2008) —114.50 33.50 PIAR, PILO, PIFL, LALY, PSME Streamflow October
—September
11. Delingha, China Shao et al. (2005) 97.80 37.10 JUPR Precipitation July—June
12. Dulan, China Sheppard et al. (2004) 99.00 37.00 SBPI Precipitation July—June
13. East Anglia, UK Cooper et al. (2013) 1.00 52.50 QUPE, QURO Precipitation March—July
14. El Malpais, USA Grissino-Mayer (1995) —108.18 34.97 PSME, PIPO Precipitation July—July
15. El Malpais, USA (EW) Stahle et al. (2009) —108.18 34.97 PSME, PIPO Precipitation September—May
16. El Malpais, USA (LW) Stahle et al. (2009) —108.18 3497 PSME, PIPO Precipitation June—July
17. Flowerpot, Canada Buckley et al. (2004) -81.50 45.10 THOC Precipitation June—July
18. Georgia, USA Stahle and Cleaveland (1992) -81.80 31.62 TADI Precipitation March—July
19. Heihe River Basin, China Yang et al. (2012) 100.00 38.20 SBPI Streamflow August—July
20. Hexi Corridor, China Yang et al. (2019) 98.03 39.55 JUPR scPDSI May—June
21. Jemez Mountains, USA Touchan et al. (2011) —106.50 36.00 PSME, PISF, PIPO Precipitation October—June
22. Khorgo, Mongolia Hessl et al. (2018) 99.87  48.17 PISI PDSI June—September
23. Lee Ferry, USA Meko et al. (2007) —111.58 36.85 PSME, PIED Streamflow
24. Little Snake River, USA Gray et al. (2011) —107.75 40.75 PSME, PIMO Streamflow October
—September
25. Mesa Verde, USA Stahle et al. (2015) —108.48 37.18 PSME Moisture September—May
balance
26. Mesa Verde, USA Stahle et al. (2015) —108.48 37.18 PSME Moisture June—July
balance
27. Mount San Gorgonio, USA  MacDonald (2007) —116.80 34.12 PIJE PDSI January—April
28. Mount Smolikas, Greece Klippel et al. (2018) 20.75 40.25 PIHE SPI June—July
29. Northeastern Tibetan Yang et al. (2014) 98.00 37.00 JUPR Precipitation July—June
Plateau, China
30. Pamir-Alay Mountains, Opata-Owczarek and NiedZzwiedz 69.00  39.00 JUSM Precipitation December
Tajikistan (2018) —February

31. Potomac River, USA Maxwell et al. (2011) —77.53 39.27 CYOV, JUV], LITU, MAAC, PCRU, QUAL, QUPR, Streamflow May—September
TADI, TSCA
32. Qilian Mountains, China Zhang et al. (2011) 99.50 38.50 JUPR Precipitation August—July
33. Sacramento River, USA MacDonald et al. (2008) —121.63 38.70 PILO, PIFL, JUOC Streamflow
34. Southern Colorado Plateau, Salzer and Kipfmueller (2005) —111.40 35.20 PSME, PIED Precipitation October—July
USA
35. Southern Finland Helama et al. (2009) 2850 61.50 PISY Precipitation May—]June
36. Southern Sierra Nevada, USA Graumlich (1993) —118.90 36.90 JUOC Precipitation December
—February
37. Southerncentral England, UK Wilson et al. (2013) —1.50 52.00 QUPE, QURO Precipitation March—July
38. Summitville, USA Routson et al. (2011) —106.59 37.43 PIAR Precipitation March—July
39. Tavaputs Plateau, USA Knight et al. (2010) —110.40 39.70 PSME Precipitation July—June
40. Upper Arkansas River Basin, Woodhouse et al. (2011) —106.00 38.50 PSME, PIPO, PIED Moisture October
USA availability —September
41. Upper Klamath River Basin, Malevich et al. (2013) —121.78 42.20 JUOC, PIPO, PIJE, QUDG Precipitation October
USA —September
42. Uurgat, Mongolia Hessl et al. (2018) 101.77 46.68 PISI PDSI June—September
43. Whirlpool point, Canada Case and MacDonald (2003) —116.45 52.00 PIFL, PCMA Streamflow October
—September
44. White Mountains, USA Hughes and Graumlich (1996) —118.17 3745 PILO Precipitation July—June
45. White River, USA Gray et al. (2011) —108.00 40.00 PSME, PIMO Streamflow October
—September
46. Yampa River, USA Gray et al. (2011) —108.33 40.48 PSME, PIMO Streamflow October
—September

are composed of living trees in combination with relict material
from archeological, historical, remnant, and/or sub-fossil sam-
ples. The season of the strongest tree-growth response to
hydroclimate differs among the reconstructions (see column
“Season” in Table 1).

2.2. Hydroclimate tree-ring chronology characteristics and metrics

The characteristics Data Homogeneity, Sample Replication,
Growth Coherence, Chronology Development, and Climate Signal
described in Esper et al. (2016) are here adapted for hydroclimate
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reconstructions (sections 2.3.1 to 2.3.5). In most instances, infor-
mation about Data Homogeneity and Climate Signal were obtained
from the original publications. For the remaining characteristics,
each value was calculated using the program ARSTAN (version
ARS41d_xp) (Cook and Krusic, 2005). Each characteristic (see sec-
tions 2.3.1 to 2.3.5) is used to produce an ordinal scoring scheme to
rank the 46 tree-ring hydroclimate reconstructions. The scores for
each criterion and their combination are divided into four classes
(from highest to lowest rank): class A, class B, class C, and class D. In
the quantitative ranking of Sample Replication, Growth Coherence,
Chronology Development, and Climate Signal, the 12 top-ranked
hydroclimate reconstructions fall in class A, ranks 13—24 in class
B, ranks 25—35 in class C, and ranks 36—46 in class D. In the mainly
qualitative ranking of the Data Homogeneity an uneven number of
reconstructions fall into the four hierarchal classes (11 re-
constructions in class A, 14 class B, 14 class C, and 7 class D). To
produce an overall score, the individual ranking order for each
characteristic (sections 2.3.1 to 2.3.5) is combined.

2.2.1. Data homogeneity

The category Data Homogeneity combines characteristics of the
(i) “Source” of tree-ring samples, (ii) “Type of chronology”, (iii)
“Number” of tree species, (iv) “Temporal clustering” of tree-ring data,
and (v) more general “Remarks” on the sampling site(s). Source
includes information about the origin of tree-ring samples, the
number of sampling sites, and their location in relation to each
other. The Data Homogeneity score takes into account whether, and
to what extent, the tree-ring samples originate from one or more
sites. This information was obtained either from the original pub-
lication or via personal communication with the author(s)/data
contributor(s). Chronology type differentiates between two types of
tree-ring reconstructions: composite “C” reconstructions,
composed of living in addition to relict (historical/remnant/sub-
fossil) material, and living “L” reconstructions composed only of
samples from living trees. Historic denotes samples from both
archeological excavations and standing structures. Remnant de-
notes samples from dead wood found on the ground in different
states of conservation. Sub-fossil denotes samples retrieved from
sediments. Number of Species considers the number of different tree
species contributing to a reconstruction. Temporal clustering refers
to when the contribution of tree-ring data from distinct homoge-
neous sites and/or a specific tree species dominate specific periods
of the past millennium. Such clustering can complicate the pres-
ervation of low-frequency climate information (sensu, Melvin et al.,
2013). Remark summarizes particular features of the data in a
particular reconstruction relevant to the Data Homogeneity score.

2.2.2. Sample replication

The availability of tree-ring series varies over time, resulting in
an uneven temporal distribution over the past millennium with
typically increasingly fewer series back in time. We consider how
these temporal changes affect reconstruction skill in the Sample
Replication metric by integrating information about (i) “Mean
replication”, (ii) “Maximum replication”, (iii) “Minimum replication”,
and (iv) “11%/20™ Century Ratio”. Mean Replication denotes the
average number of measurement series (either core samples or
radii from disks) considering all years from 1000 CE to the most
recent year of a reconstruction (thus, meaning that the exact
number of years can differ slightly due to the different end dates of
the reconstructions). Maximum Replication and Minimum Replica-
tion refer to the maximum and minimum numbers of contributing
measurements at any year in the reconstruction. The 11”7/20”’
Century Ratio refers to the mean 11 century replication divided by
the mean 20 century replication multiplied by 100. This metric is
particularly important since tree-ring based reconstructions are

calibrated over the typically well-replicated recent period. We
calculate the combined Sample Replication score by summing the
first three values (i + ii + iii) and multiplying the result by (iv). As
explained in Esper et al. (2016), these measures — as well as those
for the other scores described below — are somewhat arbitrary but
derived through dendroclimatological expert knowledge to pro-
duce an ordinal scoring system that permits the comparison and
ranking of tree-ring based reconstructions. Sample Replication was
calculated using the program ARSTAN.?

2.2.3. Growth coherence

Growth coherence is expressed by the correlation between the
individual measurement series: the so-called inter-series correla-
tion (Rbar) (Wigley et al., 1984). Growth Coherence is an important
chronology characteristic when evaluating the temporal reliability
of a tree-ring based climate reconstruction. Using the program
ARSTAN, we calculated the running mean Rbar value for every 10
years of a chronology using a 100-year window with an overlap of
90 years from 1000 CE onwards. The final Growth Coherence score is
obtained by summing the (i) mean Rbar, (ii) maximum Rbar, and
(iii) minimum Rbar and multiplying the resulting sum by the (iv)
]]th/20th century ratio Rbar (in %). The mean, as well as the mini-
mum and maximum Rbar were calculated in a similar manner from
1050 CE onwards. In order to avoid biased positive results from very
high Rbar values in the 11™ century compared to in the 20™ cen-
tury, the maximum allowed Rbar ratio is capped at 150% in the
calculation of the final Growth Coherence score. This 150% ceiling
only affects three reconstructions, all from the United States:
Potomac River (Maxwell et al., 2011), Southern Sierra Nevada
(Graumlich, 1993), and Upper Arkansas River Basin (Woodhouse
et al,, 2011).

2.24. Chronology development

The Chronology Development score incorporates four metrics: (i)
type of detrending (“1” for Regional Curve Standardization (RCS),
and “2” for individual-series detrending method), (ii) the square
root of the difference between the maximum and the minimum
age, (iii) the slope of the linear regression in the age curve multi-
plied by 100, and (iv) the maximum retained low-frequency score
(“1” for multi-centennial and “2” for decadal to centennial). The
choice of detrending method to remove tree-age related growth
trends from the raw measurement series can have profound effect
on the ability to preserve low-frequency variability and long-term
trends in tree-ring reconstructions. Only certain detrending
methods can overcome limitations induced by the segment length
of individual tree-ring series (Cook et al., 1995). The RCS method
(Briffa et al., 1992; Esper et al., 2003) is most commonly used to
achieve trend preservation and the maximum retained low-
frequency score is “1” for RCS detrended. Reconstructions pro-
duced by individual series detrending are by default supposed not
to preserve low-frequency variability beyond their segment length
and obtain the score “2”. However, chronologies with tree-ring
series, on average, exceeding 400 years are still supposed to
retain some multi-centennial variability. We calculated the differ-
ence between the maximum and minimum age over the past
millennium, and the slope of the linear regression fit to the age
curve. In the ranking of temperature reconstructions by Esper et al.
(2016), the maximum low-frequency information a reconstruction
is arguably able to retain is divided into three categories: multi-
centennial = “1”, to centennial = “2”, to decadal = “3”. Here, for our

2 The 11™" century sample depth is calculated over the period 1001 to 1100, and
the 20™ century sample depth is calculated from 1901 to the most recent year of a
reconstruction.
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ranking, we only use two categories: multi-centennial = “1” and
decadal to centennial = “2”. The rationale for a two-category scale
when working with hydroclimate reconstructions is because,
compared to temperature, it is less certain what are the deter-
ministic and stochastic controls on hydroclimate low-frequency
variability (Hurst, 1951; Pelletier and Turcotte, 1997; Markonis
and Koutsoyiannis, 2016). The final Chronology Development score
is obtained by multiplying (i) the method score (“1” for RCS, “2” for
individual detrending), with (ii) the square root of the
maximum—minimum age difference, (iii) the absolute linear
regression slope multiplied by 100, and (iv) the maximum retained
low-frequency score.

2.2.5. Climate signal

We acknowledge the limitations with the Climate Signal metric
considering that the assessment of hydroclimate signal strength to
a large degree is dependent on the quality and length of the
instrumental data. Moreover, in some cases, especially in regions
with a short and sparse network of instrumental data, the hydro-
climate signal in the trees may in fact be better than the instru-
mental data used for calibration. The Climate Signal score is derived
by (i) calculating the square root of the number of years of overlap
between the reconstruction and the instrumental target used for
calibration, multiplied by the residual between, (ii) the correlation
coefficients between tree-ring chronologies and instrumental
climate data, and (iii) the difference between correlation values of
the calibration/verification periods. When the calibration/verifica-
tion statistics are not reported, we estimate the difference based on
our calculations using gridded instrumental data. In addition, we
included another variable (iv) to account for a calibration period
that was deliberately shortened to avoid “divergence”, i.e., an
anomalous offset between tree growth and climate sensitivity
(sensu D’Arrigo et al., 2008). When such “divergence” is reported in
the original publication, and the calibration period has been trun-
cated, we use 0.5 as a multiplier instead of 1 as in all other cases.
The final Climate Signal score is obtained by calculating the square
root i x (ii—iii) x iv.

3. Results
3.1. Detailed tree-ring chronology rankings

3.1.1. Data homogeneity

The reconstructions scoring the highest (rank A) by Data Ho-
mogeneity (Table 3), of which none are from Europe, are derived
from only one site or, in case of the Tavaputs Plateau (Knight et al.,
2010), from two very nearby sites in one canyon. Moreover, when
the reconstructions are only based on one tree species, and when
the data are from only one site, it is not possible for temporal
clustering to occur. The reconstructions scoring second highest
(class B) are based on tree-ring material from either one or two or
several sites (e.g., Barranca de Amealco; Stahle et al., 2011 and
Flowerpot; Buckley et al., 2004). In cases when they are based on
only one site this site includes less homogeneous material than
those in class A. When the data are from two or more sites, these
are typically homogeneous growth environments in close prox-
imity and the reconstructions are composed of at most two species.
There may exist inhomogeneities such as early chronology portions
that are based on only one site (e.g., Atlas Mountains; Esper et al.,
2007), substantial changes in mean ring width level (e.g., Bar-
ranca de Amealco; Stahle et al., 2011), data obtained from two
different river systems (e.g., Choctawhatchee River; Stahle et al.,
2012), different microsite conditions (e.g., Flowerpot; Buckley
et al., 2004).

Reconstructions scoring less well (class C) typically consist of

rather inhomogeneous material, often collected across a large re-
gion. In some cases, the data are from a larger number of sites (e.g.,
17 living tree sites and 5 archeological sites on the Northeastern
Tibetan Plateau; Yang et al., 2014). Parts of the chronologies may
also be derived from historical and/or archeological wood that does
not necessarily provenance from the same area or environment as
the living or remnant samples in the same chronology (e.g., Central
Europe; Biintgen et al., 2011, Dulan; Sheppard et al., 2004, East
Anglia; Cooper et al., 2013, Southeastern England; Wilson et al.,
2013, and Mesa Verde; Stahle et al., 2015). The reconstructions
scoring lowest in Data Homogeneity (class D) do not necessarily
consist of more sites than those in class C. However, the sites are
geographically more dispersed as well as diverse in their growth
environments. All reconstructions in class D, except one, include
three to up to nine different tree species (see Table 2). All class D
reconstructions are from North America, including many that
consist of numerous sites, widely dispersed over several states, and
separated by distances up to several hundreds of kilometers. It is
thus the number of sites, plus the distance between them, as well as
the inhomogeneous growth environments that primarily are
impacting Data Homogeneity. However, when a reconstruction in-
cludes three or more tree species the scoring decreases to the point
where it contributes to place the reconstruction in class D. Tem-
poral clustering is present in most class C and D chronologies.

3.1.2. Sample replication

Reconstructions from Asia and Europe generally include more
samples than reconstructions from North America (Table 4).
Overall, mean replication is similar between Asia and Europe
except for the sharp replication increase after c. 1850 in Europe at
(Fig. 2). Noteworthy is also the decreasing sample replication to-
wards the present in Asia as well as gradual post-1500 increase
seen in many reconstructions from North America. The post-1850
replication increase in Europe biases the (20" century) calibra-
tion statistics — a feature absent in Asia and North America. Mean
and maximum replication are highest in Europe and lowest in
North America. The 11t"/20™ century ratio of the mean replication
is highest, and with the largest spread, in Asia, and basically
identical in Europe and North America (Fig. 5).

The reconstruction ranking highest in the category Sample
Replication is the Northeastern Tibetan Plateau including 837
measurement series (Yang et al., 2014), followed by Central Europe
(3124 series; Biintgen et al., 2011) and Colorado River (390 series;
MacDonald et al., 2008). Reconstructions scoring well in Sample
Replication are disproportionately often from Asia and Europe,
whereas the majority of low scoring ones are from North America.
The latter is even more apparent when considering the minimum
replication: except two, all reconstructions including periods dur-
ing which replication falls below 10 samples are from North
America (Table 4).

3.1.3. Growth coherence

Mean Rbar values are highest in North America (0.42) and
lowest in Europe (0.25), with values in Asia (0.38) closer to those of
North America (Fig. 3; Fig. 6). The low Rbar values in Europe likely
result from the inclusion of tree-ring material that is less homo-
geneous over time, including material derived from historical
construction timber harvested over a wide region in different
growth environment conditions. Another possible explanation for
the low Rbar values in Europe is a lower proportion of the tree-ring
material that is derived from arid or semi-arid environments.

Reconstructions scoring well in the category Sample Replication
perform in some cases less well in the category Growth Coherence
and vice versa. This is presumably related to data from sites, with
various growth conditions, being included in many of the
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Table 2

Abbreviations of tree species included in this study (see Table 1), used in the International Tree-Ring Data Bank (ITRDB; Grissino-Mayer and Fritts, 1997), following Grissino-
Mayer (1993) with later updates. No refers to number of chronologies derived from the tree species.

Latin name Common name Family Genera ITRDB code No
Austrocedrus chilensis (D.Don) Pic.Serm. & Bizzarri Chilean cedar Cupressaceae Austrocedrus AUCH 1
Carya ovata (Mill.) K.Koch Shagbark hickory Juglandaceae Carya cYov 1
Cedrus atlantica Endl. Atlas cedar Pinaceae Cordia COAL 1
Juniperus occidentalis Hook Western juniper Cupressaceae Juniperus Juoc 3
Juniperus osteosperma (Torr.) Little Utah juniper Cupressaceae Juniperus Juos 1
Juniperus przewalskii Kom. Qilianshan juniper Cupressaceae Juniperus JUPR 5
Juniperus semiglobosa Regel Himalayan pencil juniper Cupressaceae Juniperus JusM 1
Juniperus virginiana L. Eastern redcedar Cupressaceae Juniperus Juvi 1
Larix lyallii Parl. Alpine larch Pinaceae Larix LALY 1
Liriodendron tulipifera L. Tulip tree Magnoliaceae Liriodendron LITU 1
Magnolia accuminata (L.) L. Cucumbertree Magnoliaceae Magnolia MAAC 1
Picea mariana (Mill.) Britton, Sterns & Poggenb. Black spruce Pinaceae Picea PCMA 1
Picea rubens Sarg. Red spruce Pinaceae Picea PCRU 1
Pinus aristata Engelm. Rocky Mountain bristlecone pine Pinaceae Pinus PIAR 2
Pinus edulis Engelm. Colorado pinyon Pinaceae Pinus PIED 3
Pinus flexilis E.James Limber pine Pinaceae Pinus PIFL 3
Pinus heldreichii Christ Heldreich’s pine Pinaceae Pinus PIHE 1
Pinus jeffreyi A.Murray bis Jeffrey pine Pinaceae Pinus PIJE 2
Pinus longaeva D.K.Bailey Intermountain bristlecone pine Pinaceae Pinus PILO 3
Pinus ponderosa Douglas ex C.Lawson Ponderosa pine Pinaceae Pinus PIPO 6
Pinus sibirica (Ledeb.) Turcz. Siberian stone pine Pinaceae Pinus PISI 2
Pinus strobiformis Engelm. Southwestern white pine Pinaceae Pinus PISF 1
Pinus sylvestris L. Scots pine Pinaceae Pinus PISY 1
Pseudotsuga menziesii (Mirb.) Franco Douglas fir Pinaceae Pseudotsuga PSME 14
Pinus monophylla Torr. & Frém. Singleleaf pinyon Pinaceae Pinus PIMO 3
Quercus alba L. White oak Fagaceae Quercus QUAL 1
Quercus douglasii Hook. & Arn. Blue oak Fagaceae Quercus QUDG 1
Quercus petraea (Matt.) Liebl. Sessile oak Fagaceae Quercus QUPE 2
Quercus prinus L. Chestnut oak Fagaceae Quercus QUPR 1
Quercus robur L. English oak Fagaceae Quercus QURO 2
Quercus sp. Oak Fagaceae Quercus QUSP 2
Sabina przewalskii (Kom.) W.C.Cheng & L.K.Fu Qilian juniper Cupressaceae Sabina SBPI 2
Tsuga canadensis (L.) Carriere Eastern hemlock Pinaceae Tsuga TSCA 1
Thuja occidentalis L. Northern white cedar Cupressaceae Thuja THOC 1
Taxodium distichum (L.) Rich. Baldcypress Cupressaceae Taxodium TADI 5
Taxodium mucronatum Ten. Montezuma bald cypress Cupressaceae Taxus TACU 1

reconstruction with high replication resulting a weaker common
signal. All reconstructions with the highest Growth Coherence (class
A) come from North America. There is no consistent geographical
pattern associated with those reconstructions with the lowest
Growth Coherence (class D). Three reconstructions have negative
Rbar values at some point during the past millennium (1000—2000
CE). Interestingly, these negative Rbar values do not necessarily
appear in the, generally most weakly replicated, early part of the
chronology.’

3.1.4. Chronology development

Whereas reconstructions from Europe are overrepresented
among those with the highest Chronology Development scores (class
A) several reconstructions from China (n = 4) and North America
(n=7)appear in class D (Table 6). The low Chronology Development
scores are related to a large age range and a steep age trend in
combination with individual detrending instead of RCS detrending
(Fig. 3). An uneven age distribution also introduces a climate signal
age effect bias (e.g., Linderholm and Linderholm, 2004; Rossi et al.,
2008; Rozas et al., 2009; Cermak et al., 2019). Asian chronologies
have the largest age range and age trend (Fig. 4) — as well as the

3 The East Anglia precipitation reconstruction (Cooper et al., 2013) has a mini-
mum Rbar value of —0.24 centered in the 1190s, the Jemez Mountain precipitation
reconstruction (Touchan et al., 2011) has a minimum Rbar value of —0.22 centered
in the 1430s, and the Central European precipitation reconstruction (Biintgen et al.,
2011) a minimum Rbar value of —0.13 centered in the first decade of the nineteenth
century.

largest spread in both parameters — whereas European chronolo-
gies have the smallest age range and age trend (Fig. 7). The smaller
observed average age trend in Europe, compared to Asia and North
America, is related to the relative absence of long-lived tree species
in Europe as well as due to the long history in Europe of intensive
land use. The European chronologies have a flat age trend until the
late nineteenth century in Europe, whereas in Asia the increase is
visible already by c. 1300, and by c. 1700 in North America (Fig. 3). In
addition, the spread in the age trend between chronologies from
North America increases after c. 1600. All three continents have a
strong age trend increase during the twentieth century. It is more
common for chronologies from Europe to retain centennial to
multi-centennial variability than for chronologies from Asia or
North America as RCS has been applied to composite datasets.

3.1.5. Climate signal

All 12 reconstructions in the highest Climate Signal class A are
from North America (Table 7). These reconstructions calibrate
exceptionally well (mean 0.79 + 0.07) against relatively long
instrumental data (mean 96 + 13 years) and in most cases the
calibration/verification difference is a very small one (mean r.
0.08 + 0.05) (Fig. 8). A very high correlation coefficient can
compensate for a shorter calibration period and a larger calibration/
verification difference. The reconstruction with the highest corre-
lation to instrumental data (r. 0.90), the Bear River streamflow
reconstruction (DeRose et al., 2015), has a calibration period of only
68 years and the calibration/verification difference is as large as r.
0.18, but is still placed in class A. There is an obvious over-
representation of humid sites among those reconstructions with
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Table 3

Data Homogeneity scores. Chronology type “C” refers to reconstructions derived from a composite of material from living trees, remnant, historical and/or sub-fossil wood. Type
“L” refers to reconstructions derived from only living trees. Temporal clustering (Yes) indicates reconstructions composed of data from distinct sites or species concentrated in
discrete periods over the past 1000 years. Other abbreviations: AM = archeological material; HM = historical material; RM = remnant material; SF = subfossil material
(MacDonald and Case, 2005). (For interpretation of the references to color in this table legend, the reader is referred to the Web version of this article.)

6. Homogeneity

5. Remark

4. Temporal clustering

3. Species number

2. Chronology type

1. Source

A’nyémagén, China L, 1site No | Site at the lowest forest border on a south-facing slope

Bear River, USA 1site No | From south-facing slopes on one site

Hexi Corridor, China L, 1site No | From open stands 3000-3520 m a.s.l.

Khorgo, Mongolia 1site No | Stunted trees growing on basaltic lava

Mount San Gorgonio 1site No | New measurements combined with old ones from the 1970s
Pamir-Alay Mountains, Tajikistan L, 1site No | Sampled trees grow on a southern exposure 30-40° slope
Southern Sierra Nevada, USA 1site No | Only 3 radii in 1000 CE, increasing correlation back in time
Summitville, USA 1site No | Based on relatively few trees

Tavaputs Plateau, USA L and RM, 2 sides No | Merged into the Harmon Canyon chronology

Uurgat, Mongolia 1site No | Stunted trees growing on basaltic lava

W hite Mountains, USA 1site No | Very old trees from small area

Albemarle Sound, USA 2sites No | Combination of two chronologies

Atlas Mountains, Morocco L, several sites Yes | Pre-1200 data dominated by one site

Barranca de Amealco, Mexico 1site Yes| Jump from lower to higher TRW level in 16 century

Central Chile 2 sites Yes | Data from two rather nearby sites

Choctawhatchee River, USA (EW) SF, 2sites No | EW data from two river systems in Florida and Georgia
Choctawhatchee River, USA (LW) SF, 2sites No | EW data from two river systems in Florida and Georgia
Delingha, China L, 7sites No | Maximum distance between sites is 137 km

El Malpais, USA 2sites No | Temporal coverage of the two species unclear

El Malpais, USA (EW) 2sites No | Include data from Grissino-Mayer (1995) plus new living material
El Malpais, USA (LW) 2sites No | Include data from Grissino-Mayer (1995) plus new living material
Flowerpot, Canada 1site No | Severely changing microsite conditions

Heihe River Basin, China 3 sites No | Merged Hugershoff and negative exponential sub-chronologies
Mount Smolikas, Greece 8sites No | Small micro-site differences exist

W hirlpool point, Canada 1site No | Also used in MacDonald and Case (2005) for reconstructing PDO
Central Europe HM, multiple sites No | Data from numerous sites across Central Europe

Dulan, China HM, several sites Yes | Historical material from lower elevations
East Anglia, UK HM, multiple sites Yes | Multiple sites from homogeneous region
Georgia, USA 3 sites Yes | Based on only one site before 1206

Little Snake River, USA

Mesa Verde, USA (EW)

Mesa Verde, USA (LW)
Northeastern Tibetan Plateau, China
Qilian Mountains, China

Southern Colorado Plateau, USA
Southern Finland

Southerncentral England, UK

W hite River, USA

Yampa River, USA

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

5sites over a large area
5sites: L, RMand AM
5sites: L, RMand AM

17 sitesL and 5 sites AM
Living trees, 3 sites

RM, multiple sites

Land RM, 3sites

HM, multiple sites
5sites from large area
5sites from large area

Same tree-ring data used for three reconstructions
Archeological wood only prior to 1250 CE

Archeological wood only prior to 1250 CE

Trees growing from 3200-4200 m a.s.l.

One site not covering the whole 11 century

Sites treated separately, and combined to one reconstruction
From 61°-62°N, 29°-28°E

Multiple sites from larger region, 15 living tree sites

Same tree-ring data used for three reconstructions

Same tree-ring data used for three reconstructions

0000000000000 0000000000000O0OO00OOOO0O0O0Ce00000COCOOS

[eXoNeoNeoNoNoNoNeoNoNoNoNeol nNoNoNoNoNoNeoNoNoNoNeoN nNoNeoNoNON NN NGO NN N e e N e eI @R e N eI @ N ml e N u
B W W OMNWOOAOITND NN AN 2 A A AN AN A AN A2 A aAaMNPDNODNND A A A v v v v

Colorado River, USA 11 sites No | Predictor pooled from a very wide area

Jemez Mountains, USA 5sites Yes| Only one site extends back to 1000 CE

Lee Ferry, USA 11 sites Yes | Widely dispersed sites in Colorado River watershed region
Potomac River, USA 27 sites Yes | More sites and species than in any other reconstruction
Sacramento River, USA 7 sites No | Predictor pooled from a very wide area

Upper Arkansas River Basin, USA 8 sites Yes| Eight sites located long from each other of three species
Upper Klamath River Basin, USA 17 sites Yes | Predictor pooled from a very wide area

@ Class A OClassB (QClassC @¢ClassD
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Table 4
Sample Replication scores. The number of measurement series included in the reconstructions. 11™/20™ is the ratio of the mean replication during the 1% century relative to
the mean replication during the 20" century. (For interpretation of the references to color in this table legend, the reader is referred to the Web version of this article.)

5. Replication

4. 1177207 [%]

3. Minimum

2. Maximum

1. Mean

Northeastern Tibetan Plateau, China 628 810 266 69 ()
Central Europe 337 502 58 76 @
Khorgo, Mongolia 64 82 42 127 @
Colorado River, USA 284 362 12 62 (@)
Sacramento River, USA 175 253 42 43 @
Heihe River Basin, China 116 160 52 114 Qo
Delingha, China 236 275 101 60 Q@
Southern Finland 122 265 26 40 )
Dulan, China 154 216 42 35 @
Southerncentral England, UK 198 349 51 22 (@)
East Anglia, UK 89 306 11 31 @
Hexi Corridor, China 124 203 13 17 (]
El Malpais, USA 81 123 18 49 O
Flowerpot, Canada 50 11 15 57 O
Uurgat, Mongolia 31 40 24 93 O
Mount Smolikas, Greece 195 363 39 13 O
W hite Mountains, USA 45 56 15 65 O
A’nyémagqén, China 58 83 21 41 O
Tavaputs Plateau, USA 24 29 18 92 O
Choctawhatchee River, USA (EW) 36 51 8 3 @
Lee Ferry, USA 194 355 29 9 O
Southern Colorado Plateau, USA 194 355 29 9 O
Barranca de Amealco, Mexico 23 36 12 63 O
Summitville, USA 12 14 9 115 O
Albemarle Sound, USA 39 58 13 34 @)
W hirlpool point, Canada 50 94 16 23 @)
Qilian Mountains, China 42 68 13 28 @)
Georgia, USA 58 87 10 2 O
Bear River, USA 20 45 9 37 @)
Choctawhatchee River, USA (LW) 33 49 8 3 @)
Mount San Gorgonio 17 24 6 27 @)
El Malpais, USA (EW) 25 66 8 23 o
El Malpais, USA (LW) 23 50 8 26 @
Atlas Mountains, Morocco 134 294 3 4 O
Potomac River, USA 104 309 9 4 O
Central Chile 17 24 6 27 ()
Pamir-Alay Mountains, Tajikistan 32 63 4 9 ()
Little Snake River, USA 98 104 5 4 (]
W hite River, USA 98 104 5 4 [
Yampa River, USA 98 104 5 4 ()
Upper Arkansas River Basin, USA 13 18 3 22 @
Southern Sierra Nevada, USA 14 33 3 13 ]
Mesa Verde, USA (EW) 23 52 5 8 (]
Mesa Verde, USA (LW) 23 52 5 8 )
Jemez Mountains, USA 59 208 3 2 (]
Upper Klamath River Basin, USA 14 32 6 8 o

@ClassA (OClassB (@ClassC @ ClassD
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Fig. 2. Tree-ring chronology replication curves. Thin black curves show the changing number of tree-ring width measurement series within the hydroclimate reconstructions from
Asia (a), Europe and North Africa (b), and North America (c). The colored curves represent the arithmetic means calculated over the common period covered by all reconstructions in

each of the three regions. (d) Comparison of the mean curves for Europe/North Africa, Asia, and North America.

the lowest Climate Signal scores (class D). The eleven re-
constructions of the lowest Climate Signal class D are characterized
by comparatively low correlation values to their instrumental tar-
gets (r. 0.63 + 0.09), rather large calibration/verification differences
(r. 014 + 0.08), but highly variable calibration period lengths
ranging from 34 to 115 years. The calibration period of all Climate
Signal class D reconstructions has been truncated due to a “diver-
gence” problem. In Asia, the short calibration periods stand out, but
the correlation values are similar to those of North America. The
reconstructions from Europe are typically calibrated over periods of
similar length as those for North America but correlation values are
lower (Fig. 8c). It can be noted that the majority of the evaluated
hydroclimate tree-ring records show a weak — mostly insignificant
— negative correlation to local annual mean temperature over the
twentieth century, with a mean of —0.12 and a range from —0.01
and —0.25 between the first and the third quartiles.

3.2. Overall tree-ring hydroclimate reconstruction ranking

The results from our assessment of Data Homogeneity, Sample

Replication, Growth Coherence, Chronology Development, and Climate
Signal of 46 millennium-long tree-ring based hydroclimate re-
constructions are presented in Tables 3—7. Clear differences be-
tween reconstructions become apparent in the overall tree-ring
chronology ranking shown in Table 8. Two reconstructions, Khorgo
and Uurgat (Hessl et al., 2018), score high (class A or class B) in all
five categories. Nine reconstructions score high (class A or class B)
in four of out five categories. Eleven reconstructions score less well
(class C and class D) in at least four out of five categories.

Some reconstructions score high in some parameters and low in
some others. The most notable example is the Central Europe
precipitation reconstruction (Biintgen et al., 2011). It ranks #1 in
Chronology Development and #2 in Sample Replication, but #45 in
Growth Coherence and #44 in Climate Signal. Another reconstruc-
tion, Southern Sierra Nevada (Graumlich, 1993), scores the highest
(class A) in all categories except in Sample Replication where it
scores the lowest (class D). Conversely, the Colorado River recon-
struction (MacDonald et al., 2008) scores low (class D) in all cate-
gories except in Sample Replication where it scores high (class A).

No geographical differences are apparent in the overall tree-ring
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Fig. 3. Tree-ring chronology inter-series correlations. Thin black curves show the correlation coefficients among the tree-ring width measurement series used in the local
hydroclimate reconstructions from Asia (a), Europe and North Africa (b), and North America (c). Correlations are calculated over 100-year periods shifted in 10-year steps
throughout the past millennium (from 1000 CE to the end of the chronology). The earliest value is centered on 1050 CE, the most recent value on 1950 CE. Colored curves represent
the arithmetic means calculated for each of the three regions, and the dashed black lines indicate the mean values over the past millennium. (d) Comparison of the mean inter-series

correlation curves for Europe/North Africa, Asia, and North America.

hydroclimate reconstruction ranking. However, with only a few
exceptions — e.g., two reconstructions from humid United Kingdom
— reconstructions from arid and semi-arid environments dominate
those in class A. Reconstructions from humid environments are on
the other hand overrepresented in class D, although several re-
constructions from arid and semi-arid environments are also found
there. We also find that recently developed reconstructions are not
necessarily better than older ones, except for the ability to preserve
low-frequency information. Three of the highest-ranking re-
constructions — El Malpais (Grissino-Mayer, 1995), Southern Sierra
Nevada (Graumlich, 1993) and White Mountains (Hughes and
Graumlich, 1996) — were actually among the earliest developed
millennium-long hydroclimate reconstructions.

4. Discussion
4.1. Implications of the ranking of hydroclimate reconstructions

This article attempts to provide an objective evaluation of the

strength and weakness of millennium-long tree-ring based
hydroclimate reconstructions. Our ranking offers guidance for users
of these reconstructions inside and outside the dendroclimato-
logical community. It emphasizes the complexity of a compre-
hensive assessment in which the correlation with instrumental
data — arguably the most intuitive quality criterion — is only one
out of many aspects. In practice, different research questions will
pose different selection criteria so that the ranking presented here
will be not equally applicable to all dendroclimatological studies.
For example, if the objective is to infer the influence of drought
stress on long-term agricultural productivity, it is desirable to select
the best, regionally representative, reconstruction. Furthermore, if
the focus is on the effect of climatic extreme events, a lack of low-
frequency information may be less of a problem. On the other hand,
a wide spatial coverage, even sample replication over time, and
preserved low-frequency information, are desirable if the goal is to
investigate where warm—wet and warm—dry associations tend to
occur or to understand the synoptic climate situations and feedback
mechanisms responsible for such patterns. The design of our
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Fig. 4. Tree-ring chronology age curves. Thin black curves show the mean tree age of the tree-ring width data used in the local hydroclimate reconstructions from Asia (a), Europe
and North Africa (b), and North America (c). Colored curves are the arithmetic means calculated over the common period covered by all reconstructions in each of the three regions.
(d) Comparison of mean replication curves for Europe/North Africa, Asia, and North America.

criteria includes variability at timescales from inter-annual to
multi-centennial, with a specific accentuation on the lower fre-
quencies that cannot be controlled in the period of instrumental
overlap. An issue to consider is that poor replication during the first
centuries, compared to the (20" century) calibration period, makes
the quantification of the severity of medieval megadroughts or
enhanced monsoon precipitation in comparison to recent “ex-
tremes” uncertain. In this context, it can also be noted that several
reconstructions, published as millennium-long, were excluded
from this assessment as they either stopped just short of 1000 CE or
did not have the sufficient replication (of at least three samples) all
the way back to 1000 CE (e.g., Biintgen et al., 2010a,b; Stambaugh
et al,, 2011). The threshold of at least three measurement series is
set rather low. Generally speaking, at least 10 ring width mea-
surement series from different trees ought to be included in a
reliable reconstruction, though the precise number depends on the
inter-series correlation (Rbar) and the climate signal strength
inherent to the particular data.

Hydroclimate is a complex climatological metric as it includes
precipitation, soil moisture and temperature-driven evapotranspi-
ration. It also possesses a higher spatial heterogeneity than tem-
perature and a multi-facetted spectral character. The much shorter
spatial co-variance of precipitation and all other metrics of hydro-
climate compared to temperature makes it less feasible than for
temperature to only include the highest-ranking hydroclimate re-
constructions in further assessments or large-scale reconstructions.
In the interpretation of the low-frequency hydroclimate variability
it is important to consider to what extent a reconstruction actually
preserves information on longer than multi-decadal time-scales.
We here identified a problematic feature with the tree-ring based
hydroclimate reconstructions, as opposed to most state-of-the-art
tree-ring based temperature reconstructions, in the low propor-
tion of reconstructions produced through RCS. The general appli-
cation of individual-series detrending methods to produce most of
the hydroclimate reconstructions risk removal of centennial-scale
variability. Including “noisy” reconstructions, with only a few
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Fig. 5. Box plot figures showing the distribution of Sample Replication scores for all 46
reconstructions (grey), Asia (red), Europe and North Africa (blue), and North America
(green) with a box drawn between the first and third quartiles, a line across the box
shows the median, the black dot shows the mean, and minimum and maximum values
indicated by whiskers. (a) Mean replication. (b) Maximum replication. (¢) Minimum
replication. (d) The ratio of the mean replication during the 11™ century relative to the
mean replication during the 207 century.

measurement series back in time, does not necessarily improve any
network analysis. It is rather recommended to evaluate each indi-
vidual chronology and include only those reconstructions that can
be expected to include relevant information. Thus, data selection
based on only the calibration statistics is not recommended.

Evaluating the robustness of the tree-ring based reconstructions
based on other types of hydroclimate proxy records is unfortu-
nately difficult for several reasons (and cannot thus be turned into
an evaluation criteria). Tree-ring records are by far the most
abundant natural climate archive with a temporal resolution and
age control that allows for calibration and validation against
instrumental observations. For many of the evaluated tree-ring
chronologies, there exists no other comparable calibrated proxy
record in the region. Investigating the agreement of the low-
frequency signal in the hydroclimate reconstructions with that of
lower resolution records is not as straightforward option as it may
appear. Recent studies (e.g., Schneider et al., 2019) show that a
robust quality estimation requires a very dense proxy network,
composed of many various archives, rather than a single neigh-
boring proxy record.

The frequently short and unevenly distributed meteorological
station data in Asia (normally starting after 1950) pose severe
constraints on the calibration and verification statistics for this
portion of the hydroclimate network. Several reconstructions from
Asia — most notably the one from the Northeastern Tibetan Plateau
(Yang et al., 2014), reaching a correlation to instrumental precipi-
tation data of . 0.84, would rank high in the category Climate Signal
along with the records from North America, if a longer (reliable)

instrumental calibration period was available. Allowing for a 100-
year long calibration period would potentially score the North-
eastern Tibetan Plateau (Yang et al., 2014), Heihe River Basin (Yang
et al., 2012), Khorgo and Uurgat (Hessl et al., 2018) in Climate Signal
class A. Likewise, it could improve the ranking of A'nyémagén (Gou
et al., 2010), Delingha (Shao et al., 2005), Hexi Corridor (Yang et al.,
2019), and Qilian Mountains (Zhang et al., 2011).

4.2. Comparison with the temperature reconstruction ranking

Unlike the tree-ring based temperature reconstructions (Esper
et al.,, 2016), the hydroclimate reconstructions can include more
(up to nine) species (Table 2). The largest difference between the
ranking of the hydroclimate and temperature reconstructions is
found for Sample Replication. A similar replication for the chronol-
ogies between continents is found for temperature reconstructions,
compared to a much higher replication for Asia and Europe and a
lower replication for North America for hydroclimate re-
constructions. The relative Growth Coherence between continents
are, on the other hand, similar for the hydroclimate and tempera-
ture reconstructions, with the lowest values for Europe and com-
parable ones for Asia and North America. The highest Chronology
Development scores, with the smallest spread, are found in Europe
for both hydroclimate and temperature reconstructions. A larger
Chronology Development spread is evident for hydroclimate re-
constructions in Asia and for temperature reconstructions in North
America. Climate Signal scores are similar for each continent in both
the hydroclimate and temperature reconstructions, with Europe
having overall the highest scores (Fig. 9).

Severe climatic conditions for tree growth at the species’ dis-
tribution limit (Fritts, 1976) resulted in the highest Growth Coher-
ence scores for both tree-ring based hydroclimate and temperature
reconstructions. The twelve Growth Coherence best-scoring hydro-
climate reconstructions are from arid or semi-arid environments in
the southwestern Unites States (see e.g., St George, 2014; St George
and Ault, 2014), whereas the three best-scoring temperature re-
constructions are all from northern Siberia: Indigirka (Sidorova
et al.,, 2006), Yamal (Briffa et al., 2013), and Taimyr (Briffa et al.,
2008). The trees included in these reconstructions, growing in a
shallow active layer in the continuous permafrost zone, likely
experience a shorter growing season than any of the other tem-
perature reconstructions included in Esper et al. (2016).

The four highest-ranking reconstructions in the category Chro-
nology Development, both for hydroclimate and temperature, are
from Europe. For hydroclimate, it is Central Europe (Biintgen et al.,
2011), East Anglia (Cooper et al., 2013), Southern Finland (Helama
et al., 2009), and Southcentral England (Wilson et al., 2013),
whereas for temperature it is Northern Scandinavia (Esper et al.,
2012), Finland (Helama et al., 2010), tree-ring width version of
Tornetrask (Melvin et al., 2013), and Lotschental (Biintgen et al.,
2006). High scores in Chronology Development typically result
from a combination of a small age range and minor linear trends in
mean age curve over the past millennium, in combination with the
application of RCS detrending, to emphasize centennial to multi-
centennial climate variability.

Overall, the average correlation between the tree-ring re-
constructions and the instrumental data is higher for hydroclimate
reconstructions (mean r. 0.69 + 0.11) than for temperature re-
constructions (r. 0.59 + 0.15), which perhaps appears surprising
given the spatially homogeneous nature of hydroclimate. The re-
gion with the generally highest relationship between tree growth
and hydroclimate is found in the southwestern United States (see,
e.g., St George, 2014; St George and Ault, 2014) whereas the highest
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Table 5
Growth Coherence scores. Mean, maximum, and minimum correlations among the series included in the reconstructions. 11%"/20% is the ratio of the correlation during the 11™
century relative to the 20" century correlation. (For interpretation of the references to color in this table legend, the reader is referred to the Web version of this article.)

5. Growth coherence

4, 111720 [%]

3. Minimum

2. Maximum

1. Mean

El Malpais, USA (EW) 0.72 0.83 0.63 112% )
Upper Arkansas River Basin, USA 0.50 0.78 0.30 150% [
Upper Klamath River Basin, USA 0.66 0.78 0.52 113% @
W hirlpool point, Canada 0.57 0.68 0.47 123% ()
El Malpais, USA 0.67 0.75 0.57 104% ()
Southern Sierra Nevada, USA 0.36 0.77 0.15 150% @
Tavaputs Plateau, USA 0.64 0.73 0.50 102% @
Choctawhatchee River, USA (EW) 0.40 0.58 0.27 150% o
Summitville, USA 0.50 0.63 0.36 122% @
W hite Mountains, USA 0.51 0.59 0.39 121% Q@
Bear River, USA 0.62 0.84 0.42 93% @
Mesa Verde, USA (EW) 0.69 0.85 0.54 78% )
Khorgo, Mongolia 0.58 0.66 0.52 83% @)
Jemez Mountains, USA 0.44 0.80 -0.22 132% O
Potomac River, USA 0.26 0.56 0.06 150% O
A’nyémagén, China 0.43 0.54 0.35 92% O
Dulan, China 0.40 0.46 0.31 100% O
Delingha, China 0.44 0.54 0.33 82% @)
Uurgat, Mongolia 0.45 0.57 0.32 78% @)
El Malpais, USA (LW) 0.43 0.59 0.26 80% O
Heihe River Basin, China 0.23 0.36 0.13 139% O
Northeastern Tibetan Plateau, China 0.27 0.35 0.20 115% O
Mount San Gorgonio, USA 0.36 0.73 0.19 72% O
Atlas Mountains, Morocco 0.29 0.40 0.11 113% O
East Anglia, UK 0.20 0.76 -0.24 124% @)
Choctawhatchee River, USA (LW) 0.29 0.47 0.22 89% 0
Mesa Verde, USA (LW) 0.44 0.60 0.29 59% @)
Qilian Mountains, China 0.32 0.45 0.21 72% @)
Southerncentral England, UK 0.15 0.29 0.08 133% @
Georgia, USA 0.33 0.39 0.20 74% 0]
Lee Ferry, USA 0.33 0.39 0.20 74% @)
Central Chile 0.23 0.34 0.15 91% @)
Southern Colorado Plateau, USA 0.32 0.28 0.22 77% @)
Mount Smolikas, Greece 0.28 0.43 0.17 71% @)
Barranca de Amealco, Mexico 0.22 0.48 0.11 76% @)
Albemarle Sound, USA 0.21 0.36 0.14 85% ()
Little Snake River, USA 0.40 0.62 0.17 50% o
W hite River, USA 0.40 0.62 0.17 50% o
Yampa River, USA 0.40 0.62 0.17 50% o
Hexi Corridor, China 0.36 0.57 0.15 51% [ )
Flowerpot, Canada 0.24 0.49 0.10 58% o
Sacramento River, USA 0.17 0.30 0.13 66% [ ]
Pamir-Alay Mountains, Tajikistan 0.28 0.54 0.11 42% [ ]
Southern Finland 0.33 0.69 0.15 30% (]
Colorado River, USA 0.18 0.37 0.11 44% [ )
Central Europe 0.13 0.23 -0.13 72% [ )

@ClassA (OZClassB (@ClassC @ ClassD
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Table 6

Chronology Development scores. Detrending method 1 = RCS (and Signal Free), and 2 = individual detrending. Age range is the difference between highest and lowest point on
the mean age curve over the past millennium. Age trend is the slope of a linear regression fit to the mean age curve over the past millennium (times 100). Maximum frequency
indicates the wavelength of lowest frequency information retained in a reconstruction, with 1 = centennial to multi-centennial, and 2 = decadal to centennial.
(For interpretation of the references to color in this table legend, the reader is referred to the Web version of this article.)

5. Chronology development

4. Maximum frequency

3. Age trend

2. Age range [yrs.]

1. Dentrending method

Central Europe 1 98 -0.04 1 ()
East Anglia, UK 1 121 -0.68 1 ()
Southern Finland 1 138 1.44 1 )
Southerncentral England, UK 1 109 2.13 1 ()
Uurgat, Mongolia 2 209 2.18 2 @
Upper Klamath River Basin, USA 2 279 2.06 2 @
Hexi Corridor, China 1 224 10.92 1 ()
W hirlpool point, Canada 2 287 6.38 1 ()
Southern Sierra Nevada, USA 2 281 3.66 2 ()
Summitville, USA 2 431 6.60 1 ()
Khorgo, Mongolia 2 348 3.86 2 @
Mount Smolikas, Greece 1 256 -9.07 2 )
El Malpais, USA (LW) 2 227 -6.15 2 O
Flowerpot, Canada 2 327 -5.67 2 O
Northeastern Tibetan Plateau, China 1 301 26.22 1 O
Potomac River, USA 2 388 5.97 2 O
W hite Mountains, USA 2 476 12.36 1 O
Mesa Verde, USA (LW) 2 250 -8.86 2 O
Bear River, USA 2 325 -7.83 2 O
Mesa Verde, USA (EW) 2 261 -9.07 2 O
El Malpais, USA (EW) 2 240 -9.55 2 O
Barranca de Amealco, Mexico 2 243 9.52 2 O
Atlas Mountains, Morocco 1 371 34.17 1 O
Sacramento River, USA 2 212 12.03 2 O
Tavaputs Plateau, USA 2 297 10.84 2 @)
Choctawhatchee River, USA (EW) 2 217 13.12 2 @)
Choctawhatchee River, USA (LW) 2 226 13.17 2 Q
Albemarle Sound, USA 2 250 13.83 2 @)
Jemez Mountains, USA 2 269 -15.42 2 O
Pamir-Alay Mountains, Tajikistan 2 422 28.71 1 @)
Heihe River Basin, China 1 582 50.30 1 @)
El Malpais, USA 2 308 19.48 2 O
Southern Colorado Plateau, USA 2 321 20.63 2 O
Lee Ferry, USA 2 322 20.63 2 0]
Central Chile 1 462 35.48 2 O
Mount San Gorgonio, USA 2 463 35.48 1 o
Upper Arkansas River Basin, USA 2 585 40.51 1 ()
Little Snake River, USA 2 372 29.09 2 (]
W hite River, USA 2 372 29.09 2 (]
Yampa River, USA 2 372 29.09 2 o
Georgia, USA 2 274 35.50 2 ()
Qilian Mountains, China 2 376 33.47 2 )
Colorado River, USA 2 469 33.69 2 )
Dulan, China 2 465 42.36 2 (]
A’nyémagén, China 2 634 40.65 2 (]
Delingha, China 2 678 62.75 2 )

@ClassA (OClassB (QClassC @ ClassD
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Fig. 6. Box plot figures showing the distribution of Growth Coherence scores for all 46
reconstructions (grey), Asia (red), Europe and North Africa (blue), and North America
(green) with a box drawn between the first and third quartiles, a line across the box
shows the median, the black dot shows the mean, and minimum and maximum values
indicated by whiskers. (@) Mean Rbar. (b) Maximum Rbar. (¢) Minimum Rbar. (d) The
ratio of the mean Rbar during the 117 century relative to the mean Rbar during the
20" century.
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Fig. 7. Box plot figures showing the distribution of Chronology Development scores for
all 46 reconstructions (grey), Asia (red), Europe and North Africa (blue), and North
America (green) with a box drawn between the first and third quartiles, a line across
the box shows the median, the black dot shows the mean, and minimum and
maximum values indicated by whiskers. (a) Age range between the highest and lowest
point on the mean age curve over the past millennium. (b) Age trend as a slope of a
linear regression fit to the mean age curve over the past millennium (times 100).

relationship between tree growth and temperature is generally
found in high latitude Eurasia and in the European Alps (Esper et al.,
2016). The calibration period is generally shorter for the hydro-
climate reconstructions (mean 79 + 23 years) than for temperature
reconstructions (mean 101 + 43 years). This provides a larger
challenge to skillfully calibrate especially the low-frequency
component of hydroclimate variability. Typically, precipitation
measurements are either shorter or contain more noise prior to the

twentieth century than temperature measurements (Pauling et al.,
2006; Harris et al., 2014).

4.3. Expansion of the hydroclimate tree-ring reconstruction
network

At present, millennium-long tree-ring based reconstructions
with a well-verified hydroclimate signal are only available from few
locations in the world (Fig. 1; Fig. 10). As tree-ring records are the
only natural hydroclimate proxy with annual resolution and exact
dating control, there is an urgent need to expand this network.
From more mesic locations there is a general challenge to extend
hydroclimate tree-ring records back in time, as they offer generally
less favorable conditions for wood preservation. In China, subfossil
woods in lake or river sediments are difficult to find (He et al.,
2019), and old living trees and remnant woods can mainly be
collected in the dry parts of the country (Liu et al., 2019). In some
places, not least in Europe, tree-ring based reconstructions can be
extended with wood from archeological sites and old buildings
(Tegel et al., 2010).

An additional challenge is posed by the decrease in hydro-
climate sensitivity of tree growth in cool and wet environments.
One solution to this problem is to reconstruct soil moisture avail-
ability using tree-ring data from temperature-limited environ-
ments by considering the pivotal role of surface temperature in
determining the land surface heat flux, evapotranspiration and
consequently the water balance (Cook et al., 2015a,b; Seftigen et al.,
2015a,b). However, such reconstructions need to be treated with
caution — both Baek et al. (2017) and Ljungqvist et al. (2019) found
that they may overestimate the influence of temperature variability
on soil moisture. Moreover, temperature and precipitation contain
different spectral characteristics, where the former contains larger
low-frequency loadings than the latter (Bunde et al., 2013; Franke
et al, 2013; Zhang et al., 2015), making it problematic to use
temperature-sensitive  tree-ring data for  hydroclimate
reconstructions.

Despite such constraints, it has been demonstrated that tree-
ring chronologies with a strong hydroclimatic signal can be
developed in cooler and wetter environments. Hydroclimate re-
constructions have been developed in Scandinavia spanning the
past three to five centuries (see e.g., Helama and Lindholm, 2003;
Linderholm et al., 2004; Jonsson and Nilsson, 2009; Drobyshev
et al,, 2011, Seftigen et al., 2015a; 2015b). The potential to develop
millennium-long reconstructions is evident from the Helama et al.
(2009) May—June precipitation reconstruction from south-east
Finland. In European Russia (52—57°N, 35—52°E), most tree-ring
chronologies have been shown to correlate weakly but signifi-
cantly with hydroclimate (Matskovsky, 2016; Matskovsky et al.,
2017; Solomina et al., 2017), but all the available hydroclimate
tree-ring reconstructions at present only reach back to the eigh-
teenth century.

The development of millennium-long hydroclimate-sensitive
tree-ring records is particularly difficult in sub-Arctic in general
(Linderholm et al., 2018) and, in particular, in those parts of the
boreal zone that are underlain by permafrost serving as a source of
additional water supply for the trees during dry summers
(Sugimoto et al., 2002; Saurer et al., 2016). Although potential to
develop long chronologies in the region exist (Thomsen, 2001;
Agafonov et al., 2016) only a limited number of Siberian sites show
statistically significant, albeit weak, correlations between tree
growth and either monthly (Kirdyanov et al., 2013; Shestakova
et al,, 2019) or summer (Hellmann et al., 2016) precipitation or
monthly SPEI Arzac et al. (2019). Not surprisingly, hydroclimate
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Table 7

Climate Signal scores. Length is the period of overlap with instrumental temperature data in years. Correlation is the Pearson correlation coefficient between the tree-ring
chronology and the instrumental data over the calibration period. Calibration/verification difference indicates the correlation range between different periods of overlap
with instrumental data. Truncation = 0.5 if the calibration period was shortened (e.g. due to divergence), truncation = 1 if this is not the case.
(For interpretation of the references to color in this table legend, the reader is referred to the Web version of this article.)

5. Climate signal

4. Truncation

3. Calibration/verification difference

2. Correlation

1. Length [yrs.]

Upper Arkansas River Basin, USA 107 0.83 0.04 1 e
Yampa River, USA 97 0.82 0.06 1 [
Tavaputs Plateau, USA 87 0.89 0.10 1 @
Mesa Verde, USA (EW) 86 0.83 0.04 1 @
El Malpais, USA 97 0.76 0.02 1 o
Upper Klamath River Basin, USA 115 0.73 0.06 1 o
Little Snake River, USA 96 0.78 0.05 1 ()
W hite River, USA 97 0.82 0.15 1 @
Southern Colorado Plateau, USA 98 0.77 0.11 1 ()
Southern Sierra Nevada, USA 116 0.70 0.11 1 (]
Bear River, USA 68 0.90 0.18 1 ()
Mesa Verde, USA (LW) 86 0.65 0.02 1 o
El Malpais, USA (LW) 71 0.71 0.02 1 @
Jemez Mountains, USA 112 0.60 0.06 1 @
Atlas Mountains, Morocco 71 0.75 0.10 1 @
Central Chile 85 0.67 0.08 1 @)
Northeastern Tibetan Plateau, China 55 0.84 0.14 1 @)
Uurgat, Mongolia 52 0.74 0.03 1 o
Heihe River Basin 49 0.74 0.01 1 @)
Southerncentral England, UK 107 0.57 0.08 1 O
Mount Smolikas, Greece 54 0.69 0.04 1 @
East Anglia, UK 109 0.56 0.11 1 @
Khorgo, Mongolia 52 0.71 0.06 1 O
Mount San Gorgonio, USA 102 0.60 0.16 1 O
Southern Finland 84 0.67 0.19 1 @
Summitville, USA 115 0.47 0.06 1 o
Hexi Corridor, China 61 0.63 0.12 1 @)
A'nyémagén, China 48 0.74 0.17 1 o
Delingha, China 46 0.63 0.06 1 @)
W hite Mountains, USA 48 0.59 0.04 1 @)
El Malpais, USA (EW) 71 0.68 0.23 1 @)
Qilian Mountains, China 45 0.66 0.10 1 @)
W hirlpool point, Canada 85 0.51 0.13 1 o
Lee Ferry, USA 65 0.85 0.02 1 o
Choctawhatchee River, USA (EW) 91 0.64 0.03 0.5 @)
Colorado River, USA 65 0.71 0.02 1 ()
Choctawhatchee River, USA (LW) 91 0.62 0.06 0.5 o
Sacramento River, USA 73 0.70 0.08 0.5 ()
Georgia, USA 91 0.60 0.09 0.5 [
Barranca de Amealco, Mexico 54 0.79 0.25 0.5 ()
Dulan, China 34 0.70 0.05 0.5 [ |
Flowerpot, Canada 115 0.50 0.15 0.5 [
Pamir-Alay Mountains, Tajikistan 54 0.69 0.21 0.5 (]
Albemarle Sound, USA 89 0.57 0.22 0.5 [ ]
Central Europe 80 0.50 0.15 0.5 ()
Potomac River, USA 70 0.59 0.23 0.5 (]

@ClassA (OClassB (@QClassC @ ClassD
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Fig. 8. Box plot figures showing the distribution of Climate Signal scores for all 46 reconstructions (grey), Asia (red), Europe and North Africa (blue), and North America (green) with
a box drawn between the first and third quartiles, a line across the box shows the median, the black dot shows the mean, and minimum and maximum values indicated by whiskers.
(a) Length of the calibration period in years. (b) Pearson correlation coefficient between the tree-ring chronology and the instrumental data over the calibration period. (c) Dif-

ference between correlation values of the calibration/verification periods.

reconstructions in the warmer and drier southern Siberia have
shown greater promise (Shah et al., 2015; Belokopytova et al., 2018;
Kostyakova et al., 2018). A new impetus to long hydroclimate re-
constructions in the boreal zone, particular in Siberia, may be
provided with the development of tree-ring stable isotope chro-
nologies (e.g., Waterhouse et al., 2000; Kirdyanov et al., 2008;
Sidorova et al., 2009, 2010; 2012; Knorre et al., 2010; Tei et al., 2013,
2015; Panyushkina et al., 2016; Shestakova et al., 2017).

The moisture-limited tree growth environments of Central Asia,
the Middle East, and North Africa have a high potential to yield
millennium-long hydroclimate tree-ring reconstructions but
comparatively little work has so far been done in the region.
However, several century long reconstructions have been devel-
oped for Turkey (D’Arrigo and Cullen, 2001; Touchan et al., 2003,
2005, 2007; Akkemik and Aras, 2005; Akkemik et al., 2005, 2008),
Jordan (Touchan et al., 1999) and the Caucasus (Martin-Benito et al.,
2016). For instance, Solomina et al. (2014), Seim et al. (20164, b),
Wang et al. (2017), Zhang et al. (2017), Chen et al. (2019) demon-
strated the feasibility to reconstruct drought or precipitation in
Central Asia. Opata-Owczarek and NiedZzwiedZ (2018) showed that
it is possible to extend hydroclimate reconstructions for this region
for the full past millennium or more. Likewise, Esper et al. (2007)
successfully developed a past millennium reconstruction from the
Atlas Mountains of Morocco.

Although the vast majority of existing tree-ring based hydro-
climate reconstructions are from Northern Hemisphere, there are
potential to develop moisture-sensitive chronologies in the
Southern Hemisphere as well. Early efforts by Schulman (1956)
recognized a number of South American tree species sensitive to
precipitation variations, and in the 1970s the first tree-ring based
estimates of past hydroclimate conditions was developed in
southern South America (LaMarche, 1978; Holmes et al., 1979).
Recent work includes streamflow reconstructions spanning the
past four to six centuries from the sub-Antarctic (Lara et al., 2008,
2015), the temperate (Urrutia et al., 2011; Mundo et al., 2012;
Munoz et al., 2016) and the subtropical (Ferrero et al., 2015) regions
along the Andes, and even longer hydroclimate reconstructions
from the Andes of central Chile (Le Quesne et al., 2006, 2009;
Masiokas et al., 2012) and the Bolivian Altiplano (Morales et al.,
2012). Recent studies have also shown a potential in the South
American tropics (Lopez et al., 2017; Granato-Souza et al., 2019), as
well as Australia, although efforts in the latter region are hampered
by large spatial hydroclimatic heterogeneity (Allen et al., 2019) as

well as the short temporal extension of the data (Allen et al., 2015).

4.4. Recommendations for future hydroclimate reconstructions

The six recommendations presented by Esper et al. (2016) for
tree-ring based temperature reconstructions also hold true for the
development of hydroclimate reconstructions: (a) preserving
centennial-scale variability, using RCS detrending, for under-
standing low-frequency variance, (b) avoiding a strong decrease of
series back in time, (c) strive for a homogeneous sample compo-
sition over time, (d) avoid too large replication and inter-series
correlation changes, (e) avoid strong age curve changes over time,
and (f) keep in mind that the calibration statistics may give a false
impression of reconstruction skill. Based on the results from this
assessment, we find it important to improve the replication in the
earlier parts of the reconstructions, especially in North America, as
a weak replication during medieval times precludes robust com-
parisons with recent hydroclimate conditions. It is equally impor-
tant to include young and old trees throughout time in the
chronologies to achieve a more evenly distributed age curve. The
most difficult trade-off, however, is likely between achieving a high
sample replication (over time) and a strong growth coherence, as
the inclusion of additional sites can degrade growth coherence
within a reconstruction. It appears less advisable to include more
than, at most, two tree species in any reconstruction and they
should ideally derive from the same genera. When tree-ring ma-
terial is obtained from multiple sites, it is important that it origi-
nates from similar environments with regard to moisture stress.
Whenever notable micro site conditions exist (Diithorn et al., 2015),
temporal clustering of a certain micro site condition should be
avoided.

For tree-ring datasets composed of relatively young trees it is
essential to successfully apply RCS detrending to preserve low-
frequency information. This requires a large number of raw mea-
surement series from relatively evenly distributed tree age over
time. If the biological age of measurements shows a steep increase
towards the present RCS should only be applied with great caution.
The use of measurement series from very old trees as an alternative
to RCS detrending, at the price of a steep age curve, to preserve low-
frequency variability may introduce biases from a climate signal
age effect (Esper et al., 2008; Konter et al., 2016) and should be
avoided if possible.

We find that a strong and stable hydroclimate signal is of far
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Ranking of the 46 tree-ring based hydroclimate reconstructions based on their Data Homogeneity, Sample replication, Growth Coherence, Chronology Development, and Climate
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Fig. 9. Comparison of Sample Replication, Growth Coherence, Chronology Development,
and Climate Signal scores for the 46 hydroclimate reconstructions in this study and the
39 temperature reconstructions from Esper et al. (2016), with a box drawn between
the first and third quartiles, a line across the box shows the median, the black dot
shows the mean, and minimum and maximum values indicated by whiskers. All re-
constructions (grey), Asia (red), Europe and North Africa (blue), and North America
(green). (a) Sample Replication scores for hydroclimate reconstructions. (b) Sample
Replication scores for temperature reconstructions. (¢) Growth Coherence scores for
hydroclimate reconstructions. (d) Growth Coherence scores for temperature re-
constructions. (e) Chronology Development scores for hydroclimate reconstructions. (f)
Chronology Development scores for temperature reconstructions. (f) Climate Signal
scores for hydroclimate reconstructions. (h) Climate Signal scores for temperature
reconstructions.

greater importance than having a long calibration period. This
implies that it is fully feasible to develop well-verified tree-ring
based hydroclimate also from regions with short instrumental
measurements. Moreover, it needs to be kept in mind that the
calibration statistics obtained, regardless of the length of instru-
mental measurements, typically are optimistic estimates in the
sense that the inter-series correlation as well as sample replication
typically decreases back in time. If the calibration had been con-
ducted on a less replicated part of the reconstruction, with lower
inter-series correlation values, the correlation values would in most
cases have been lower. Tests including artificially reduced-sample
chronologies (Esper et al., 2012) are thus recommended.

5. Conclusions

Following a scheme developed by Esper et al. (2016) for tem-
perature reconstructions, we assessed and ranked 46 millennium-
long tree-ring based hydroclimate reconstructions. This scoring
considers: Data Homogeneity, Sample Replication, Growth Coherence,
Chronology Development, and Climate Signal (Fig. 10). Most of these
characteristics, with the exception of Climate Signal, are rarely or
ever considered outside the dendrochronological community, but
impacts paleoclimate reconstruction—model simulation compari-
son studies. Our assessment will guide secondary users of tree-ring
based hydroclimate reconstructions by providing information on
the strength and limitations of the individual records beyond their
simple correlation with instrumental data. Moreover, we hope
these results will advance future work on developing new tree-ring
based hydroclimate reconstructions or improving and extending
the existing ones.

The ranking scores produced for each of the five evaluation
categories represent an attempt at objectively identifying suitable
and less suitable hydroclimate reconstructions to use for different
purposes. For example, in a study of short-term hydroclimate im-
pacts following large volcanic eruptions, long-term trends and
variations are less important in a particular reconstruction. On the
other hand, if the purpose is to compare the average hydroclimate
conditions during medieval times with those of today, it is advis-
able to only consider reconstructions that realistically retain low-
frequency variability. We conclude that the same ranking implica-
tions and related recommendations for tree-ring based tempera-
ture reconstructions by Esper et al. (2016) are also valid for tree-
ring based hydroclimate reconstructions (see section 4.2).

The systematic assessment of 46 tree-ring based hydroclimate
reconstructions, covering the past millennium, permitted ranking
them into four groups (class A to class D) for each of the five cat-
egories Data Homogeneity, Sample Replication, Growth Coherence,
Chronology Development, and Climate Signal. All reconstructions
have their various strengths and weaknesses — and no recon-
struction ranked A or D in all five categories — but there are some
reconstructions that consistently performer high: Khorgo (Hessl
et al,, 2018), the Northeastern Tibetan Plateau (Yang et al., 2014),
and Uurgat (Hessl et al., 2018) from Asia; East Anglia (Cooper et al.,
2013) and Southerncentral England (Wilson et al.,, 2013) from
Europe; Tavaputs Plateau (Knight et al., 2010), EI Malpais (Grissino-
Mayer, 1995), Southern Sierra Nevada (Graumlich, 1993), Summit-
ville (Routson et al., 2011), and Bear River (DeRose et al., 2015) from
North America. Though it is our goal to provide evaluations that
will assist investigators in making informed selections for their
purposes, we at the same time recognize that all the re-
constructions contain valuable information depending on the
questions asked of them.
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