Isolation of accelerator produced ¹⁴⁰Nd from macro-amount of Ce and Pr by means of cation-exchanger chromatography

K.P. Zhernosekov¹, D.V. Filosofov², N.A. Lebedev², S.M. Qaim³, F. Rösch¹

¹Institut für Kernchemie, Johannes Gutenberg-Universität, D-55128 Mainz, Germany; ²Joint Institute of Nuclear Research, LNP, 141980 Dubna; ³Institute für Nuklearchemie, Forschungszentrum Jülich GmbH, Germany

Introduction: ¹⁴⁰Nd (100 % EC, $T\frac{1}{2} = 3.37$ d) generates the short-lived intermediate ${}^{140}Pr$ (49% β^+ , $E_{max} = 2.4$ MeV, $T\frac{1}{2} = 3.39$ m), which decays to stable ¹⁴⁰Ce. This system was supposed to be useful as generator or in vivo generator systems for PET [1]. A detailed study of 141 Pr(p,2n) 140 Nd $^{nat}Ce(^{3}He,xn)^{140}Nd$ and nuclear reactions was published recently [2]. The overall yields of ¹⁴⁰Nd are 12 and 210 [MBq/µA·h], respectively. Whereas irradiation of praseodymium provide higher overall yields, chemical isolation of ¹⁴⁰Nd(III) seems to be more efficient if cerium is irradiated. In this work both routes were applied for the production and separation of ¹⁴⁰Nd. Radiochemical separations were performed by means of cation-exchange chromatography according to Nd(III)/Ce(III) and Nd(III)/Pr(III) separations.

Experimental: ¹⁴⁰Nd was produced irradiating natural cerium oxide with 36 MeV ³He-particles and irradiating praseodymium oxide with protons of 30 MeVat the CV28 cyclotron of the Forschungszentrum Jülich. Irradiated CeO₂ (500 mg \equiv 2.9 mmol) was dissolved in HCl_{conc} solutions by reduction of Ce(IV) to Ce(III) in the presence of I ions. The target material was boiled in ~ 40 ml of HCl_{conc} with addition of 0.5-1 g KI within 1-1.5 hours. After complete dissolution, the remaining bulk (~ 10 ml) was adjusted up to 110 ml with H₂O and filtrated on a standard glass filter. The solution was loaded on a chromatography column of 400×20 mm dimension (V_{fr} ~ 127 ml), filled with Bio-Rad AG 50W-X8, 200-400 mesh in hydrogen form. The resin was washed with about 600 ml of 0.5 M NH₄Cl to transfer the cationexchanger into the NH₄⁺-form. Chromatographic separation was performed by isocratic elution (Fig. 1). 140 Nd(III) was selectively eluted with 0.30 M α -HIB solution. Ce(III) was washed down at the concentration 0.40 M. The eluate was fractionated by 30 ml. Irradiated Pr_2O_3 (200 mg = 0.6 mmol) was dissolved in 5 ml of HCl_{conc} by heating within 20 – 30 minutes. After addition of $^{142/141}$ PrCl₃ and 5 mmol of NH₄Cl the mixture was evaporated under argon atmosphere. The dried residue was dissolved in 20 ml of H₂O to achieve a pH 1 - 2 and filtrated on a standard glass filter. The primary chromatography column had optimised dimension of 390×16.1 mm (V_{fr} ~ 80 ml), filled with Bio-Rad AG 50W-X8, 200-400 mesh. To improve separation conditions, isotopes were loaded onto the cationexchanger directly in NH₄⁺ form. The resin was washed with 120 ml of 0.20 M $\alpha\text{-HIB}$ solution. $^{140}Nd(\text{III})$ was selectively eluted with 0.29 M α -HIB solution. Pr(III) was washed down at the concentration 0.40 M (Fig. 2). The eluate was fractionated by 12 ml. In both cases final purification of ¹⁴⁰Nd(III) could be performed on a small Aminex A6 column (100×2 mm), using α -HIB eluent systems.

Figure 1. ¹⁴⁰Nd(III)/Ce(III) separation. Profiles of an isocratic elution on the primary chromatography column.

Figure 2. ¹⁴⁰Nd(III)/Pr(III) separation. Profiles of elution on the primary chromatography column

Results: The isolation of ¹⁴⁰Nd(III) by means of cationexchanger chromatography from the target materials was evidently more efficient if cerium oxide is irradiated (*decontamination factor* $\geq 10^8$). However, superior purification within two steps only could be performed for the ¹⁴⁰Nd(III)/Pr(III) system (*decontamination factor* \geq $7 \cdot 10^5$). In both cases the evaluated amounts of the target material remaining was below 1 nmol. With consideration of higher ¹⁴⁰Nd overall yield, the ¹⁴¹Pr(p,2n)¹⁴⁰Nd production route seems to be absolutely superior.

References

- [1] Hilgers K, Shubin YN, Qaim SM. Appl Rad. Isot. 2006
- [2] Roesch F, Knapp FR. Radionuclide Generators. In: Vértes, A., Nagy, S., Klencsár, Z. Handbook of Nuclear Chemistry. Amsterdam, 2003; 4: 81 - 118.