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In the original version of this paper, figure 2 reports the
time-integrated radiative forcing units as Jm−2. While
thisunit is dimensionally correct, tobenumerically cor-
rect the units should be Wm−2yr. For forcing estimates
in the main text, extracted from the volcanic forcing
record, the units similarly require correction. The error
arose from an attempt to correct the units of the time-
integrated forcing estimates from the original source
(Sigl et al 2015), where values were presented in Wm−2

instead of Wm−2yr. A version of figure 2 and the sec-
tion ‘The relationship between forcing magnitude and
temperature response’, both with the corrected units,
are presented below. The radiative forcing values them-
selves were not affected, nor are the results, discussion
or conclusions of this paper.

The relationship between forcing magnitude
and temperature response

Volcanic cooling is sensitive to the altitude, latitude,
and character of the volcanic eruption (Hansen et al
1997). The relationship between cooling patterns and
forcing estimates is thus expecetd to be variable. The
ice core sulfate records agree, for example, on an enor-
mous peak in 1258, but the reconstructed cooling is
less extreme (figure 2(c)). Measurement and calibra-
tion uncertainties associated with single events in ice
coreand tree-ringderivedreconstructions furthercom-
plicate such comparisons and impede the verification
of the forcing magnitude based on the climatic impact.
This is assessed by fitting linear regressions between the
detected breaks and sulfate peaks from G08, C13 and
S15 (figure 2(b)). G08 and C13 cohere relatively well

with the break coefficients, but their regression models
are based on large intercepts (22.1 and 10.4 Wm−2yr)
which were physically expected to be zero. The S15
volcanic forcing is not significantly correlated with the
break coefficients, mainly due to the differences in 1258
and 1453. The more minor breaks are associated with
very small forcing events inG08 and C13 (smallest forc-
ing = −0.5 Wm−2yr and −0.1 Wm−2yr, respectively)
and more substantial events in S15 (smallest forcing =
−3.3 Wm−2yr). The latter better explains a tempera-
ture response outside the range of internal variability
and results in a linear regression with an intercept close
to the origin for S15. The relatively weak forcing asso-
ciated with the maximum cooling in 1453 points to
another major inconsistency between forcing and tem-
perature reconstructions in the 1450s. Although now
off by 5 years, an integrated forcing of −20 Wm−2yr
(in 1458) would better explain the strong 1453 cooling
observed in the tree-ring reconstruction and would be
well in line with the linear regression model. The pro-
nounced radiative forcing in 1258 has been discussed
previously (Timmreck et al 2009) and is likely too large
due to nonlinear aerosol microphysics in the volcanic
plume of that eruption.
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