Investigation of the DTPA complex formations of indium and cadmium by a γγperturbed angular correlation method

D.V. Filossofov¹, A.F. Novgorodov¹, O.I. Kochetov¹, N.A. Korolev¹, N.A. Lebedev¹, A.I. Velichkov¹, M. Milanov², K.P. Zhernosekov³, F. Rösch³

¹Joint Institute of Nuclear Research, DLNP, RUS-141980 Dubna, Russian Federation; ²Institute for Nuclear Research, BAS, 1000 Sofia, Bulgaria; ³Institut für Kernchemie, Johannes Gutenberg-Universität, D-55128 Mainz, Germany

Introduction:

For qualitative and quantitative speciation of radioelements, the time-integral perturbed angular $\gamma\gamma$ -correlation ($\gamma\gamma$ -IPAC) measuring the $\gamma\gamma$ -IPAC response (G₂(∞) = time-integral perturbation factor (TIPF)) may provide rich information about the closest chemical environment of a radioactive nuclide [1,2]. The main experimental advantages are:

- ability to study systems in any aggregate state;
- non-invasive character of measurement;
- very small amounts (activity) of the radioactive nuclide required (~300 kBq);
- thus low range of species concentrations (up to 10⁻¹² M);
- small volumes of the sample $(1 \ \mu l 100 \ ml)$;
- wide ranges of temperature and pressure;
- simple equipment due to the development of a γγ-IPAC technique using one HPGedetector only (1-PAC) and
- simplicity of data interpretation of the TIPF for each chemical state of the radionuclide.

Materials and Methods:

This method was applied to study DTPA complex formation equilibrea of indium and cadmium represented by the radioisotopes ¹¹¹In and ^{111m}Cd. Measurements have been carried using a 4-detector spectrometer with BaF₂ scintillators.

Nca ¹¹¹In was produced via the nuclear reaction $^{109}Ag(\alpha,2n)^{111}In$. The ^{111m}Cd was prepared from a ¹¹¹In/^{111m}Cd radionuclide generator.

To the samples containing about ≈ 100 kBq of the individual radionuclides, DTPA was added in concentration of $3 \cdot 10^{-5}$ M, with an

overall pH ranging from 0.5 to 13.5. The ionic strength was kept constant ($\mu = 0.30$, HClO₄, NaClO₄, NaClO₄, NaOH).

Results:

For pH=0.5 solutions of ¹¹¹In, the TIPF was found to be 1.00(3), corresponding to the aqua-complex of $[In(H_2O)_6]^{3+}$. At pH > 0.6 the value of $G_2(\infty)$ approached 0.50(3), reflecting the In(DTPA) complex formation. From those data we determined the equilibrium constant for the [InDTPA]²⁻ complex of $\log\beta = 27.2$.

In the case of ^{111m}Cd at pH = 0.5-2, the TIPF was found to be 1.00(3). In less acidic solutions of pH > 2.2, $G_2(\infty)$ changes to 0.40(3). The equilibrium constant for [CdHDTPA]²⁻ complex was determined to log β = 13.6. It was shown that the time-integral perturbed angular $\gamma\gamma$ -correlation method is very convenient to study complex formation equilibrea of radioelements.

Financial support received from the Russian Foundation for Basic Research (03-03-32120) is acknowledged.

References

- DV Filosofov, AF Novgorodov, NA Korolev, VG Egorov, NA Lebedev, ZZ Akselrod, J Brockmann, F Rösch. Appl Radiat Isotopes 57/3 (2002) 437-443
- [2] K Zhernosekov, NA Korolev, DV Filossofov, AF Novgorodov, F Rösch. COST D18 Working Group 0004 workshop, Athens, Greece, May 20-22, 2004