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a b s t r a c t

Age-related alternation in the sensitivity of tree-ring width (TRW) to climate variability has been re-
ported for different forest species and environments. The resulting growth-climate response patterns are,
however, often inconsistent and similar assessments using maximum latewood density (MXD) are still
missing. Here, we analyze climate signal age effects (CSAE, age-related changes in the climate sensitivity
of tree growth) in a newly aggregated network of 692 Pinus sylvestris L. TRW and MXD series from
northern Fennoscandia. Although summer temperature sensitivity of TRW (rAll ¼ 0.48) ranges below that
of MXD (rAll ¼ 0.76), it declines for both parameters as cambial age increases. Assessment of CSAE for
individual series further reveals decreasing correlation values as a function of time. This declining signal
strength remains temporally robust and negative for MXD, while age-related trends in TRW exhibit
resilient meanderings of positive and negative trends. Although CSAE are significant and temporally
variable in both tree-ring parameters, MXD is more suitable for the development of climate re-
constructions. Our results indicate that sampling of young and old trees, and testing for CSAE, should
become routine for TRW and MXD data prior to any paleoclimatic endeavor.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The ability of trees to form annually resolved rings in extra-
tropical environments allows paleoclimatologists to develop
annually resolved and absolutely dated climate reconstructions
over several centuries to sometimes even millennia (Briffa et al.,
2008; Büntgen et al., 2011b, 2013; Esper et al., 2007; Esper et al.,
2012; Graumlich, 1993; Grudd et al., 2002; Helama et al., 2002;
Linderholm and Gunnarson, 2005; Myglan et al., 2012; Schneider
et al., 2015; Trouet et al., 2009; Villalba, 1990). The most
frequently used tree-ring parameters, TRW and MXD, therefore
provide the backbone of high-resolution paleoclimatology
(Büntgen et al., 2013; Esper et al., 2007; Graumlich, 1993; Trouet
et al., 2009; Villalba, 1990).

The underlying principle for these reconstructions is a temporal
consistent climate sensitivity of tree growth (Fritts, 1976; Speer,
2010). This assumption is considered acknowledged not only over
time and space (Büntgen et al., 2009; Esper and Frank, 2009) but
also over cambial tree age. While the first two arguments remain
under persistent scrutiny for many sites and species (Cook et al.,
2004; D'Arrigo et al., 2006; Frank et al., 2007b; Ljungqvist et al.,
2012), the latter assumption has not yet been explored in a sys-
tematic manner.

At the same time, age-dependent changes in raw TRW values
are a well-known feature, associated with geometrical constraints
of adjoining new rings to an increasing stem-radius/basal incre-
ment (Cook et al., 1990). These trends are present less pronounced
in MXD data as geometrical constraints are negligible, though the
gradually increasing tracheid and lumen sizes might reduce MXD
values with increasing tree age/size (Carrer et al., 2015). In contrast
to TRW, MXD has been reported to contain stronger temperature
signals and enhanced signal-to-noise ratios in the high-frequency
domain, compared to TRW (Briffa et al., 2002; Büntgen et al.,
2015; Frank et al., 2007a). Due to lower biological memory (i.e.
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lower autocorrelation), MXD from cold environments typically
exhibits higher correlation coefficients with summer temperature
deviations (Esper et al., 2015).

In addition, it has been demonstrated that TRW-based climate
reconstructions are, to a certain degree, constrained by age-related
biases (Szeicz and MacDonald, 1994). Several studies have recently
analyzed these climate signal age effects (CSAE) in TRW, revealing a
better agreement between climate variation and the growth of old
trees (Carrer and Urbinati, 2004; Esper et al., 2008; Linares et al.,
2013; Yu et al., 2008). Other studies using different sites and spe-
cies, however, found growth-climate relationships to be stronger in
younger tree-rings (Dorado Li~n�an et al., 2011; Rozas et al., 2009). An
overview on CSAE, including all previously mentioned cases and
others (Linderholm and Linderholm, 2004; Rossi et al., 2008) is
provided in Table 1. While sometimes pondered negligible (Dorado
Li~n�an et al., 2011; Esper et al., 2008; Linderholm and Linderholm,
2004), CSAE can significantly impact the climate sensitivity of
tree growth (Carrer and Urbinati, 2004; Linares et al., 2013; Rossi
et al., 2008; Rozas et al., 2009; Yu et al., 2008). Varying pre-
requisites in earlier studies (Fig. 2), nonetheless, aggravate any
straightforward comparison of the individual, and often contra-
dicting findings. Furthermore, testing for CSAE in MXD has been
broadly ignored.

Since age is closely related to tree size and height, disentangling
this connection is challenging. Increased size can stimulate sec-
ondary growth, due to higher light accessibility and reduced
competition (Bond, 2000). On the other hand, it can also lead to
secondary growth reductions (Ryan and Yoder, 1997), due to hy-
draulic constraints in water transport and increased respiration
(Meinzer et al., 2011; Schweingruber, 1996). Xylogenesis depends
on cambial cell division, cell expansion and the growth of sec-
ondary cell walls (Schweingruber, 2007), which are intrinsically
controlled by gene expression and hormonal signals (Meinzer et al.,
2011), and extrinsically by environmental factors, including tem-
perature or precipitation (Deslauriers et al., 2008). Several func-
tional and physiological processes are affected by tree age,
including a reduced foliar efficiency, lower photosynthetic rates,
delayed onset of reproduction, and shorter growing seasons (Bond,
2000; Day et al., 2002; Rossi et al., 2008; Thomas, 2011). These age-
related changes support the assumptions, that varying physiolog-
ical processes should result in different levels of climate sensitivity
throughout a tree's lifespan.

Here, we analyze CSAE in a unique Pinus sylvestris L. network
from northern Fennoscandia. This dataset of 692 MXD and TRW
measurement series from young and old trees provides ideal con-
ditions for the re-organization of data by cambial age, the assess-
ment of CSAE at both, the site and tree level, as well as parameter-
specific and age-related comparisons of growth-climate response
patterns.
Table 1
Published work associated with Climate Signal Age Effects (CSAE).

Publication Region Species

Carrer and Urbinati, 2004 Eastern Italian Alps Larix decidua Pinus cem
Dorado Li~n�an et al., 2011 Spanish Pyrenees Pinus uncinata

South-east Spain Pinus nigra
Esper et al., 2008 Swiss Alps Pinus cembra
Linares et al., 2013 Moroccan Atlas Cedrus atlantica
Linderholm and Linderholm, 2004 Scandinavian Mountains Pinus sylvestris
Rossi et al., 2008 Eastern Italian Alps Larix decidua

Pinus cembra
Picea abies

Rozas et al., 2009 Central Spain Juniperus thurifera
Yu et al., 2008 Qilian Mountains China Sabina przewalskii
2. Material and methods

2.1. Tree-ring data

Five well replicated MXD datasets from several sites across
northern Sweden and Finland are used (Fig. 1). This compilation is
part of a wider Northern Fennoscandian Network (NFN), previously
developed to reconstruct changes in regional summer tempera-
tures (Büntgen et al., 2011a; Esper et al., 2012; Schneider et al.,
2014). A total of 692 cores were taken from Pinus sylvestris trees,
spanning the period 1475e2006 (exceeding ten series in each year).
Data include different tree ages ranging from 1 to 612 years. Sample
replication ranges from 99 to 198 cores per site. TRWwasmeasured
with an accuracy of 0.01 mm using a LinTab measurement device
and corresponding TSAP software (Rinn, 2007), and all rings were
absolutely dated and verified by crossdating using the COFECHA
# Age-classes # Cores (min/max) Age-effects Best responding age-class

bra 4 7/60 Yes old
2 8/18 No young

3 35/128 No old
2 50/60 Yes old
5 5/10 No varies with time
2 15/15 Yes middle aged

5 18/66 Yes young
5 16/34 Yes old

Fig. 1. Tree-ring sites (green circles), sample replication (panels on the right) and
meteorological stations in Karasjok (1876e2011 period), Karesuando (1879e2011),
Haparanda (1860e2009; red circles). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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software (Holmes, 1983). Annual MXD values were obtained from
high-resolution X-ray densitometry at the Swiss Federal Research
Institute WSL in Birmensdorf (Eschbach et al., 1995).

Biologically induced, non-climatic trends associated with juve-
nile growth/density variations were removed using Regional Curve
Standardization (RCS) (other detrending techniques reveal similar
results), applied via the ARSTAN program (Cook, 1985; Cook et al.,
1995; Esper et al., 2003; Fritts, 1976). Curve estimation was ach-
ieved by using negative exponential functions or linear fits with
negative slopes. Index values were computed as residuals. Only
TRW data were power-transformed prior to detrending as MXD
does not contain any substantial spread-versus-level relationship
(Cook and Peters, 1997). Chronologies were calculated using the
robust bi-weight mean, and temporal variance changes stabilized
considering sample size and varying interseries correlations (Rbar)
(Frank et al., 2007b). Chronology signal strength was estimated by
calculating Rbar and the Expressed Population Signal (EPS) statis-
tics over 31-year moving intervals with an overlap of 30 years
(Wigley et al., 1984).

With respect to previously published age-class grouping cate-
gories (Table 1), a total of 30 MXD and 30 TRW age-class subset
chronologies were calculated by using the software Spotty (Esper
et al., 2009). Site chronologies were considered to evaluate the
influence of local environmental factors versus age.

2.2. Growth-climate relationships and age effects

Monthly data from the three longest nearby meteorological
stations with monthly resolution (Haparanda, Karasjok, Kar-
esuando) were utilized to generate seasonal and annual tempera-
ture means over the common period 1879e2006. Climate response
patterns were estimated using Pearson's correlation coefficients (r)
between theMXD and TRWrecords (i.e. twomain chronologies, ten
site chronologies, 60 age-class chronologies, 1384 individual
timeseries) and JuneeAugust (JJA) temperature means (Büntgen
et al., 2011a; D'Arrigo et al., 2008; Esper et al., 2012; Schneider
et al., 2014, 2015). The frequency-dependent reliability of growth-
climate relationships were analyzed by applying high- (HP) and
low-pass (LP) filters to the proxy and the target data, using 31-year
smoothing splines and residuals thereof. Climate correlations of
individual core samples were aligned by biological/cambial age
(Esper et al., 2003) and we fitted linear regression functions to
estimate positive or negative slopes in CSAE trends and associated
significance levels (Fritts, 1976).

We evaluated the temporal robustness of CSAE by splitting the
common period 1879e2006 into nine equidistant periods of 40
consecutive years with a lag of 11 years. The evaluation of CSAE
trends during pre-defined periods of marked warming and cooling,
as well as the more trend-free episodes in-between, required
calculating 1st differences of the 11-year low-pass filtered JJA
temperature. To quantify the linear regression functions and
explain the coherency between growth-climate linkages and
cambial age, we performed analyses of variance (ANOVA) for a
single factor and established significance estimation using the
associated p-values.

3. Results

3.1. Age- and site-related chronologies

CSAE has been addressed in several studies considering a variety
of methods and presenting differing results including decreasing
(Dorado Li~n�an et al., 2011) and increasing (Carrer and Urbinati,
2004) climate signal strength with tree aging (overview in
Table 1). These differences are related to several factors aggravating
comparability: The studies are based on samples from different
ecosystems and species, include changing numbers of age-classes
ranging from 2 to 5, and numbers of tree samples averaged in
age-class chronologies changes dramatically among (and partly
within) studies. Sample replication of some age-classes varies
considerably from nmin ¼ 7 to nmax ¼ 60 (Carrer and Urbinati,
2004), or generally, include just a few trees ranging from 5 to 10
trees (Linderholm and Linderholm, 2004). Some of the differences
among existing studies might therefore be due to these differing
setups. The identified best-responding age-class also varies from
youngest (Dorado Li~n�an et al., 2011; Rozas et al., 2009), to middle-
aged (Linderholm and Linderholm, 2004) and oldest (Carrer and
Urbinati, 2004; Linares et al., 2013).

The published age-class chronologies consider different
thresholds making it difficult to compare existing studies (Fig. 2).
Age-classes range from only 30 years (Linares et al., 2013:
age50e80) to 200 years (Yu et al., 2008: age1e200), so that the
different age-class chronologies represent different life-stages of
trees. Overall, only two out of nine studies considered juvenile age-
classes <100 years (Esper et al., 2008; Rossi et al., 2008), while the
threshold “100” is used in another three publications (Carrer and
Urbinati, 2004; Linderholm and Linderholm, 2004; Rozas et al.,
2009). Consideration of these thresholds with age-aligned data
(Fig. 2 upper panel) clearly shows howdiffering portions of juvenile
and adult TRW and MXD data are captured, limiting the compa-
rability of varying, pre-defined age-class systems.

The application of all previously published age-class categori-
zations to the NFN dataset reveals a general trend of decreasing
temperature correlations with increasing cambial age (Fig. 3). MXD
shows a higher coherency with JJA temperatures than TRW. Highest
correlations are recorded in the youngest age-classes
(rMXD1e150 ¼ 0.78, rTRW1e200 ¼ 0.49), though these values only
slightly exceed the values when using all data (rMXDall ¼ 0.76,
rTRWall ¼ 0.48). Cross-parameter differences appear to be most
pronounced in the older age-classes (rMXD500e612 ¼ 0.47,
rTRW400e500 ¼ 0.10).

These findings are, however, constrained by the changing
numbers of MXD and TRW samples averaged in the various age-
class chronologies (top panel in Fig. 3). Some age-class categories
divide the data into small sections, thereby reducing minimum
replication down to only 12 (nage201e250) or 14 samples (nage 50e80),
while other schemes result in much better replicated sub-set
chronologies (e.g. nage176e250 ¼ 97, nage63e123 ¼ 129). In four cases
(nage251e325 ¼ 8, nage326e430 ¼ 7, nage251e340 ¼ 9, nage500e612 ¼ 10),
minimum replication of the age-class chronologies falls below the
commonly accepted threshold of >10 samples. In addition, repli-
cation within most age-classes varies in increments of ten or up to
>400 series (e.g. Dnage151e200 ¼ 427, Dnage300e400 ¼ 418), due to the
amount of 128 consecutive years within the calibration period and
simultaneously adapted cambial ages, that lead to the inclusion or
exclusion of data within the age-class categories and thresholds.
Overall, the comparison of climate signals among age-class and site
chronologies (last column in Fig. 3) reveals a higher variability of
correlation values among the different age-classes than between
the five sites. While this indicates the importance of CSAE
compared to commonly assessed between-site differences, this
conclusion is limited by severe replication changes between the
various age-class chronologies.

3.2. Individual series and trends

Using individual core series (rather than age-class chronologies)
supports the estimation of CSAE unbiased by changes in replication
(Fig. 4). This assessment reinforces climate signals to be stronger in
MXD (than TRW), a finding that holds true in all frequencies, and
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over various cambial ages and time periods. Linear trend functions
demonstrate JJA temperature signal strength to change with indi-
vidual tree age. The trends are significant in MXD at p ¼ 0.006 for
the original data and p ¼ 0.001 for the high-pass filtered data,
showing robust, decreasing centennial gradients of
gMXDOriginal ¼ �0.028 and gMXDHP ¼ �0.026 over the 1879e2006
common period. In TRW, climate signal strength depends on
cambial age in all frequencies. The linear trends are less pro-
nounced though, and decrease with age in the original
(gTRWoriginal ¼�0.028) and low-pass filtered data (gTRWLP ¼�0.013)
but increase in the high-passfiltered data (gTRWHP ¼ þ0.014).

CSAE in MXD is more robust over time, since correlations in a
split calibration approach comprising nine equidistant periods (40
consecutive years with a lag of 11 years) exhibit steadily decreasing
values with age throughout the calibration interval (Fig. 5).
Whereas the slopes of the linear trends vary from
gMXD1956e1995 ¼ �0.003 to gMXD1967e2006 ¼ �0.040, they remain
negative in all periods in both the original and the high-pass
filtered data (Fig. 6). In comparison, the TRW data not only corre-
lates weaker with JJA temperature, but also the CSAE slopes also
change throughout the calibration interval (Fig. 5). Only six of the
nine calibration periods show negative trends, ranging from
gTRW1934e1973 ¼ �0.010 and to gTRW1901e1940 ¼ �0.047. The three
remaining periods yield positive trends with the highest value
reached at gTRW1956e1995 ¼ þ0.048. However, the high-pass filtered
TRW data reveals a more coherent pattern, with all periods
exhibiting positive, and remarkable trends (Fig. 6). Whereas for the
high frequency data themean gradient of all sub-periods resembles
the common period results, this is not the case in the original data,
where the negligible trend from the sub-periods contrasts the
significant negative trend over the full calibration period
1879e2006.

An assessment of the NFN in association with warming and
cooling periods over the last 130 years suggests that CSAE is
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influenced by the temporally changing environmental conditions, a
finding that seems to hold true for both TRW and MXD (Fig. 7).
While MXD shows higher correlations and generally decreasing
CSAE trends throughout the 1879e2006 calibration period, the
TRW signal displays the previously detected oscillation between
negative and positive CSAE trends, which can be differentiated in
five periods: Two periods of consecutive summer temperature
warming (1904e1938 and 1984e2006), two periods of weak trends
(1879e1903 and 1961e1983), and one period associated with
summer cooling (1939e1960).

The most pronounced CSAE trends, in both tree-ring parame-
ters, are apparent in the recent period 1984e2006
(g1984e2006 ¼ �0.075, p < 0.001), characterized by strong summer
temperature warming (Fig. 8). Also the second warming period
from 1904 to 1938 is characterized by significant negative trends in
both datasets (gMXD1904e1938 ¼ �0.034, gTRW1904e1938 ¼ �0.060,
p < 0.001). During the period of consecutive summer temperature
cooling, CSAE is effectively non-existent in both, MXD and TRW.
Finally, during periods with no clear temperature trend, CSAE is less
distinct/homogeneous: During 1879e1903, the MXD trend is sig-
nificant (gMXD1879e1903 ¼�0.026, p < 0.01), whereas the TRW trend
is not. During 1961e1983, the TRW trend is significant
(gTRW1961e1983 ¼ þ0.046, p < 0.001), but MXD trend is not.

In summary, climate sensitivity of MXD and TRW decline with
increasing cambial age. These general tendencies are, however,
modified by the differing warming and cooling trends throughout
the past 130 years. Gradual summer temperature warming
enhances CSAE, whereas decadal scale cooling removes this bias.

4. Discussion

At best, tree-ring chronologies comprise all cambial ages of tree-
rings. However, the age distribution as a function of time displays
variations, which take place not only in the calibration but also in
the reconstruction period. Early reconstruction periods are typi-
cally represented by young tree-rings, while cambial ages increase
towards older trees in the 20th century calibration period. Here we
assessed the influence of changing tree age on climate signals using
age-class chronologies and individual series. For this analysis, well-
replicated datasets composed of young and old trees are required to
minimize replication biases. However, such datasets are rare for
TRW as most sampling strategies mostly focused on dominant and
old trees (Nehrbass-Ahles et al., 2014). Due to the time-consuming
procedure of MXD measurements, the dataset presented her is
unique as it includes all cambial ages.

4.1. Data structure and characteristics

Splitting the MXD and TRW data into several age-classes
considering schemes from previous studies from differing ecolog-
ical and climatological settings, yielded inconsistent results. By
comparing the diverse length of some age-class categories it be-
comes obvious that a physiological cause in terms of changes in
growth or density rates can be excludedwhen using these age-class
chronologies. CSAE estimates are sensitive to different age-class
thresholds, especially as these thresholds lack a physiological
background. Particularly for the juvenile episode of tree-growth,
large age-class categorizations of >100 years appear inadequate,
since many physiological changes occur during this life-span
(Meinzer et al., 2011). Generally, thresholds rather appear esti-
mated as adaptation to the commonly used decimal numeral sys-
tem (e.g. age-class 1e50, 1e100, 1e150, etc.) or to the age span of
the samples at hand, thus, raising the question whether some
datasets fulfill the requirements of studying CSAE. An evenly
distributed mix of young and old trees is needed to assess differ-
ences during the 20th century calibration period. Additionally,
replication changes between the age-class chronologies may affect
results and cannot easily be distinguished from CSAE. However,
results suggest a gradual decrease of climate sensitivity with
increasing age in both TRWandMXD. Replication changes limit this
conclusion, particularly for the older age-classes, although the large
dataset includes a high amount of young and old trees.

Exploring individual core series, instead of age-class chronolo-
gies, helped to mitigate uncertainties related to replication changes
and age-class thresholds, and confirmed the gradual decrease of
climate sensitivity with increasing age. The calculation of linear
trends also enabled an estimation of CSAE gradients per unit of age
and accompanying significance levels. CSAE trends were significant
in MXD and TRW (except for low-pass filtered MXD data), although
they may not explain large fractions of variance in the data.

In contrast to the robust negative gradients in MXD, TRW
climate correlations decrease with age only in the low-pass filtered
data. The high-pass filtered data exhibits higher correlation values
with increasing cambial age. In the original data, including both
high- and low-frequency variance, the trend is again negative
containing the strongest gradient. TRW is typically connected with
high autocorrelation values and biological memory (Esper, 2015),
incorporating a stronger low-frequency component, leading to
superimposed negative trend in the original data (Büntgen et al.,
2015; Fritts, 1976). However, this decreasing trend with age is not
temporally robust, since results from split calibration approaches
do not reflect results over the common period, which was also
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detected by Linderholm and Linderholm (2004). Cambial age seems
to have a frequency-dependent impact on climate signals in TRW,
which seems to be absent inMXD. Particularly in the low-frequency
domain, MXD contain no significant CSAE trends, thereby rein-
forcing the strength of this tree-ring parameter for climate recon-
struction purposes. This conclusion is supported by the temporal
robustness of CSAE trends in MXD, which remain significant and
independent of frequency domain.

The significance of CSAE in both tree-ring parameters, MXD and
TRW, is related to temporal changes in JJA temperatures over the
past 130 years.Whereas warming periods seem to support negative
CSAE trends, cooling periods appear to be associated with insig-
nificant CSAE trends. In other words, older trees tend to mirror
warming trends in their tree-rings to a smaller extent than younger
trees. Particularly the pronounced warming in the most recent
period seems to be linked to the strongest CSAE trends. Due to the
typical age-structure consisting of oldest living trees and tree-rings
in the most recent period together with the decreasing tree-ages
back in time, CSAE can play an important role when establishing
climate signals in the late calibration period and may add another
factor to ongoing debate about divergence effects in Northern Eu-
ropean tree-ring networks (D'Arrigo et al., 2008; Esper and Frank,
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2009).

4.2. Physiological processes

For the first time we demonstrate that the decrease of temper-
ature sensitivity with increasing cambial age is a significant
component in MXD and TRW timeseries from Pinus sylvestris in
Northern Fennoscandia. Previously reported physiological changes
throughout the trees' lifespans seem to affect cambial activity and
cell-wall thickness, and their sensitivity to environmental in-
fluences. Generally, younger trees tend to prolong the vegetation
period at the greater risk of mortality to enhance stem growth in
competition for light (Bond, 2000; Day et al., 2002). Contrary, the
vegetation period of older trees appear to be shorter, since these
trees are well established, access to light is granted by fully formed
canopies and competition is of no substantial importance (Rossi
et al., 2008).

The interdependency of age-related vegetation period length
and seasonal response patterns may contribute to the explanation
of CSAE. The JJA period considered here is the best responding
season when all trees of this study are included. Our results indi-
cated that by prolonging this season, e.g. to MayeSeptember, CSAE
appear overall even larger, with young rings correlating better
(rMXD1e100 ¼ 0.73, rTRW1e100 ¼ 0.47) than old rings
(rMXD500e600 ¼ 0.43, rTRW500e600 ¼ 0.22). A season shortening to
only July leads to less pronounced trends in climate correlations:
Older age-classes display higher or similar correlations to July
temperatures compared to younger classes (rMXD1e100 ¼ 0.56,
rMXD500e612 ¼ 0.60, rTRW1e100 ¼ 0.49, rTRW500e600 ¼ 0.48). The JJA
season was chosen here, as it showed the strongest correlations
among sites and proxies, and was previously considered in the
climate reconstructions from the region (Büntgen et al., 2011a;
Esper et al., 2012; Schneider et al., 2014). The estimated CSAEs
may, however, be a masked expression of the temporal shift of age-
related growth seasonality.

Generally, MXD and TRW data are derived from the same tree-
rings, but are controlled by differing physiological processes. MXD
is closely related to cell-wall thickness, which is primary linked to
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lignification (Schweingruber, 1996). TRW relates closely to the
number of cells and their tracheid area (Schweingruber, 1996). In
young trees, cells are usually smaller, due to the shorter root-leaves
path length and associated hydraulic constraints linked to tree
height (Ryan and Yoder, 1997; West et al., 1999). In climatologically
favorable periods, the cambium is prone to produce more cells,
thereby enlarging TRW. However, older and taller trees produce
only few larger cells per ring and increase to a lesser degree their
number under favorable conditions, due to slower and shorter
xylogenesis (Rossi et al., 2008). This makes older trees more
complacent, especially during warming periods (Carrer et al., 2015).
In contrast, shorter cooling trends seems to affect both, young and
old trees. Cell wall thickening (MXD) is usually not that tightly
boundwith such hydraulic constraints, and age- and height-related
changes thereof. CSAE in this parameter probably only results from
the shortening of the vegetation period. The phenomenon appears
to be temporally more robust, and can probably be more easily
avoided by creating datasets with an evenly distributed age-
structure, i.e. be including high numbers of samples of all cambial
ages.

5. Conclusions

Analyzing a northern Fennoscandian MXD and TRW network,
we show that climate signal age effects are overall larger than the
differences in summer temperature response among different tree
sites. However, if we use all data, including all age-classes, themean
chronologies display only marginally lower correlations against
temperature data compared to the best responding age-class
chronology. On an individual tree level, the relationships between
climate and MXD and TRW are age-dependent, except for the low-
pass filteredMXD data (though reduced degrees of freedomneed to
be considered here). Decreasing climate correlations with
increasing cambial age appear to be a temporally robust feature in
MXD data, while TRW exhibits a more complex behavior including
oscillations between positive and negative CSAE trends, depending
on climate states (warming or cooling) and frequency domains
(high- and low-pass). Changing climate conditions throughout the
past 130 years seem to affect both tree-ring parameters: consecu-
tive warming over several years enhanced CSAE in MXD and TRW,
while cooling temperatures seems to minimized this bias.

Generally, the calibration results using MXD data are charac-
terized by higher and temporally more robust correlations, even
though also these are decreasing with tree age. CSAE is less
important in the low-frequency domain, though degrees of
freedom were low when testing this, which is likely important for
climate reconstruction purposes. Overall warming temperatures
seem to foster CSAE, which is a prominent feature of the most
recent period of the calibration interval. Our findings show that
CSAE bias the estimation of climate signals and subsequent re-
constructions from both MXD and TRW data. CSAE should be
studied in climate reconstructions, and can probably be mitigated
by a careful selection of sampled trees and inclusion of tree-rings of
differing cambial age throughout time.
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