Cyclotron produced ⁶⁷Ga for preparation and clinical application of ⁶⁷Ga-DOTATOC

K. Zhernosekov¹, Aschoff², D. Filosofov³, M. Jahn¹, M. Jennewein¹, P. H-J. Adrian², H. Bihl², F. Rösch¹

¹Institut für Kernchemie, Johannes Gutenberg-Universität, D-55128 Mainz, Germany; ²Klinik für Nuklearmedizin und

PET-center, D-70022, Stuttgart, Germany; ³Joint Institute of Nuclear Research, LNP, 141980 Dubna, Russia

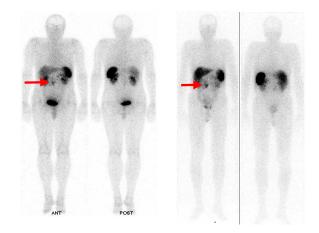
Introduction: Radiogallium labelled DOTA-conjugated somatostatin analogues (DOTA-octreotides) are very promising for the diagnoses of somatostatin receptor-expressing tumours due to the high binding affinity to the human somatostatin receptor subtype 2 and an improved pharmacology in vivo (Hofmann et al., 2001). Especially if the generator-produced positron emitter ⁶⁸Ga is used for labelling, excellent visualisation with PET/CT can performed. However, SPECT is still more widely available and for routine diagnostic radioindium labelled ¹¹¹In-DTPAoctreotide (Octreoscan) is used. 67 Ga (EC, T¹/₂ = 78.3 h) is a useful SPECT isotope. To advance this radionuclide for clinical application, in this work we evaluate commercially available ⁶⁷Ga for preparation of injectable ⁶⁷Ga-DOTATOC and used it in a pilot study of human somatostatin receptor-expressing tumour imaging with SPECT/CT.

Experimental: Only analytical-reagent grade chemicals and Milli-Q water (18.2 M Ω ·cm) were used for all labelling reactions. About 1.0 GBq of ⁶⁷Ga(III) was obtained from Cyclotron Co., Obninsk Russia in 0.1 M HCl solution with specific activity not less than 370 MBq/µg (25 MBq/nmol). A ⁶⁷Ga activity in 0.1 M HCl solution was used directly for labelling in 1 ml of HEPES buffer pH ~ 3.7 in a 2 ml reaction vessels (PP, Brand). The radioactivity concentration was about 500 MBq/ml. The reaction mixture was kept at about 98°C for 30 minutes. For quality control HPLC (Machery Nagel column, Nucleosil 5 C18-AB, 250×4 mm; eluent: 20% AcCN, 80% TFA - 0.01 % in H₂O, 1 ml/min; RT ~ 9 min) was applied.

The theoretical (maximum) specific activity of 67 Ga-DOTATOC is 1.48 GBq/nmol. However, in our case labelling was performed after about 1.5 of half-life of 67 Ga from the end of its production and processing. 67 Ga decays to stable 67 Zn. Therefore, even if the content of ${}^{67/68}$ Zn(II) from the irradiated zinc target is negligible, the amount of this stable decay product presented in the system is higher than that of the hot-atoms: $[{}^{67}$ Ga] \leq $1.5 \cdot [{}^{67}$ Zn].

Divalent zinc was found to be a competitor for incorporation of radionuclides in DOTA with a strong effect already at concentrations of 1 μ M (Breeman et al., 2003). In this work labelling was performed at activity concentrations of 500 MBq/ml, resulting in 0.34 μ M of gallium and not less than 0.68 μ M of zinc concentrations. In this context, for complete incorporation of ⁶⁷Ga(III), corresponding excess of the ligand is necessary to compensate the content of Zn(II). Following this assumption, a specific activity of about 520 MBq/nmol only could be expected.

Results: Specific activities of 67 Ga-DOTATOC up to ~ 214 MBq/nmol could be achieved. The experimentally obtained value is only a factor 2.4 less than the theoretically ex-


pected one. It confirms the high chemical and radiochemical purity of the commercially obtained isotope and its applicability without additional purification procedure.

For *in vivo* studies ⁶⁷Ga-DOTATOC was used with a specific activity of 70 MBq/nmol. Cold ligand was added to the reaction mixture in order to stabilise the radiolabelled peptide in the system.

The reaction mixture was passed through a small C18 cartridge (Phenomenex Strata-X Tubes, 30 mg), providing quantitative recovery of the peptide on RP. After washing the cartridge with 5 ml H₂O (Aqua ab iniectabilia), the ⁶⁸Ga-labelled peptide was recovered with 200 – 400 µl of pure ethanol. The ethanol eluate containing the pure ⁶⁸Ga-DOTATOC was dissolved in 5 – 10 ml 0.9 % saline solution and sterilised by filtration through a 0.22 µm membrane filter.

Two patients with positive somatostatin receptor scintigraphy (Octreoscan[®]) were involved in the pilot study injecting ~ 230 MBq of ⁶⁷Ga-DOTATOC. Prior to ⁶⁷Ga-DOTATOC application, each patient had received 180 MBq of ¹¹¹In-octreoscan one week before. All metastases detected with ¹¹¹In-DTPAOC could be visualized with ⁶⁷Ga-DOTATOC as well. Scans of ⁶⁷Ga-DOTATOC (SPECT/CT) were performed in less then 4 h p.i. to generate excellent images with higher tumour to background ratio compared to ¹¹¹In-DTPAOC images (Fig. 1). The presence of only faint renal ⁶⁷Ga-DOTATOC uptake constitutes a further favourable characteristic of this radiolabelled peptide (Zhernosekov et al., 2005)

Figure 1. Planar scintigraphy: ¹¹¹In-DTPAOC 4 h p.i. (on the

left); ⁶⁷Ga-DOTATOC 3 h p.i. (on the right)

- Hofmann M, Maecke HR, Börner AR, Weckesser E, Schöffski P, Oei ML, Schumacher J, Henze M, Heppeler A, Meyer GJ, Knapp WH. Eur J Nucl Med 2001; 28:1751–1757.
- Zhernosekov K, Aschoff P, Filosofov D, Jahn M, Jennewin M, Adrian H-J, Bihl H, Rösch F. Eur J Nucl Med 2005; 9: 1129.
- Breeman W, Jong M, Vissel TJ, Erion JL, Krenning EP. Eur J Nucl Med 2003; 30: 918.