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S U M M A R Y
Many unresolved questions in geodynamics revolve around the physical behaviour of the
two-phase system of a silicate melt percolating through and interacting with a tectonically
deforming host rock. Well-accepted equations exist to describe the physics of such systems
and several previous studies have successfully implemented various forms of these equations in
numerical models. To date, most such models of magma dynamics have focused on mantle flow
problems and therefore employed viscous creep rheologies suitable to describe the deformation
properties of mantle rock under high temperatures and pressures. However, the use of such
rheologies is not appropriate to model melt extraction above the lithosphere–asthenosphere
boundary, where the mode of deformation of the host rock transitions from ductile viscous
to brittle elasto-plastic. Here, we introduce a novel approach to numerically model magma
dynamics, focusing on the conceptual study of melt extraction from an asthenospheric source
of partial melt through the overlying lithosphere and crust. To this end, we introduce an
adapted set of two-phase flow equations, coupled to a visco-elasto-plastic rheology for both
shear and compaction deformation of the host rock in interaction with the melt phase. We
describe in detail how to implement this physical model into a finite-element code, and then
proceed to evaluate the functionality and potential of this methodology using a series of
conceptual model setups, which demonstrate the modes of melt extraction occurring around
the rheological transition from ductile to brittle host rocks. The models suggest that three
principal regimes of melt extraction emerge: viscous diapirism, viscoplastic decompaction
channels and elasto-plastic dyking. Thus, our model of magma dynamics interacting with
active tectonics of the lithosphere and crust provides a novel framework to further investigate
magmato-tectonic processes such as the formation and geometry of magma chambers and
conduits, as well as the emplacement of plutonic rock complexes.

Key words: Fracture and flow; Dynamics of lithosphere and mantle; Mechanics, theory and
modelling; Rheology: crust and lithosphere; Pluton emplacement.

1 I N T RO D U C T I O N

1.1 The problem of melt ascent through lithosphere
and crust

The physics involved in the ascent of silicate melt from the upper
mantle through the continental lithosphere and crust, as it occurs
mainly along converging plate boundaries, poses a considerable
number of challenges. As a pulse of partial melt formed in the as-
thenosphere rises, it reaches the thermal boundary layer beneath
the lithosphere, where the competence of the host rock gradually
increases, reaching a point where both pervasive melt percolation as
well as viscous diapirism become an inefficient means of melt prop-

agation. As the host rock becomes more competent, the significance
of viscous creep mechanisms is diminished. Thus, if treated with a
purely viscous rheology, melt pulses would stagnate and crystallize
at depth. Under these conditions, it becomes necessary to consider
elasto-plastic modes of melt propagation. Additionally, the effect
of tectonic deformation of the lithosphere and crust on potential
modes of melt extraction is of much interest, as many magmatic
systems on Earth coincide with zones of major tectonic activity.
Moreover, many plutonic bodies as well as volcanic systems occur
at plate boundaries or fault systems, the activity of which coincided
or overlapped with the time of melt migration and magmatic rock
formation (Pitcher 1979; Hollister & Crawford 1986; McCaffrey
1992; Petford & Atherton 1992; Hutton 2011).

1406 C© The Authors 2013. Published by Oxford University Press on behalf of The Royal Astronomical Society.

 at Joh G
utenberg U

niversitat on January 28, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/
http://gji.oxfordjournals.org/


Magma dynamics coupled to tectonics 1407

The problem of melt ascent through the lithosphere and crust
involves a great complexity of processes. Conditions from the
asthenosphere up to the Earth’s surface span far over a thousand
degrees of temperature and up to several GPa of pressure variation.
The continental lithosphere, in particular, may be highly hetero-
geneous as it accumulates compositional and structural inhomo-
geneities during its long history. Inclusions of more fusible compo-
sitions in the asthenosphere and lower lithosphere may influence the
style and efficiency of melt production and the onset of melt extrac-
tion (Aharonov et al. 1995, 1997; Kelemen et al. 1997; Spiegelman
et al. 2001; Weatherley & Katz 2012). Structurally weakened rock
left behind by inherited fault systems may localize subsequent cy-
cles of deformation (e.g. Barnes 1994; Corti et al. 2007) and thus
form pathways for the melt to penetrate through more competent
rock layers. Even though such complexities should eventually be
considered when dealing with melt transport through lithosphere
and crust, we will neglect most of these factors here in order to
concentrate on the basic physics of a low-viscosity melt propagat-
ing through a visco-elasto-plastic host rock undergoing a variety of
conditions as they occur on the way from the upper mantle towards
the upper crust.

1.2 Geodynamic two-phase flow

The physics of two-phase flow in the context of geodynamics
have been derived in various studies (e.g. Sleep 1974; McKenzie
1984; Fowler 1985; Scott & Stevenson 1986; Spiegelman 1993a,b;
Bercovici et al. 2001a; Bercovici & Ricard 2003). Most of these for-
mulations are equivalent to each other under certain assumptions
(Bercovici et al. 2001a; Bercovici & Ricard 2003) and are typically
referred to as two-phase flow equations.

Geodynamic two-phase flow is characterized by the interplay of
various competing modes of melt propagation. Porous flow through
a deforming host rock may be localized by channeling instabili-
ties of both mechanical (Stevenson 1989; Richardson 1998; Katz
et al. 2006; Connolly & Podladchikov 2007; Golabek et al. 2008;
Kohlstedt & Holtzman 2009) and chemical nature (Aharonov et al.
1995, 1997; Kelemen et al. 1997; Spiegelman et al. 2001; Weather-
ley & Katz 2012). At low background viscosities, either pervasive
melt transport in a compacting host rock, or advective melt transport
in a convective host rock will govern the style of melt extraction.
Thus, depending mainly on the ratio between shear and compaction
viscosities, either compaction waves (symmetrical or channelized)
or convective diapirism (upwellings driven by the buoyancy of lo-
cally accumulated melt) will be the main feature of melt extraction
(Scott 1988).

Another significant regime transition takes place between duc-
tile flow and brittle fracture. The study of this transition between
viscously flowing and elasto-plastically fracturing modes of melt
ascent and emplacement is an area of long-standing scientific de-
bate, where no consensus has yet been reached as to which process
governs melt extraction and emplacement (Paterson & Fowler 1993;
Menand 2011). To put it in the words of Rubin (1993a), ‘it seems
that the interpretation of existing field observations is [ . . . ] ham-
pered by an inadequate understanding of rock that can undergo both
fracture and flow.’ Therefore, the aim of the methodology proposed
here is to create a physical modelling framework that is able to
directly access all end members of melt extraction and emplace-
ment mechanics, that is, compaction waves and channels, convec-
tive diapirism and brittle fractures, in a fully coupled, self-consistent
continuum approach.

1.3 Previous work

The traditional approach to two-phase flow in partially molten rock
describes viscous creep of the host rock only. Such an approach
is sufficient for simulating processes in the mantle and astheno-
sphere, where the rock viscosity is weakened by high temperatures
and therefore deformation is dominated by viscous creep. Previ-
ous studies that implemented various forms of viscous two-phase
flow into numerical models of magma dynamics have dealt with (i)
the study of the basic modes of melt propagation, such as solitary
waves (Barcilon & Richter 1986; Barcilon & Lovera 1989; Spiegel-
man 1993a,b), (ii) the simulation of melt extraction at midoceanic
ridges (e.g. Scott & Stevenson 1989; Katz 2010) and above sub-
duction zones (Cagnioncle et al. 2007), (iii) the numerical study
of various forms of channelized percolation, such as the shear-
assisted channeling instability (Stevenson 1989; Richardson 1998;
Katz et al. 2006), the reactive melt band instability (Aharonov et al.
1995, 1997; Kelemen et al. 1997; Spiegelman et al. 2001; Weath-
erley & Katz 2012) and the decompaction channeling instability
(Connolly & Podladchikov 2007), or with (iv) the simulation of
liquid iron segregation during core formation of terrestrial planets
(Golabek et al. 2008; Šrámek et al. 2010).

Whereas most studies of computational magma dynamics have
been concerned with the mechanical aspects of porous flow, some
studies have coupled the dynamics of melt transport and host rock
compaction with models of conservation of energy and composition
(Richard et al. 2007; Šrámek et al. 2007; Katz 2008; Dufek &
Bachmann 2010). Such treatments add considerable complexity to
models of magma dynamics. As the main concern of this study is
the expansion of existing two-phase flow models to the full visco-
elasto-plastic deformation of the host rock, we will neglect these
additional complexities for now and continue to address the purely
mechanical aspects of melt propagation.

We note that within the engineering and geomechanics com-
munity, significant progress has been made in understanding the
dynamics of viscoplastic, or elasto-plastic two-phase flow in poly-
crystalline metals and dry rocks (e.g. Loret & Prevost 1991;
Ehlers & Volk 1998; Rubin et al. 2000; Lomov & Robin 2003;
Khoei & Mohammadnejad 2011) and of porous rock containing hy-
drous fluids (e.g. Fournier 1996; Evans 2005; Gessner 2009; Yang
2002). These studies, however, are often based on different PDEs
(e.g. poro-elastic equations) or use complex constitutive laws spe-
cific to engineering materials; thus, it is mostly not straightforward
to apply this knowledge the problems of computational magma dy-
namics.

Within the computational magma dynamics community, only few
studies have taken steps towards the introduction of a fully visco-
elasto-plastic host rock rheology in models of magma dynamics.
Some work has been done on solitary wave propagation in a vis-
coelastic host rock (Connolly & Podladchikov 1998). In a more
recent follow-up study, Connolly & Podladchikov (2007) added a
parametrized implementation of plastic decompaction failure, lead-
ing to the emergence of elongated melt tubes or channels, rather than
spherical two-dimensional solitary waves. Morency et al. (2007)
derived a system of equations that is able to deal with viscoelastic
compaction flow in a host rock undergoing viscoplastic shear defor-
mation. Their study, however, does not deal with magma dynamics
but rather with the percolation of water in sedimentary rocks. Also,
the formulation of plasticity in that study only considers shear frac-
ture of the host rock and omits tensile modes of fracturing.

Melt-bearing tensile fractures, however, represent one of the
most common features of melt propagation found in outcrops of
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magmatic rock formations. Such dykes and sills therefore have
been studied theoretically and experimentally for years (e.g. Mur-
rell 1964a,b; Lister & Kerr 1991; Rubin 1993a,b, 1995; Taisne &
Jaupart 2009). Rozhko et al. (2007) simulated the emergence of
such fluid-filled brittle fractures in an elasto-plastic host rock us-
ing a poro-elastic model approach. Although their study involved
drastic simplification (e.g. constant melt fraction), it is nevertheless
highly relevant in our context, as it demonstrates the possibility of
simulating the essentially discontinuous process of tensile fractur-
ing in a continuum mechanics framework.

1.4 Proposed method

In an effort to extend numerical simulations of magma dynamics
to the fully coupled visco-elasto-plastic two-phase physics, where
both shear and compaction deformation may occur as viscous creep,
elastic strain, plastic failure, or any combined mode of deformation,
we will adapt the standard set of two-phase flow equations to a
suitable form and introduce an appropriate rheology for both shear
and compaction deformation. The resulting set of equations is then
implemented into a finite-element code suitable for simulating melt
extraction under asthenospheric, lithospheric and crustal conditions.
The resulting numerical formulation, as we will show, represents
a straightforward extension of the standard formulation of Stokes
flow used in many geodynamic simulations of mantle or lithosphere
deformation today (Moresi et al. 2003; Gerya & Yuen 2007; Kaus
et al. 2008; May & Moresi 2008; Popov & Sobolev 2008; Kaus
2010).

To test the model and demonstrate its potential, we run a suite
of simulations to explore the various regimes of melt transport that
self-consistently emerge from the visco-elasto-plastic deformation
of the host rock. In a first series of simulations, we impose a small
volume of melt at the lower boundary of a homogenous model
box. While we impose tectonic background deformation through
kinematic boundary conditions on the sides of the box, a constant
fluid pressure condition at the lower boundary serves to continuously
supply melt from below. The dimensions of this problem are chosen
so as to resolve processes on a scale of a few kilometres. Varying the
intrinsic viscosity and the tensile strength of the host rock enables
us to examine a range of conditions found in the asthenosphere,
lithosphere and crust, and crossing the boundary from ductile to
brittle modes of deformation.

In two additional simulations, we extend the model domain to in-
clude a full cross section through a compositionally and structurally
homogeneous lithosphere and crust. An initial volume of melt is
placed below the lithosphere. The model domain is again subject
to tectonic deformation imposed by kinematic side boundaries. As
the viscosity structure on a lithospheric scale is depth-dependent,
the various end member models studied in the first series of sim-
ulations are likely to be found at various depths of the lithosphere
and transitions between modes of deformation are thus expected to
occur in a self-consistent manner.

2 P H Y S I C A L M O D E L

2.1 Basic governing equations

2.1.1 Material fractions

Our formulation of the magma dynamics problem deals with two
material phases: (i) The solid phase—in our context the host rock—
deforming as an incompressible visco-elasto-plastic medium.

Properties of the solid phase are denoted with a subscript ( )s . (ii)
The fluid phase—in our context the silicate melt—deforming as an
incompressible Newtonian fluid. We denote fluid properties with a
subscript ( ) f .

Properties of the phase mixture are defined as averaged over the
fractions of a unit volume occupied by the solid and fluid phase,
expressed in terms of the melt fraction φ, which is defined as the
volume fraction of the fluid phase (silicate melt) per unit volume of
the two-phase mixture. At melt fractions below a certain threshold
in the region of 0.25 ≤ φ ≤ 0.35, the melt fraction corresponds to
the fully saturated porosity of the host rock. Above this disaggrega-
tion threshold, the interconnected, cohesive matrix of the host rock
disaggregates to form a ‘mush’ of solid grains submerged in the
fluid phase, a transition marked by a sharp decrease of mechanical
strength in the system (Renner et al. 2000; Caricchi et al. 2007;
Costa et al. 2009). As two-phase flow beyond the host rock disag-
gregation threshold is an important part of our model, the commonly
used term ‘porosity’ would not be general enough to describe the
fluid volume fraction in all potential states of the two-phase mixture,
and thus we will consistently use the term ‘melt fraction’ instead.

Properties of the two-phase mixture are defined in general for
any property a as

a = (1 − φ) as + φa f , (1)

denoted by an over bar. The phase difference of any property a is
defined as

�a = as − a f . (2)

2.1.2 Mass conservation

The mass conservation of both phases is well known (McKenzie
1984; Bercovici et al. 2001a). Both solid and fluid phases are con-
sidered to be intrinsically incompressible materials, and thus all
compressibility in the model is accounted for by changes in melt
fraction. Density changes are neglected in the mass balance and no
melting or crystallization is allowed to occur. The mass conservation
equations of the fluid and solid phase are

∂φ

∂t
+ ∇ · φv f = 0, (3)

∂ (1 − φ)

∂t
+ ∇ · (1 − φ)vs = 0. (4)

Summing the contribution of both phases results in the total mass
conservation of the two-phase mixture:

∇ · v = 0. (5)

Here, vs, f are the solid and fluid velocity, and v = (1 − φ)vs + φv f

is the bulk velocity. ∂/∂t denotes partial derivatives with respect to
time. Note that the mass conservation of the mixture (eq. 5) becomes
equal to the incompressibility condition of Stokes flow. It is evident
therefore that the deformation of the phase mixture is divergence-
free (incompressible). Conversely, deformation in the solid and fluid
phase is not divergence-free. The divergence of solid and fluid
velocity is, however, not due to intrinsic material compressibility
of the solid and fluid phases, but due to changes in melt fraction
resulting from relative movement of one phase with respect to the
other. Such changes may be caused by compaction/decompaction
of the host rock matrix at lower melt fractions, or by other phase
separation processes like crystal settling at higher melt fractions.
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2.1.3 Momentum conservation

The momentum conservation equations given here are those pro-
posed by Bercovici et al. (2001a), except for the terms related to
surface tensions, which we do not consider here, as they are likely
negligible in the context of this study (Bercovici & Ricard 2003). As
is well known, these equations are equivalent to the two-phase flow
formulation proposed by McKenzie (1984), given a set of assump-
tions that are valid in the limit of magma dynamics (Bercovici &
Ricard 2003). The momentum conservations of the fluid and solid
phases are

∇ · φτ f − ∇φPf − φρ f gẑ + h = 0, (6)

∇ · (1 − φ)τ s − ∇(1 − φ)Ps − (1 − φ)ρs gẑ − h = 0. (7)

By summing the contributions of both phases, we find the total
momentum conservation in the two-phase mixture to be

∇ · τ − ∇ P − ρgẑ = 0. (8)

Here, τ s, f are the solid and fluid deviatoric stress tensors, ρs, f the
solid and fluid densities and ẑ the vector in direction of gravity g.
The equal and opposite interface forces h acting between the phases
are defined as h = c�v + P∗∇φ (Bercovici & Ricard (2003)), with
the viscous drag coefficient c governing interface drag forces pro-
portional to the velocity difference �v, and some interface pressure
P∗ acting on gradients of melt fraction φ. Note that the total mo-
mentum equation (eq. 8) is equal to the momentum equation of
Stokes flow, with τ , P, ρ the total deviatoric stress, total pressure
and total density, defined according to the relation given in eq. (1).

2.1.4 Magma dynamics limit

The eqs (3)–(8) represent a fully symmetrical approach to the con-
tinuum mechanics of a two-phase mixture. In the limit of magma
dynamics, however, we are dealing with strongly asymmetric phase
properties. The special case of a silicate melt interacting with a solid
rock presents us with a situation where η f � ηs , a scenario referred
to as the magma dynamics limit or Darcy limit. Bercovici & Ricard
(2003) give a detailed discussion of this issue, concluding that the
fluid momentum equation (6) reduces to a form where the viscous
drag force is balanced by the excess fluid pressure gradient (note
that in the magma dynamics limit P∗ reduces Pf ):

c�v = φ(∇ Pf + ρ f gẑ). (9)

Under the same assumption that η f � ηs , a simplified relation is
found for the viscous drag coefficient in the form of c = η f φ

2/kφ ,
depending on fluid viscosity η f and permeability kφ (see Bercovici
et al. 2001a). Substituting this definition into eq. (9) and rearranging
of terms recovers Darcy’s law, defining the phase separation flux q
as

q = −φ�v = −K D(∇ Pf + ρ f gẑ), (10)

where the Darcy coefficient is defined as K D = kφ/η f . Details on
the melt fraction-dependence of permeability are discussed below.

2.2 Rheology of the host rock

The rheology of the host rock is a key factor governing both style
and efficiency of melt extraction and emplacement in magmatic sys-
tems. Therefore, employing a realistic rheology for the host rock is
crucial. In contrast to incompressible Stokes flow, not only a rheol-

ogy for deviatoric, or shear deformation needs to be defined, but an
additional flow rule for the volumetric, or compaction deformation
governing changes in melt fraction is required. Both rheologies will
be defined in terms of a constitutive law relating deviatoric and vol-
umetric components of stress to their corresponding components of
strain rate.

2.2.1 Strain rate and stress

The deformation of the solid phase is quantified by the solid strain
rate tensor found from the gradient and divergence of the solid
velocity field. The total strain rate tensor ε̇s is defined as the sum of
its deviatoric and volumetric components:

ε̇s = ε̇′
s + 1

3
υ̇sI = 1

2

(∇vs + [∇vs]T
)
, (11)

where ε̇′
s is the deviatoric strain rate tensor, υ̇s is the scalar volumet-

ric strain rate and I is the identity matrix of appropriate dimensions.
Volumetric or compaction strain rates are defined equal to the di-
vergence of solid velocity:

υ̇s = ∇ · vs . (12)

Deviatoric or shear strain rates are then derived from eqs (11)
and (12) to be

ε̇′
s = 1

2

(∇vs + [∇vs]T
)− 1

3
∇ · vsI. (13)

Shear and compaction deformation lead to the build-up of stress
in the two-phase mixture. Total stress in the mixture is defined as
the sum of the total shear stress τ and the total pressure P (the
volumetric stress), expressed in terms of the contributions of both
material phases (τ s, f , Ps, f ) as

σ = τ + PI

= (1 − φ) τ s + φτ f + [(1 − φ) Ps + φPf

]
I. (14)

The sign convention is such that compressive stresses are positive.
In the magma dynamics limit, deviatoric stresses in the fluid phase
τ f may be neglected (Sleep 1974; McKenzie 1984, see detailed
discussion below), and therefore the total shear stress reduces to

τ = (1 − φ) τ s . (15)

2.2.2 The effective stress principle

The principle of effective stress, introduced by Terzaghi (1923,
1943) in soil mechanics, holds that the deformation of a fluid-filled
porous rock is governed by an effective stress depending on the
pressure of the pore fluid:

σ e = σ − Pf I. (16)

According to the definition of total stress in the mixture (eq. 14),
the effective stress may be rewritten in terms of shear stress and
pressure as

σ e = τ + (P − Pf

)
I. (17)

It becomes evident from this expression that fluid pressure has
no influence on shear stresses in the phase mixture, and therefore
the effective stress principle may be fully captured in a new pres-
sure variable, the compaction pressure, governing the volumetric
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deformation of a two-phase medium (Skempton 1960). This com-
paction pressure is then defined as

Pc = P − Pf

= (1 − φ) �P. (18)

Although no such compaction pressure variable is proposed in
the original formulation of two-phase flow by McKenzie (1984),
the concept of the pressure difference between the phases sustain-
ing volumetric deformation features prominently in its derivation.
Later, the more general analysis of two-phase physics proposed by
Bercovici et al. (2001a) confirmed that the pressure difference �P
takes the role of governing compaction deformation in the general
case of any two-phase mixture of two incompressible fluids with
general properties (cf. Katz et al. 2007; Morency et al. 2007 for
similar use of compaction pressure).

According to Terzaghi’s principle, the plastic yield strength of
rock is reduced by the presence of a pressured fluid in the pore
space of a rock. Therefore, we define one more pressure variable,
the effective pressure (or effective mean stress) Pe governing the
plastic yield strength of the host rock. The effective pressure is
equal to the compaction pressure Pc, if a minimum critical amount
of fluid phase is present (i.e. a large-scale interconnected pore space
is achieved), but will assume the value of the total pressure P in dry
or unmolten rock (Skempton 1960):

Pe = P − xφ Pf , 0 ≤ xφ ≤ 1. (19)

Here, xφ is a parameter indicating when no significant amount
of fluid phase is present (xφ = 0), and when sufficient amounts of
fluid phase are present (xφ = 1) and thus two-phase physics and the
reduction of plastic strength apply.

It follows from this discussion on effective stress and pressure
that at least two independent pressure variables are needed to de-
scribe two-phase physics. Here, we choose fluid pressure Pf and
compaction pressure Pc as independent variables featuring in the
final governing equations. Fluid pressure, on the one hand, is a
straightforward choice, as fluid velocities may be found from its
gradient, thus eliminating the need to solve for fluid velocities with
separate equations. The choice of compaction pressure, on the other
hand, is convenient because of its central role in governing volumet-
ric deformation. Note that all other relevant pressure components
may be found from these two quantities (Table 1 summarizes all
pressure components used in this study).

Summarizing the discussion on effective stress, we state that the
stress state in the two-phase mixture is fully characterized in terms
of the total shear stress τ and compaction stress Pc. For these two
components of stress, constitutive laws need to be found, relating
them to shear and compaction strain rates to yield expressions of
the form:

τ ∝ f
(
ε̇′

s

)
; Pc ∝ f (υ̇s) . (20)

As both constitutive laws may be derived in close analogy, we will
first rederive the well-known rheology for shear deformation before
using the same concepts to derive the rheology for compaction
deformation. To simplify notation, we will drop the subscript ( )s on
all rheological parameters (viscosities, elastic moduli, etc.) relating
to the solid phase, as there are no rheological parameters related to
the fluid phase except for fluid viscosity η f and, hence, no ambiguity.

2.2.3 Viscoelastic shear rheology

In order to find the constitutive relation for viscoelastic shear
stresses in the solid matrix, we use a Maxwell body

ε̇′
s,ve = 1

2η
τ s + 1

2G

D̃sτ s

Dt
, (21)

where ε̇′
s,ve is the viscoelastic deviatoric strain rate tensor, τ s the

deviatoric solid stress tensor, η the solid shear viscosity and G the
elastic shear modulus. For the material time derivative of the solid
deviatoric stress tensor, the Jaumann objective derivative is used in
order to account for stress rotation (Bathe 1995):

D̃sτ s

Dt
= Dsτ s

Dt
− Wτ s + τ s W , (22)

where W = 1
2 (∇vs − [∇vs]T ) is the vorticity tensor and

Ds
Dt = ∂

∂t + vs · ∇ is the general material time derivative of a prop-
erty advected with solid velocity.

For the further construction of our method, it is of some ad-
vantage to discretize the time derivative in eq. (21) at this point
(Schmalholz et al. 2001). Thus, we formulate the stress rate as an
implicit backward finite difference in time, yielding

ε̇′
s,ve = 1

2η
τ s + 1

2G

τ s − τ̃ o
s

�t
, (23)

with τ̃ o denoting the rotated deviatoric stress tensor taken from the
previous time step �t :

τ̃ o
s = τ o

s − (Wτ s − τ s W ) �t . (24)

Note that, as we will adopt an Arbitrary–Lagrangian–Eulerian
marker-in-cell implementation (described below), no local advec-
tion terms (vs · ∇τ s) are included in the statement above; instead,
stress advection will be achieved by storing old stresses τ o

s on
Lagrangian markers that are displaced by the solid velocity field.
Rewriting eq. (23) in terms of deviatoric stress and grouping of
terms yields

τ s = 2
1
η

+ 1
G�t

ε̇′
s,ve + 1

1 + G�t
η

τ̃ o
s , (25)

which in simplified notation becomes the viscoelastic constitutive
law for deviatoric stress:

τ s = 2ηveε̇
′
s,ve + χτ τ̃

o
s , (26)

Table 1. Pressure components.

Symbol Name Expression φ → 0 (1 − φ) → 0

P Bulk pressure P = (1 − φ)Ps + φPf Ps Pf

Pf Fluid pressure Pf = P − Pc Ps Pf

Pc Compaction pressure Pc = P − Pf = (1 − φ)�P 0 0
Pe Effective pressure Pe = P − xφ Pf P 0

Note: Definition of pressure components relevant to our formulation of two-phase physics.
Note that Katz et al. (2007) and similar formulations of the McKenzie (1984) equations define
compaction pressure as Pc = −(ξ + 2/3η)υ̇, a similar, but slightly different definition from
the one in this study (eq. 44).
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featuring two effective rheological parameters, that is, the viscoelas-
ticity ηve (with units of Pa s) and the non-dimensional elastic stress
evolution parameter χτ :

ηve = 1
1
η

+ 1
G�t

, χτ = 1

1 + G�t
η

. (27)

As we neglect the contribution of shear stresses in the fluid phase,
the total shear stress in the two-phase mixture may be described
by multiplying eq. (26) by the volume fraction of the solid phase
(1 − φ):

τ = (1 − φ)
(
2ηveε̇

′
s,ve + χτ τ̃

o
s

)
. (28)

To simplify notation, we incorporate any occurrence of the solid
volume fraction (1 − φ) in any further rheological statements into
the relevant rheological parameters and denote this operation with
the addition of an asterisk. In this case, we define the shear viscoelas-
ticity and shear stress evolution parameter related to the two-phase
mixture as

η∗
ve = 1 − φ

1
η

+ 1
G�t

, χ∗
τ = 1 − φ

1 + G�t
η

, (29)

and thus the constitutive law for total shear stress (eq. 28) is finally
expressed as

τ = 2η∗
veε̇

′
s,ve + χ∗

τ τ̃ o
s . (30)

2.2.4 Viscoelastic compaction rheology

In the following, we proceed to define the viscoelastic constitutive
law relating volumetric stresses to volumetric strain rates. Whereas
McKenzie (1984) employed a viscous constitutive law for com-
paction stresses implied by his definition of the solid stress tensor,
Bercovici et al. (2001a) explicitly state a constitutive relationship
between the rate of change of melt fraction and the pressure differ-
ence between the phases of the form

Dsφ

Dt
= −K0φ (1 − φ)

�P

η0
, (31)

with K0 a constant of order O(1) representing pore geometry, which
we will take as unity here. We find that a constitutive law for vis-
coelastic compaction deformation consistent with eq. (31) may be
formulated in close analogy to the one for deviatoric stress in-
troduced above. Therefore, following the same strategy as in the
previous section, we start to construct a viscoelastic constitutive
law for �P by again assuming a Maxwell body analogue for the
viscoelastic part of volumetric strain rate υ̇s,ve:

υ̇s,ve = − 1

ξ
�P − 1

Kφ

Ds�P

Dt
. (32)

The pressure difference �P is negative where fluid is overpres-
sured with respect to the pressure in the solid phase. ξ is the volu-
metric or compaction viscosity governing viscous compaction flow.
That the viscous part of the proposed expression (first term on the
right-hand side of eq. 32) is equivalent to eq. (31) is confirmed by
dropping the elastic part (second term on right-hand side) from eq.
(32) and substituting 1

(1−φ)
Dsφ

Dt for υ̇s,ve (a relation that follows from
eq. 4), and η0/φ for ξ . Thus, the compaction flow law proposed by
Bercovici et al. (2001a) is recovered in the purely viscous limit of
the viscoelastic flow law proposed here.

For the elastic part of the constitutive law (second term on the
right-hand side of eq. 32), we assume that all elastic volume changes
are due to changes of melt fraction, with the elastic pore modulus

Kφ governing elastic compaction in response to changes in pressure
difference over time. The assumption of a compressible pore space
in intrinsically incompressible phase materials is commonly used
in poro-elasto-plastic theory (Coussy 2010). Ds/Dt is the mate-
rial derivative (Ds/Dt = ∂/∂t + vs · ∇). Since �P is a scalar, the
material derivative is objective and we are not required to consider
objectivity with respect to rotation (as in eqs 21–22).

The viscoelastic part of the volumetric rheology is constructed
in analogy to its deviatoric counterpart by implicitly discretizing
the time derivative of pressure difference in eq. (32), rewriting
the equation in terms of pressure difference, grouping of terms
and introducing a simplified notation (cf. eqs 23–27 for step-by-
step procedure). As a result, the viscoelastic constitutive law for
compaction stress acting on the solid phase is

�P = −ξveυ̇s,ve + χp�Po, (33)

where �Po is the advected pressure difference of the last discrete
time step. The compaction viscoelasticity ξve and the compaction
stress evolution parameter χp are defined as

ξve = 1
1
ξ

+ 1
Kφ�t

, χp = 1

1 + Kφ�t
ξ

. (34)

As the pressure difference relates to compaction pressure in the
same way as the solid shear stress relates to the total shear stress
(cf. eqs 15 and 18), we multiply eq. (33) by the solid fraction (1 − φ)
to find a constitutive law for compaction stress in the total mixture,
that is, compaction pressure Pc:

Pc = −ξ ∗
veυ̇s,ve + χ∗

p�Po. (35)

The compaction viscoelasticity ξ ∗
ve and the compaction stress

evolution parameter χ∗
p in the two-phase mixture then are defined

as

ξ ∗
ve = 1 − φ

1
ξ

+ 1
Kφ�t

, χ∗
p = 1 − φ

1 + Kφ�t
ξ

. (36)

2.2.5 Shear and tensile plastic failure

The theory of plasticity states that stresses induced by viscoelastic
deformation of the host rock cannot exceed the plastic failure crite-
rion. If viscoelastic stresses reach the maximum permissible stress
state prescribed by the failure envelope, plastic failure occurs. A
commonly used cohesive-frictional failure criterion for the mode-2
shear failure in geodynamic applications is that of Drucker–Prager
plasticity (Paterson & Wong 2005), which is equivalent to the Mohr–
Coulomb criterion in 2-D. In the case of two-phase flow, the depen-
dence of plastic failure on effective pressure (eq. 19) according to
Terzaghi’s principle (Terzaghi 1923, 1943) needs to be considered,
which states that increasing the fluid pressure in rock decreases the
effective confining pressure, thus decreasing the yield strength for
shear failure. Additionally, if effective pressure becomes negative
(fluid is overpressured), tensile failure of the host rock may occur.
The failure criterion for such mode-1 tensile fracturing is given by
Griffith’s criterion (Murrell 1964b). The combined failure criteria
for both shear failure (mode-2 plasticity) and tensile failure (mode-
1 plasticity) may be expressed in terms of the yield shear stress in
the phase mixture τ y as

τ II ≤ τ y =
{

C cos ϕ + Pe sin ϕ for Pe > P∗
e ,

σT − Pe for Pe ≤ P∗
e ,

(37)
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Figure 1. The combined shear and tensile plastic failure criteria expressed
in terms of the Mohr–Coulomb and Griffith stress envelope, given for three
values of tensile strength σT = C/[2, 4, 8], displayed as the three black lines
splitting of the frictional slope near the origin. Cohesion is C = 40 MPa,
friction angle ϕ = 30◦. Also given are three characteristic stress states,
plotted as Mohr–Coulomb circles for illustration. In green, a stress state
leading to volumetric failure, in blue one leading to tensile fractures and in
red, a stress state leading to shear fractures.

where τ II = (1 − φ)
√

1
2 τi jτi j (Einstein’s summation of repeated in-

dices applies) is the second invariant of shear stress (radius of Mohr–
Coulomb stress circle). Pe is the effective pressure (centre of stress
circle) and P∗

e = C cos ϕ−σT
1−sin ϕ

is the transition pressure where the two
failure stress curves meet. C is the cohesion, ϕ the friction angle
and σT = C/R the tensile strength of the host rock with 2 ≤ R ≤ 8
a parameter specifying the reduction of strength of the host rock
under tensile stress (Cai 2010). Fig. 1 is a plot of the combined
failure criteria. Note that the expression in eq. (37), in 2-D, states
the radius of the maximum permissible stress circle as a function
of its centre point. The yield envelope (black line in Fig. 1) is then
defined as the line enveloping all permissible stress circles defined
by the yield criteria in eq. (37).

The failure envelope not only sets a limit for the maximum per-
missible shear stress, but equally for the maximum permissible fluid
overpressure (or minimum effective pressure Pe). This lower limit
to permissible compaction stress may be expressed in terms of the
yield pressure in the phase mixture Py , which is found by rewriting
the tensile yield criterion in eq. (37) in terms of Pe (bearing in mind
that Pe is equal to compaction pressure Pc where a fluid phase is
present):

Pe = Pc ≥ Py = τ II − σT . (38)

The implementation of the plastic component of shear and com-
paction deformation is achieved by an effective viscosity approach,
where the viscoelastic constitutive law in locations of ongoing plas-
tic failure is modulated by iteratively choosing both an effective
shear η∗

eff and compaction viscosity ξ ∗
eff such as to keep the local

effective stress state (τ , Pc) on the yield surface (τ y, Py) (cf. Moresi
et al. 2003; Kaus 2010).

The deviatoric part of the plastic failure rheology is first dealt
with by restating eq. (30) in terms of second invariants of stress and
strain rate tensors. During plastic failure, the yield shear stress τ y is
substituted for τ II and the full visco-elasto-plastic shear strain rate
ε̇′

s = ε̇′
s,ve + ε̇′

s,pla replaces the purely viscoelastic ones ε̇′
s,ve. The

resulting expression is a scalar (rather than tensorial) representation

of the constitutive law for shear stress, valid where plastic failure
occurs:

τ y = 2η∗
eff ε̇

′
s,II + χ∗

τ τ o
s,II for τ II = τ y . (39)

ε̇′
s,II =

√
1
2 ε̇′

s,i j ε̇
′
s,i j is the second invariant of deviatoric strain rates,

and τ o
s,II is the second invariant of advected deviatoric stresses of

the previous time step. Solving this statement for the effective shear
viscosity η∗

eff yields an expression by which the modified visco-
elasto-plastic viscosity may be found. Note that the effective plastic
viscosity remains equal to the viscoelasticity η∗

ve, where the local
shear stress does not reach the failure criteria:

η∗
eff =

⎧⎨
⎩

τ y − χ∗
τ τ o

s,II

2ε̇′
s,II

for τ II = τ y,

η∗
ve for τ II < τ y .

(40)

The full visco-elasto-plastic constitutive law for shear stress in
the host rock then becomes

τ = 2η∗
eff ε̇

′
s + χ∗

τ τ̃ o
s . (41)

Although this effective viscosity approach to plasticity does not
introduce an explicit statement for plastic shear strain rates ε̇′

s,pla,
these may be quantified in a post-processing step from the known
values of total (eq. 13) and viscoelastic (eq. 21) shear strain rates as
ε̇′

s,pla = ε̇′
s − ε̇′

s,ve.
Next, the volumetric part of the plastic failure rheology is dealt

with by substituting the compaction yield stress Py for compaction
pressure Pc and the total visco-elasto-plastic compaction strain rate
υ̇s = υ̇s,ve + υ̇s,pla for the purely viscoelastic one υ̇s,ve in eq. (35).
The resulting statement is again valid only where plastic failure
occurs:

Py = −ξ ∗
eff υ̇s + χ∗

p�Po for Pc = Py. (42)

Solving eq. (42) in terms of the effective compaction viscosity
ξ ∗

eff gives an expression, by which the modified visco-elasto-plastic
viscosity may be found. Again, ξ ∗

eff remains equal to the viscoelas-
ticity ξ ∗

ve where the local compaction pressure does not reach the
failure criteria:

ξ ∗
eff =

⎧⎨
⎩− Py − χ∗

p�Po

υ̇s
for Pc = Py,

ξ ∗
ve for Pc > Py .

(43)

The full visco-elasto-plastic constitutive law for compaction
stress in the host rock then becomes

Pc = −ξ ∗
eff υ̇s + χ∗

p�Po. (44)

The plastic compaction strain rates υ̇s,pla may be quantified in a
post-processing step from the known values of total (eq. 12) and
viscoelastic (eq. 32) compaction strain rates as υ̇s,pla = υ̇s − υ̇s,ve.

The use of the effective viscosity approach to plasticity has the
advantage of retaining the same form of the constitutive laws as in
the viscoelastic case. The effect of plastic failure is captured in a
continuum approach by limiting stress states in the model according
to the combined shear and tensile failure criterion. As the numerical
benchmarks and demonstration runs presented below indicate, the
use of this rheology results in the localization of deformation in
zones of shear or tensile failure, wherever stresses increase to the
point of touching the failure envelope.

2.2.6 The viscous, elastic and plastic limits

The proposed constitutive laws for shear and compaction stress
(eqs 41 and 44) describe visco-elasto-plastic deformation of the
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solid phase. To arrive at these constitutive laws, we discretized the
elastic time derivative of stresses with an implicit finite difference
approximation. This yields constitutive laws for viscoelastic shear
and compaction stress, on which a condition of maximum permissi-
ble stress, given by the combined failure criteria for shear and tensile
plastic failure, is imposed. To confirm their validity, the properties
of the two constitutive laws are examined in the three limiting cases
of purely viscous, purely elastic and purely plastic deformation.

Both shear and compaction constitutive laws (eqs 41 and 44)
consist of two terms. The first terms each take the form of a mod-
ified viscous rheology, where the shear and compaction viscosities
are replaced by effective visco-elasto-plastic viscosities (η∗

eff , ξ
∗
eff ).

Additionally, an elastic stress evolution term is introduced to both
constitutive laws, which is governed by the dimensionless shear and
compaction stress evolution parameters χ∗

τ,p .
If the effective stress state in the two-phase mixture (τ , Pc)

does not reach the failure criteria (τ y, Py), the effective viscosities
(η∗

eff , ξ
∗
eff ) remain equal to the shear and compaction viscoelastici-

ties (η∗
ve, ξ

∗
ve). The magnitudes of these viscoelastic parameters are

governed by the magnitude of shear and compaction viscosities η

and ξ and elastic moduli G and Kφ , and by the size of the time
step under consideration. The timescale for which elastic deforma-
tion is dominant is given by the Maxwell time. The Maxwell time
for shear deformation is tτ = η/G, and for compaction deforma-
tion tp = ξ/Kφ . On timescales larger than these Maxwell times,
deformation is dominated by viscous deformation. Conversely, on
timescales smaller than the Maxwell time, deformation is dom-
inantly elastic. That the correct viscoelastic behaviour is indeed
captured by such a combined viscoelastic rheology follows from
eqs (29) and (36) (see Schmalholz et al. 2001; Kaus & Becker
2006), as

[
η∗

ve, ξ
∗
ve

]→
{

(1 − φ) [η, ξ ] for �t � [tτ , tp

]
,

(1 − φ)
[
G�t, Kφ�t

]
for �t � [tτ , tp

]
,

(45)

and

[
χ∗

τ , χ∗
p

]→
{

0 for �t � [tτ , tp

]
,

1 for �t � [tτ , tp

]
.

(46)

Thus, the constitutive laws recover the purely viscous form, if
the considered time step of deformation is large compared to the
Maxwell time. For typical values of advective time step size and
elastic modulus, this condition is satisfied where the intrinsic host
rock viscosities are low:

τ = (1 − φ) 2ηε̇′
s,

Pc = − (1 − φ) ξ υ̇s .
(47)

Furthermore, the constitutive laws recover the purely elastic form
if the considered time step of deformation is small compared to the
Maxwell time. For typical values of advective time step size and
elastic modulus, this condition is satisfied where the intrinsic host
rock viscosities are high:

τ = (1 − φ)
(
2G�t ε̇′

s + τ̃ o
s

)
,

Pc = (1 − φ)
(−Kφ�t υ̇s + �Po

)
.

(48)

Note that both the total deformation and stress evolution remain
the same over time, independent of the considered time step.

If the viscoelastic stress evolution leads to effective stress levels in
the two-phase mixture (τ , Pc) that locally reach the failure envelope
(τ y, Py), the effective viscosities (η∗

eff , ξ
∗
eff ) are iteratively reduced

according to eqs (40) and (43), in order to keep the local stress state

constant on the failure criterion. The resulting plastic deformation
typically occurs in strongly localized failure zones and continues
until local stresses are relaxed below the failure criterion again,
at which point plastic failure ceases. The constitutive laws for the
limiting case of pure plastic deformation then reduce to the simple
statements of

τ II = τ y,

Pc = Py .
(49)

It may be argued that the elastic contribution to total deforma-
tion in most geodynamic contexts is insignificant compared to vis-
coplastic effects. Neglecting elasticity in computational models in
geodynamics, however, leads to the numerically challenging situa-
tion where predicted viscous stresses are often far outside the failure
criteria, and to iteratively bring them back to the yield surface poses
problems (Kaus 2010). If elasticity is included, elastic stress evolu-
tion over time constrains the stresses in the model to approach the
failure criteria step-by-step from below, a situation that is much less
challenging for non-linear iterative solution strategies. The inclu-
sion of elasticity thus not only adds to the physical description of
rock deformation, but also helps to stabilize the numerical method,
which was the primary motivation to include it here.

The proposed constitutive laws for shear and compaction stress
are able to deal with all combinations of viscous, elastic and plastic
deformation. A series of benchmark problems demonstrating the
functionality and accuracy of the visco-elasto-plastic rheology and
its implementation are presented in Appendix A2.

2.2.7 Melt-dependence of rheology

It has long been known that melt-bearing rock is weakened by
the presence of even small amounts of melt. We therefore apply
an exponential melt-weakening to the shear viscosity of the solid
phase. This form of melt-weakening was proposed based on theory
and experimental results (Kelemen et al. 1997; Mei et al. 2002;
Simpson et al. 2010a,b) and has since been used by a number
of studies on computational magma dynamics (e.g. Rabinowicz &
Vigneresse 2004; Katz et al. 2006). It effectively captures the rapid
decrease of shear viscosity at low to intermediate melt fractions and
is expressed as

η = η0 exp(−αφφ), (50)

where η0 is the intrinsic (or background) viscosity at zero melt
fraction, which in this study is taken constant at typical values for
Earth’s mantle and crust. The exponential melt-weakening factor
has been experimentally constrained to 25 ≤ αφ ≤ 30 (Mei et al.
2002). A fully consistent formulation of melt-weakened shear vis-
cosity at all levels of melt fractions is discussed by Schmeling et al.
(2012), however, as the shear viscosity for melt fractions larger than
30–50 per cent drops below the minimum cut-off value of 1016 Pa s
necessary for numerical stability (see Section 2.5.3 below), the ex-
ponential weakening law is sufficient to capture melt-weakening of
shear viscosity at melt fractions lower than that.

The compaction viscosity is defined relative to the intrinsic shear
viscosity of the host rock. We use an inverse melt fraction law to
relate the compaction viscosity to the shear viscosity of the host
rock (Takei & Holtzman 2009; Simpson et al. 2010a; Schmeling
et al. 2012):

ξ = η0φ
−p. (51)
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The melt fraction exponent is taken as p = 1 in this study, con-
sistent with theoretical work (Batchelor 1967; Schmeling 2000;
Bercovici et al. 2001b; Simpson et al. 2010a).

The poro-elastic modulus of the host rock quantifies the change
of melt fraction due to changes in compaction pressure over time; it
depends on melt fraction in a way that lets compressible deformation
cease when melt fraction goes to zero:

Kφ = K0φ
−q . (52)

Here, K0 is the reference pore modulus, which typically assumes
values of the order of 1 ≤ K0 ≤ 100GPa. The exponent of its melt
fraction-dependence is taken as q = 1/2, a value found from exper-
iments (Hall 1953; Jalalh 2006a,b). Our formulation of elastic pore
compressibility is equivalent to the form proposed in two previous
numerical studies of viscoelastic two-phase flow in geodynamics
(Connolly & Podladchikov 1998; Morency et al. 2007).

2.3 Final governing equations

We now return to the governing equations of two-phase flow in
order to bring them into a more suitable form.

For the final form of the total momentum equation, we substi-
tute the constitutive law for shear stress (eq. 41) and the sum of
compaction pressure and fluid pressure for the total pressure (eq.
18) into the momentum equation of the two-phase mixture (eq. 8),
yielding an expanded form of the momentum equation:

∇ · (2η∗
eff ε̇

′
s + χ∗

τ τ̃ o
s

)− ∇ Pf − ∇ Pc − ρgẑ = 0. (53)

By substituting the sum of solid velocity and phase separation
flux vs + q for the averaged mixture velocity v into the total mass
conservation equation (eq. 5) and then replacing q by Darcy’s law
according to eq. (10), we expand the total mass conservation to

∇ · vs − ∇ · K D

[∇ Pf + ρ f gẑ
] = 0. (54)

The constitutive law for compaction deformation still needs to
be incorporated into the final set of governing equations. Therefore,
we choose eq. (44), rewritten in terms of the compaction strain rate
as the third final equation.

υ̇s + 1

ξ ∗
eff

Pc − χ∗
p

ξ ∗
eff

�Po = 0. (55)

In the absence of melting and crystallization, changes in melt
fraction are due to visco-elasto-plastic volumetric deformation
only. In order to find a constitutive law for melt fraction evolu-
tion over time, we rearrange the solid mass conservation equation
(with υ̇s = ∇ · vs) to yield

Dsφ

Dt
= (1 − φ)υ̇s, (56)

thus relating the visco-elasto-plastic volumetric strain rate to the
evolution of melt fraction over time. Adding eq. (56) as the fourth
of the final governing equations, we now have a complete descrip-
tion of the mechanical aspects of two-phase flow in a visco-elasto-
plastically deforming mantle, lithosphere and crust.

The final set of governing equations consists of four equations: the
expanded total momentum and mass conservation equations for the
two-phase mixture, the compaction equation and the melt evolution
equation. These four equations contain the four unknowns: solid
velocity vs , fluid pressure Pf , compaction pressure Pc and melt
fraction φ. After moving terms independent of solution variables
to the right-hand side and replacing strain rates with the respective

derivatives of velocity, the final governing equations become:

∇ ·
[
η∗

eff

(∇vs + [∇vs]T
)− 2

3
η∗

eff∇ · vsI

]
− ∇ Pf − ∇ Pc

= ρgẑ − ∇ · χ∗
τ τ̃ o

s ; (57)

∇ · vs − ∇ · K D∇ Pf = ∇ · K Dρ f gẑ; (58)

∇ · vs + Pc

ξ ∗
eff

= χ∗
p�Po

ξ ∗
eff

; (59)

Dsφ

Dt
− (1 − φ)∇ · vs = 0. (60)

As mentioned in Section 1, energy conservation, melting and
crystallization and compositional evolution of the magmatic sys-
tem are not dealt with here. In the future, such an addition to this
physical model could be made without fundamental changes to the
mechanical system of equations proposed above. The inclusion of
such a treatment requires the addition of an equation for the con-
servation of energy in a two-phase system (see Bercovici & Ricard
2003; Šrámek et al. 2007) and one for the conservation of composi-
tion, along with a thermodynamically consistent closure condition
determining melt fraction as a function of temperature, composition
and pressure (Katz 2008).

In the limiting case of purely viscous deformation, these proposed
governing equations are equivalent to previously proposed formu-
lations of geodynamic two-phase flow, most of which are versions
of the formulation introduced by McKenzie (1984). To confirm
the validity of these equations for all possible melt fractions, their
properties need to be considered in two significant limiting case sce-
narios: the zero melt limit and the full melt limit, which we proceed
to do in the following two sections.

2.4 The zero melt limit

The particular form of writing the total momentum and mass con-
servation equations for the two-phase mixture adopted here (eqs 57
and 58) has a distinct advantage. In the zero melt limit (φ = 0), the
equations reduce to the standard form of the single-phase Stokes
equations. If melt fraction goes to zero, the solid velocity vs becomes
equal to the total velocity v and solid shear stress τ s becomes equal
to the total stress τ . Furthermore, the compaction pressure Pc and
its gradient vanish, leaving only one pressure component in the
momentum equation, the fluid pressure Pf , which now becomes
equal to the total pressure P (see Table 1). The Darcy coefficient
K D = kφ/η f goes to zero as the permeability goes to zero, can-
celling out the terms in eq. (58) relating to the divergence of phase
separation flux q.

Furthermore, the compaction and melt evolution equations (eqs
59 and 60) both become equal to the Stokes mass conservation or
incompressibility condition and thus become redundant. Thus, the
standard Stokes equations for a single-phase medium

∇ · τ − ∇ P = ρgẑ,

∇ · v = 0,
(61)

are recovered in the zero melt limit, describing the deformation of
the pure solid phase when no fluid phase is present.
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2.5 The full melt limit

Most treatments of two-phase flow in geodynamics since Sleep
(1974) have neglected shear stresses in the fluid phase. As a conse-
quence, the fluid momentum equation may be stated in the form of
Darcy’s law (eq. 10) and the total shear stress tensor is reduced to
the contribution of solid shear stresses (eq. 15). This simplification
is well accepted for two-phase flow at low melt fractions, where
the fluid phase percolates through the pore space of a structurally
coherent solid phase. In the low melt fraction context, the argument
for the validity of this assumption is twofold: (i) due to the inherent
tortuosity of fluid percolation in the intergranular pore space, the
contributions of the fluid shear stress divergence in the momentum
conservation of the fluid phase likely cancel out over a typical vol-
ume considered in the continuum approach; (ii) due to the large
contrast in viscosities, the magnitude of the fluid shear stresses in
the total shear stress tensor is very small compared to the magnitude
of the solid shear stresses, and therefore fluid shear stresses may be
neglected in the total shear stress tensor of the two-phase mixture.

2.5.1 Host rock disaggregation

However, if melt accumulation leads to the disaggregation of the
rock matrix and potentially the emergence of fully molten magma
bodies, these assumptions need to be revisited to ensure the validity
of the proposed governing equations at high melt fractions. As
mentioned previously, at melt fractions above a threshold located
at around 25 per cent, the solid phase starts to disaggregates into a
mush of grains partly or fully submerged in the abundant melt phase.
In this configuration, the grains may still interlock to a certain
degree, and thus the solid phase may continue to sustain some
level of shear stress up to melt fractions of around 60 per cent,
depending on grain size and geometry. Phase separation beyond
the disaggregation threshold occurs by gravitational grain settling,
which is hampered by entrainment of grains in the increasingly
unhindered flow of the accumulating melt phase. The effective solid
shear viscosity decreases drastically at intermediate melt fractions,
until it eventually drops to zero (Schmeling et al. 2012). Thus, the
behaviour of the two-phase mixture at very high melt fractions is
increasingly dominated by the flow of the melt phase, until the few
remaining solid grains become fully entrained in the melt flow.

2.5.2 Permeability

The question is often posed of whether Darcy’s law (eq. 10) is a
valid representation of the fluid momentum conservation at melt
fraction beyond host rock disaggregation and up to the full melt
limit. The answer to this question, among other factors discussed
below, hinges upon the physical understanding of permeability. As
the name suggests, permeability is understood as a property of the
host rock matrix quantifying how efficiently fluids may permeate
through its pore space. The term permeability therefore seems to
imply the presence of a coherent rock matrix. This particular under-
standing of permeability evidently breaks down when the host rock
matrix disaggregates. However, it has been previously argued that
Darcy’s law (eq. 10) is general enough to capture the relative mo-
tion of the components of disaggregated host rock (grains, blocks,
etc.) against the fluid phase flowing around them (Batchelor 1967).
In this case, permeability, interpreted as the obstruction to phase
separation flux exerted by the solid phase on the fluid phase and
vice versa, remains a valid concept. Abe (1995) suggests a modi-
fied permeability law that captures this situation more adequately

by replacing permeability at intermediate and high melt fraction
with a parametrized law representing the obstruction to flow char-
acteristic of ideal Stokes spheres sinking through the melt phase.
Additionally, the effects of surface tension on grains submerged in
melt might have to be considered, as it may reduce the efficiency
of complete separation of grains from melt in a high melt fraction
magma body (Hier-Majumder et al. 2006). For the sake of simplic-
ity, we will here assume a straightforward modification of a standard
melt fraction law for permeability given by the relation

kφ = k0φ
n(1 − φ)m, (62)

with k0 denoting the reference permeability. The melt fraction expo-
nent is set to n = 3, a value representing interconnected disc-shaped
melt pockets along grain boundaries (Faul 1997). The exponent as-
signed to the solid fraction we set to m = 2. The choice to include a
dependence on solid fraction into the permeability law is based on
the concept that a permeability law should reflect the most impor-
tant aspects of two-phase flow at high melt fractions as well as the
more well-established behaviour of porous flow. First, physical con-
sistency demands that drag forces in the zero and full melt limits de-
crease to zero. With a permeability law depending on both melt and
solid fraction, this condition is satisfied. Second, a dependence on
solid fraction should in some way reflect grain size (see discussion
of drag forces in Bercovici et al. 2001a), thus giving a valid reason
to include the square of the solid fraction. Here, we use the solid
fraction as a non-dimensional representation of grain size, capturing
the reduction of drag forces with increasing melt fraction to a good
first order. The resulting material fraction-dependent behaviour of
phase separation flux is given in Fig. 2. The curves are found by
measuring the relative magnitude of phase separation flux q taken
from a series of single time step, purely viscous, homogeneous box
simulations of phase separation performed at various level of melt
fraction. The blue curve gives phase separation flux values resulting
from the permeability law used here, with n = 3 and m = 2, and
the red curve gives phase separation flux values resulting from a
permeability law with n = 3 and m = 1 for comparison (cf. phase
separation flux curve given in Abe 1995). Note that the inclusion of
the solid fraction only significantly affects the permeability law at
melt fraction larger than 70 per cent. In Fig. 2, we additionally mark
the approximate domain boundaries, where the two-phase mixtures
take on the different styles of phase separation discussed above.

2.5.3 Total stress approximation

Moving on to the examination of the system of equations for melt
fraction going to unity, we find that fluid velocity v f becomes equal
to the total velocity v and the fluid shear stress τ f becomes equal to
the total stress τ . The compaction pressure Pc and its gradient vanish
as in the zero melt limit, leaving only one pressure component in the
momentum equation, the fluid pressure Pf , which again becomes
equal to the total pressure P (see Table 1). Thus, the total momentum
equation becomes equal to the Stokes momentum equation. With
no fluid phase present, the total mass conservation, the compaction
equation and the melt fraction evolution equation all take the form
of the incompressibility condition, and thus, the standard Stokes
equations for a single-phase medium are recovered again in the full
melt limit (see eq. 61), now describing the deformation of the pure
fluid phase when no solid phase is present.

Returning to the assumption of negligible fluid shear stresses,
we argue that in the definition of the Darcy flux (eq. 10), this
assumption remains valid. The convective flow field of the fluid
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Figure 2. Phase separation flux q as a function of melt fraction. Data points
are relative magnitudes of q measured in the middle of a series of single time
step, homogeneous compaction models run at various melt fractions. High
values of q stand for high-velocity difference between the phases, values of
q going to zero signify ceasing of two-phase flow in favour of single-phase
Stokes flow of the remaining phase. The red curve gives values resulting
from a permeability function with a melt fraction exponent of n = 3 and a
solid fraction exponent of m = 1; the blue curve gives values with n = 3
and m = 2, the values used in simulations here. Domains A–E mark melt
fractions at which the two-phase mixture takes on a different style of phase
separation. In domains A and E, single-phase Stokes flow of the solid and
melt phase is dominant, respectively. In domain B, melt percolates through
an increasingly weakened, but coherent rock matrix. In domain C, the two-
phase mixture becomes a mush of disaggregated grains settling with respect
to melt flow. In domain D, grain settling becomes hampered as remaining
grains are entrained by the melt flow.

phase in partial melt at higher melt fractions may be of a somewhat
lower tortuosity than that of pervasive flow through a low-porosity
matrix rock, yet the contributions of shear stress divergence to the
momentum conservation of the fluid phase likely still average out
over a typical volume considered in the continuum approach. Due
to the low viscosity of silicate melt, the vigorous convective motion
in the melt phase occurs on a time and length scale that may not be
adequately resolved by current numerical methods on a crustal or
lithospheric scale. As, however, a melt-filled dyke, channel or other
magma body larger than a metre in size could be resolved even by
one-phase Stokes flow, two things need to be considered in addition
to the argument of tortuous convective flow. First, the solid stresses
in the walls of such fully molten structures are orders of magnitude
larger than the fluid stresses in the molten body, and thus, the overall
deformation of the system will be governed by the deformation of
the solid. The deformation of the melt itself mainly determines the
efficiency of internal mixing in a magma body, or the rate of flux

through a dyke or channel. Second, the use of real melt viscosities
of the order of 1–1000 Pa s in fully molten bodies of crustal-scale
numerical simulations invariably leads to numerical instabilities in
the velocity solution. Mainly for this numerical reason, a minimum
cut-off viscosity ηcut-off is applied in the total shear stress tensor,
resulting in a high melt fraction approximation of shear stresses in
the two-phase mixture (bearing in mind that towards the full melt
limit ε̇′

s ≈ ε̇′
f ):

τ ≈ 2ηcut-off ε̇
′
s for η∗

eff ≤ ηcut-off . (63)

By imposing this lower cut-off viscosity, small-scale flow features
are effectively filtered out in regions of high melt fraction. A fully
resolved treatment of the fluid phase at high melt fractions was
recently presented by Dufek & Bachmann (2010). Their numerical
models of magma chamber evolution, however, are performed with
a spatial resolution of 0.5 m, on a model scale of tens of metres.
For the problem of melt ascent through lithosphere and crust, spatial
resolution is typically limited to a an element size upwards of 100 m,
and therefore, a lower viscosity cut-off of the order of 1e15 to
1e17 Pa s remains necessary.

2.6 Numerical implementation

Here, we give a short overview over the numerical implementation
of the methodology derived above. For the details of the implemen-
tation, including the discretized form of the governing equations,
along with a set of benchmark problems to demonstrate the func-
tionality and accuracy of the methodology, the readers are referred
to the Appendix.

The simulation code employs an Arbitrary–Lagrangian–Eulerian
primitive variable approach on a deformable, structured quadrilat-
eral finite-element mesh with a marker-based advection scheme.
Linear and elementwise constant shape and test functions are used
to formulate the equations in the weak form and discretize them on
a finite-element mesh.

The system of equations derived above is nonlinear in terms of
melt fraction and solid velocity, where nonlinearities are introduced
in the form of melt fraction-dependent material properties, and
through the two plastically weakened effective viscosities. There-
fore, the solution strategy for each time step involves an iterative
solver method to treat the nonlinearities, where each iteration con-
sists of a direct solve of eqs (57)–(59) as a linear system of equations
for the solution variables of solid velocity, fluid pressure and com-
paction pressure, followed by an update of the current melt fraction
and all nonlinear material properties (i.e. permeability, elastic pore
modulus, effective shear and compaction viscosities) according to
the current velocity–pressure solution and melt fraction. More de-
tails on the nonlinear solver are given in Appendix A1.

As the melt evolution over time (eq. 56) is treated as an ex-
plicit update, the time derivative is discretized using a second-order
Crank–Nicolson scheme, to yield:

φi+1 = φo + 1

2

[
(1 − φo) υ̇o

s + (1 − φi
)
υ̇ i
]
�t, (64)

where superscript ( )o refers to properties retrieved from the previous
time step and superscript ( )i refers to properties retrieved from the
ith non-linear iteration.

Material properties are advected with either solid or fluid ve-
locity, depending on which material phase they are derived from.
Note that although melt fraction is related to the melt phase, we
choose a form of the solid mass conservation equation (eq. 60) to
track the time evolution of the melt fraction, and therefore, the melt
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fraction is advected with solid velocity. Advection is implemented
into the code by using a marker-in-cell approach, where all advected
properties are interpolated onto one of two sets of marker particles
(one set of markers for each material phase), which are then moved
with their respective velocity field (Gerya & Yuen 2007). The main
advantage of utilizing markers for advection is that with appropri-
ate interpolation functions from numerical grid to marker, it may
reduce the numerical diffusion typically associated with grid-based
advection schemes. However, the large number of marker particles
needed for accurate results renders this method fairly expensive in
terms of memory, and interpolation methods need to be formulated
efficiently. Details about the advection scheme and the interpolation
method used in our code are provided in the Appendix.

The overall workflow of the code may be outlined by the following
sequence:

1. Pre-processing and initialization of all variables and material
properties.

2. Start main time-stepping loop.

a. Solve system of equations for velocity–pressure solution and
update melt fraction.

i. Update nonlinear material properties according to current so-
lution guess.

ii. Assemble coefficient matrix and right-hand side of linear sys-
tem of equations.

iii. Check non-linear residual of current solution guess.
iv. Proceed with steps iv to vi if convergence criterion is not

achieved.
v. Solve linear system of equations (using Matlab’s ‘backslash’

direct solver).
vi. Update melt fraction according to current solid velocity di-

vergence.
vii. Check time step according to courant criterion and adapt if

necessary.
viii. Go to step i for next non-linear iteration.

b. Advect free surface if specified and adapt finite-element mesh
accordingly.

c. Advect properties of host rock and melt phase on marker fields.
d. Check time and loop back to step a for next time step if desired.

3. Post-processing and visualization.

In order to obtain an efficient finite-element implementation,
able to deal with several hundred thousand degrees of freedom, a
MILAMIN-style vectorization is used to speed up the assembly of
the global stiffness matrix (Dabrowski et al. 2008).

3 N U M E R I C A L R E S U LT S

3.1 Model setup

In this section, we demonstrate the effects of the proposed visco-
elasto-plastic rheology on the mode and efficiency of melt extraction
by running a suite of numerical simulations on a simple model
setup. See Table 2 for all relevant model parameter values chosen
to represent a silicate melt ascending through a homogeneous host
rock. Fig. 3 displays the initial melt distribution used in all runs, a
Gaussian melt pulse located in the middle of the lower boundary
with an amplitude of 20 per cent melt fraction, surrounded by un-
molten host rock.

To simulate a progression from asthenospheric conditions (weak,
ductile host rock) towards crustal conditions (competent, brittle

Table 2. Model parameters.

Symbol Name Unit Value

D Box depth km 4
W Box width km 6
ρs Host rock density kg m−3 3000
ρ f Melt density kg m−3 2500
k0 Reference permeability m2 1e − 8
η f Fluid viscosity Pa s 10
η0 Reference solid viscosity Pa s 1e + 18 − 1e + 23
G Shear modulus GPa 50
K0 Ref. pore modulus GPa 5
C Cohesion MPa 40
ϕ Friction angle ◦ 30
αφ Melt weakening factor − 27
ε̇BG background strain rate s−1 1e − 15
φcrit critical melt fraction per cent 1e − 3

Note: Model parameter values used for all simulation runs, if not specified
otherwise in the text. Values are chosen to represent generic host rock and
silicate melt properties in the context of mantle melt percolating through a
continental lithosphere and crust.

Figure 3. Initial melt distribution for suite of rheological demonstration
runs, consisting of a 2-D Gaussian pulse with amplitude of 20 per cent
against a homogeneous background of 0 per cent melt fraction. The red
bar underneath the lower boundary indicates the area where a constant
lithostatic boundary condition is applied on the fluid pressure, mimicking
a reservoir of melt in pressure equilibrium with the host rock beneath the
model. An extensional normal velocity, corresponding to a constant strain
rate of ε̇BG = 1e − 15 s−1, is imposed on the side boundaries, along with a
zero tangential stress boundary condition. The top boundary is held stress-
free.

host rock), a series of runs with increasing reference viscosity of
the lithospheric host rock η0 are employed. In addition, we also vary
the tensile strength σT of the rock phase (see Fig. 1 for the meaning
of σT in relation to plastic failure) in order to study different onset
levels of volumetric plastic yielding, a feature relevant to the mode
and efficiency of melt transport.

Field evidence suggests that major plutonic rock complexes are
often closely associated with zones of tectonic activity (Pitcher
1979; Pelletier et al. 1989; McCaffrey 1992; Petford & Atherton
1992). In order to include the effects of regional tectonic stresses,
kinematic boundary conditions are applied on the side boundaries
(constant strain rate). Apart from this uniform background strain
rate, the boundaries are shear stress free on the side and the bottom
boundaries and stress free on the top. For the moment, we limit our
focus on extensional tectonics. The direction of least compressive
stress for a pure shear extensional stress field is horizontal, and
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Table 3. Simulation runs.

Run ID η0 [Pa s] σT

d118r[2,4,8] 1e + 18 C/[2, 4, 8]
d119r[2,4,8] 1e + 19 C/[2, 4, 8]
d120r[2,4,8] 1e + 20 C/[2, 4, 8]
d121r[2,4,8] 1e + 21 C/[2, 4, 8]
d122r[2,4,8] 1e + 22 C/[2, 4, 8]
d123r[2,4,8] 1e + 23 C/[2, 4, 8]

Note: List of model runs presented in Section 3 (Re-
sults). Given are the choice of intrinsic host rock
viscosity η0 and tensile rock strength σT in relation
to cohesion C = 40 MPa for each run.

thus, extensional boundary conditions likely produce subvertical
melt extraction features propagating upwards from the initial melt
pulse, along the direction normal to the least compressive stress.

On the lower boundary, underlying the initial melt pulse, a re-
gion of constant lithostatic fluid pressure is imposed, thus simu-
lating ongoing melt supply at the lower boundary (displayed as
a red bar in Fig. 3). On the top boundary, a surface pressure of
50 MPa is added, equivalent to around 1.5–2 km of rock overburden,
thereby increasing the confining pressure governing the frictional
yield strength, without otherwise influencing the dynamics of the
simulation. This condition serves to adjust the onset of shear plastic-
ity for brittle modes of deformation, representing conditions within
the upper crust. Runs at lower background viscosity, representing
lower crustal or asthenospheric conditions, are not affected by the
increased confining pressure.

All simulations are run in a rectangular 2-D box of 360×240
elements (347 400 degrees of freedom, 2.76 million markers), re-
sulting in a spatial resolution of 16.6 m over a model depth of 4 km.
Each simulation typically runs to a total of 500–1500 time steps,
taking up to 128 hr to complete on a single AMD Opteron node of
the Brutus cluster in Zurich. All model parameters employed in the
simulations presented in this section are listed in Table 3.

We find that at least three distinct regimes of melt extraction
emerge, involving both fracture and flow of the host rock. These
three regimes are best characterized by their primary feature of
melt transport, which are melt diapirs, decompaction channels and
tensile fractures, forming in this sequence with increasing viscos-
ity of the host rock. We will now discuss the results in terms of
three criteria, which we will assess with the following questions:
(i) Geometry: is there a characteristic shape, size and orientation
of melt transport features and are they of a distributed or localized
nature? (ii) Deformation: What is the dominant style of deformation
(viscous, elastic and plastic)? Is the flow field characterized by con-
vection, compaction or fracturing? (iii) Efficiency: Are there melt
transport features that are more efficient in extracting melt from the
source than others, and on which property of the system does this
difference depend?

3.2 Melt diapirism

The first regime of melt transport emerges at low host rock vis-
cosities of η0 ≤ 1e + 20 Pa s, values that are typical for the as-
thenospheric mantle. The characteristic melt transport feature in
this regime is a melt diapir: a local upwelling characterized by con-
vective flow driven by the buoyancy of accumulated melt, by which
melt is transported away from the source region. Fig. 4 displays
three snapshots of the run d118r2, the results of which are rep-
resentative of this regime (η0 = 1e + 18 Pa s, σT = 2 = 20 MPa,

see Movies S1 and S2 for animated time evolution), giving the
melt fraction (left), along with the volumetric strain rate field (right
column of panels) at three points of time during the simulation.
Overlaying the melt fraction and volumetric strain rate plots are ar-
rows of melt velocity and solid velocity, respectively. For improved
clarity of observation, velocity arrows are plotted after subtracting
the extensional pure shear component of the velocity fields imposed
by the kinematic boundaries.

3.2.1 Geometry of melt diapirs

The dominant feature of melt transport in this regime approximates
the shape of a Stokes sphere, rising vertically through the ductile
host rock. In Fig. 4, we identify three stages of diapir evolution,
which are incipient compaction wave formation, followed by diapir
growth, and finally, diapir ascent. In the initial stage (top panels),
melt collects in an approximately spherical, distributed peak charac-
teristic of two-dimensional compaction waves (Scott & Stevenson
1984; Scott 1988).

In a second stage (middle panels), with more melt supplied from
the source region imposed on the lower boundary, the incipient
compaction wave takes on the characteristics of a more sharply
bounded magma body with up to 100 per cent melt content. At this
stage, however, the diapir remains stationary at the lower boundary,
as it grows in size and melt content by percolation from below. In
a third stage, the diapir reaches a stable radius, detaches from the
boundary and rises up in an approximately constant spherical shape
with constant melt content.

The initial volume of melt is given by a 2-D Gaussian imposed
on an otherwise zero melt fraction domain. The Gaussian remains
non-zero across the domain, yet the melt fraction at some point
drops below 10−3 which we choose as the cut-off level for two-
phase physics to apply (see detailed discussion in Appendix A4).
Permeability is therefore non-zero everywhere as well, although it
is cut-off at 10−19 m2 in our simulations to ensure stability of the
Q1Q1 elements. Therefore, the injected melt may permeate into
the parts of the domain where the initial melt fraction is below
10−3, although that permeable flow is very slow and thus easily
overtaken by convective motion at low rock viscosities, or other
modes of deformation at later stages (see subsequent sections). In
this context, the mode of two-phase flow with the originally imposed
melt volume can thus be classified within the one observed in 2-
D compaction waves in contrast to convective flow observed in
the diapirism mode. As such, length scales of the upwelling below
depend on the compaction length scale.

In a partially molten region of the asthenosphere, melt is likely
to collect into spherical solitary waves, if the melt source region is
larger than the characteristic length scale of melt percolation, given
by the compaction length δc (McKenzie 1985)

δc =
√

K Dξ ∗. (65)

Melt extraction by percolation is driven mainly by the buoyancy
contrast between solid and fluid phases, characterized by a charac-
teristic fluid overpressure pc

pc = �ρgδc, (66)

and a characteristic percolation velocity wc

wc = K D�ρg. (67)
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Figure 4. Snapshots of run d118r2 (η0 = 1e + 18 Pa s, σT = 20 MPa) resulting in melt diapirism, displaying melt fraction in per cent (left) overlaid with melt
velocity arrows, and volumetric strain rate scaled by background strain rate (right) overlaid with solid velocity arrows. Both velocity fields are reduced by the
pure shear extensional component. Velocity arrows are scaled with relative magnitude.

The related compaction flow of the rock matrix is characterized
by a compaction velocity scale vc, given by

vc = �ρgδ2
c

ξ ∗ . (68)

The rise of a fully molten diapir of radius R, however, is char-
acterized by the velocity of a Stokes sphere uc, which, apart from
some geometric constant, is given by the relation

uc ∼ �ρgR2

η∗ . (69)

It follows from eqs (65) and (69) that both the compaction length
δc and the diapir radius R are related to the host rock viscosity η.
Therefore, with an increase in background viscosity, we expect to
find larger melt diapirs forming from larger incipient compaction
waves, and building up higher fluid overpressure along the way.
Comparing the outcome of the three runs d118r2, d119r2 and d120r2
with increasing background viscosities from 1e+18 to 1e+20 Pa s
in Fig. 5 demonstrates that the diapir radius and the maximum fluid
overpressures indeed both increase with increasing host rock viscos-
ity. Here, the theory suggests that both diapir radius and magnitude
of overpressure should scale with the square root of the viscosity.
In the runs presented in Fig. 5, however, this theoretical prediction

cannot be directly verified, probably because factors such as locally
variable compaction length and interaction with model boundaries
obscure the situation.

3.2.2 Deformation in melt diapirism regime

Examining the relative magnitude of the viscous, elastic and plastic
components of deformation reveals that low viscosity runs, in which
diapirs are formed, are entirely dominated by viscous deformation.
A convective flow pattern forming around the diapir in both phase
velocities (see velocity arrows in Fig. 4) is characteristic of the melt
diapirism regime. With ongoing melt supply from the lower bound-
ary, the melt fraction inside the diapir increases beyond the host
disaggregation threshold, creating a magma body of melt fractions
of up to 100 per cent, constituting the head of the diapir. As the
diapirs increase in size with increasing background viscosity, some
small-scale downwellings, driven by differences in solid fraction,
start dropping from the roof of the magma body (Fig. 5). This pro-
cess is triggered when small-scale internal convection is faster than
the overall rise of the diapir. We assume that a more inhomogeneous
model setup would favour the onset of such small-scale convection,
as it is driven by perturbations in the melt fraction distribution,
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Figure 5. Snapshots of simulations d118r2 (top), d119r2 (middle) and d120r2 (bottom), taken at the time when the melt diapir has reached a stable radius.
Displayed are melt fractions in per cent (left), overlaid with arrows of melt velocity as in Fig. 4, and compaction pressure Pc in MPa (right), negative values
correspond to melt overpressure, minimum value of Pc measured over the model time is given for each simulation.

which here only derive from fluctuations due to limited numerical
accuracy along the relatively sharp upper boundary of the diapir.

Neither shear nor tensile plastic failure are relevant in runs
d118r2, d119r2 and d120r2 (Fig. 5), as stress states in these runs
remain below the failure criteria. A minimum magnitude of com-
paction pressure of around −3.5 MPa is reached in the run d118r2,
which is only about 20 per cent the magnitude of the tensile strength
of the rock (σT = 20 MPa). A decrease of tensile rock strength to
values of 10 and 5 MPa (runs d118r4 and d118r8) still does not lead
to any plastic failure. Shear failure of the host rock is not observed
either, as the magnitude of deviatoric stresses here remains below
1 MPa. For runs with rock viscosities of η0 ≤ 1e20 Pa s and lower
tensile yield strength (d119r8, d120r4 and d120r8, see summary
Fig. 13 for the outcome of these runs), the increased magnitude of
fluid overpressure reaches the limit set by the tensile yield strength,
and thus volumetric plastic failure sets in. As a consequence, the
style of melt transport transitions into a next regime, as discussed
in Section 3.3.

3.2.3 Efficiency of melt extraction by diapirism

In these runs, a competition between melt transport by compaction
waves and by convective diapirism is observed. Although early melt

accumulation occurs in a mode characteristic of compaction wave
(i.e. dominated by percolation), once the diapir has grown to a
certain radius, the upwards speed of the diapir exceeds the speed
of melt percolation. Consequently, the diapir detaches from the
boundary and rises through the model domain, with the surrounding
host rock undergoing convective flow to accommodate the rise of
the melt diapir. The stable radius of a diapir is reached when the
characteristic speed of convective rise of the diapir, uc (eq. 69),
exceeds the characteristic speed of percolation, wc (eq. 67), feeding
the diapir from below. Thus, setting the two characteristic velocity
scales as equal and solving for the diapir radius yields an expression
for the stable radius of melt diapirism similar to the compaction
length:

R =
√

K Dη∗. (70)

We do not observe any runs, where two-dimensional compaction
waves prevail over melt diapirism. First, this is due to the fact that
melt fraction drops to zero away from the initial melt volume and
thus the compaction length drops to zero, and compaction of the
host rock ceases. Second, the melt-dependent shear viscosity law
causes convective flow to be more efficient than compaction flow.
Scott (1988) shows that the ratio rη between shear viscosity η∗

and compaction viscosity ξ ∗ determines the competition between
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Figure 6. Snapshots of run d121r4 (η0 = 1e + 21 Pa s, σT = 10 MPa) resulting in decompaction channeling. Visualization as in Fig. 4.

melt transport by compaction waves and convective diapirism. This
ratio is also implied by comparing the characteristic velocity for
compaction vc (eq. 68) and convection uc (eq. 69), if the diapir radius
is of the order of the compaction length. Here, in the dominantly
viscous region of the parameter space, this ratio takes the form of

rη = η∗/ξ ∗ = φ exp
(−αφφ

)
, (71)

resulting in values two orders of magnitude below unity, indicating
that convective transport will prevail at all levels of melt fraction.
The highest values of rη (0.001–0.013) are attained at melt fraction
of 1–20 per cent, which may explain why the initial stages of diapir
formation show some characteristic of compaction wave formation,
even though no long-term propagation of a compaction wave is
observed later on during the model runs.

3.3 Decompaction channeling

The second regime of tectonically coupled melt extraction emerges
at intermediate host rock viscosities of 1e + 20 Pa s ≤ η0 ≤ 1e +
22 Pa s, values found around the lithosphere–asthenosphere bound-
ary (LAB) or in ductile regions of the lower crust. The regime is ob-
served to set in as the compaction pressure Pc reaches the magnitude
of the tensile strength of rock σT at low shear stresses. The char-
acteristic melt transport features in this regime are elongated bands
of localized volumetric deformation, referred to as decompaction
channels. Along these features, melt is accumulated and transported

away from the source region. Fig. 6 displays three snapshots of
a run representative of this regime (d121r4, η0 = 1e + 21 Pa s,
σT = C/4 = 10 MPa, see Movies S3 and S4 for animated time
evolution).

3.3.1 Geometry of decompaction channels

In Fig. 6, we observe melt transport features that are clearly dif-
ferent from the melt diapirs discussed above. An area of partial
melt now extends upwards from the initial melt pulse. This area
is initially bounded on both sides by two subvertical zones of lo-
calized volumetric deformation and melt accumulation, angled at
around 20◦ towards the vertical (Fig. 6, top panels). Further along
the simulation, a more strongly localized band of melt accumulation
forms along the upper boundary of the area of partial melt (Fig. 6,
middle panels). Both ends of this decompaction channel propagate
diagonally upwards into the melt-free host rock. At first, this up-
per decompaction band is not stationary, but travels upwards as the
zone of partial melt extends further into the host rock. Later in the
simulation run, however, this bowl-shaped melt channel begins to
stagnate in a final position, while both ends of the channel continue
to extend outwards into the host rock (Fig. 6, bottom panels). At
this stage, melt fraction is increased to more than 30 per cent along
the channel, compared to values of around 15 per cent in the zone
of partial melt below. Note that decompaction channels are only
observed inside, or at the boundary of partially molten areas.
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These channelized features of melt transport form as a conse-
quence of volumetric failure of the host rock matrix, caused by
high fluid overpressure at low shear stress (τII < |Pc|), as illustrated
by a representative stress circle in the Fig. 1 (green circle). In this
simulation (d121r4), the magnitude of the extensional background
stress field caused by the kinematic boundary conditions has a mag-
nitude of 2 MPa, while fluid overpressures reach values of up to
10 MPa. The two subvertical melt bands are observed to form at
steep angles of about 70◦ to the direction of least compressive stress
above the initial melt pulse. The bowl-shaped orientation of the final
channel dominating the later stages of the simulation is formed as
the direction of least compressive stress is deflected outwards as
the flow field interacts with the stress-free condition imposed on
the surface. More systematic tests need to be performed to deter-
mine the exact nature of how decompaction channels align with
principal stress directions. However, some first tests reveal that for
compressive kinematic boundary conditions, the angles of initially
emerging decompaction channels that are not yet interacting with
the free surface are subhorizontal rather than subvertical.

The localization of compaction deformation emerging here as a
consequence of volumetric failure may be quantified in terms of the
volumetric plastic yield ratio rpla, which is the ratio of the minimum
compaction pressure Py given by the failure criterion (eq. 38) over
the predicted viscous compaction pressure,

rpla = Py

−ξ ∗υ̇s
, (72)

neglecting elastic effects, as the elastic contribution to total defor-
mation is small. The effective compaction viscosity may then be
expressed depending on the plastic yield ratio as ξ ∗

eff = ξ ∗rpla. Re-
placing ξ ∗ by ξ ∗

eff in the definition of the compaction length (eq. 65)
yields the characteristic length scale associated with decompaction
failure δc,pla to be (Connolly & Podladchikov 2007)

δc,pla = δc
√

rpla. (73)

The ratio rpla typically takes values of 1e−1 to 1e−3, depending
on the background viscosity and local strain rates, and thus the
characteristic width of visco-elasto-plastic decompaction channels
may be orders of magnitude below the viscous compaction length.

In their study of decompaction channeling, Connolly & Podlad-
chikov (2007) used a constant value of rpla to weaken compaction
viscosity where fluid overpressure occurred. This simplification,
along with a two-phase model neglecting shear stresses in the host
rock, lead to the emergence of vertical decompaction tubes of con-
stant width (due to constant rpla), rather than angled channels, as
they are observed here. This comparison additionally confirms our
interpretation that decompaction channels align with the stress field.

Other runs, where decompaction channels emerge are d119r8,
where a low tensile rock strength enable volumetric failure at a
viscosity as low as 1e19 Pa s, d120r4, where a set of diagonal de-
compaction channels form on top an already well-developed melt
diapir, d120r8, d121r8 and d122r2, where two subvertical decom-
paction bands propagate upwards until a new regime emerges from
top of the decompaction channels, leading to a melt-bearing tensile
fracture propagating ahead of the channels (see summary Fig. 13
for a summary).

3.3.2 Deformation in decompaction channeling regime

From the solid and fluid velocity fields (arrows in Fig. 6), it is ev-
ident that melt is generally extracted upwards, percolating through
the area of partial melt above the initial melt pulse. The pattern

of percolation, however, is not distributed homogeneously, but the
melt flow is rather concentrated inside the decompaction channels,
as seen by the melt velocity vectors aligning with the direction of
channel propagation. Inside the areas of melt percolation, the de-
formation of the host rock consists of a downwards compaction
flow. Outside the partially molten zone, host rock deformation ac-
commodates the additional melt volume by outwards and upwards
flow directions. As the upper, bowl-shaped decompaction channel
becomes stationary towards the end of the simulation, we observe a
strong increase of vertical uplift of the host rock above the forming
melt band, caused by a strongly extensional volumetric deforma-
tion perpendicular to the melt band. The reasons for uplift in an
otherwise extensional environment are that the rates of uplift are
much larger than the extension velocity. Additionally, some shear
deformation is observed along each decompaction channel as solid
velocity arrows change both magnitude and direction across each
channel.

To further characterize the style of deformation in the decom-
paction channeling regime, snapshots of the viscous, elastic and
plastic components of both shear and compaction deformation in
the run d121r4 are displayed in Fig. 7. Viscous deformation (top
panels) is observed to be active in the area of the initial melt pulse,
where viscous diapirism is ongoing, although relatively slowly.
Other viscous deformation, especially in the shear domain, is con-
centrated within the decompaction bands, facilitated by the melt-
weakening of shear viscosity cause by melt accumulating in the
channels.

As expected, amplitudes of the elastic component of deformation
(middle panels) are small compared to viscous and plastic ones.
Most elastic deformation is concentrated in the propagating tips
of decompaction channels, where shear stress and fluid overpres-
sure accumulate until the effective stress state reaches the failure
criterion. In both volumetric and deviatoric strain rates, a strongly
localized band of plastic deformation is observed along the top of
the partial melt zone, indicative of the strong opening component
facilitated by volumetric plastic failure.

The combined pattern of deformation is one of bands or channels
of localized viscoplastic decompaction deformation, the propaga-
tion of which into undeformed host rock is aided by elasticity. De-
compaction channels are observed to be mobile, both propagating
outwards from their tips and moving through the host rock along
their whole length in the style of strongly asymmetrical compaction
waves. Once enough melt is accumulated and stress directions re-
main favourable, a travelling decompaction band may become sta-
tionary. We note again that decompaction channels generally emerge
inside or along the boundary of a partially molten area and may be
fed by low melt fraction percolation along much of their length, thus
potentially channeling low degree partial melt away from a larger
melt region.

3.3.3 Efficiency of melt extraction by decompaction channels

The enhanced efficiency of melt transport relative to diapirism is
manifest from the fact that the decompaction channels form and
propagate ahead of the incipient diapir forming at the bottom of
the box. Viscous percolation occurs on the characteristic timescale
set by the characteristic percolation velocity (eq. 67) and the com-
paction length (eq. 65):

tc = δc

wc
. (74)
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Figure 7. Viscous, elastic and plastic components of deformation from a snapshot of run d121r4 (η0 = 1e + 21 Pa s, σT = 10 MPa), displaying compaction
strain rate components (left) and shear strain rate components (right).

In the case of decompaction failure, the timescale of percolation
is reduced proportional to the plastic reduction in compaction length
given in eq. (73) (Connolly & Podladchikov 2007)

tc,pla = tc
√

rpla, (75)

and thus the efficiency of melt extraction again depends on the
square root of the plastic yield ratio rpla.

As it is evident that melt transport in the decompaction channel-
ing regime is facilitated by localized melt percolation in a compact-
ing host rock, the competition between compaction and convection
needs to be re-examined in the case of volumetric failure. As in-
troduced above (eq. 71), the ratio rη between shear and compaction
viscosity gives a measure of the relative efficiency of melt propa-
gation by advective transport along a convecting host rock against
pervasive transport in a compacting host rock. Once decompaction
failure sets in the plastically modified viscosity ratio rη,pla becomes

rη,pla = rη/rpla. (76)

The meaning of this relation is that an increase in volumetric
failure (smaller rpla), the viscosity ratio rη,pla assumes higher values,
indicating that the relative efficiency of compaction over convection
is increased. This simple analysis explains how the increased effi-
ciency of pervasive melt transport comes about under conditions
where purely viscous compaction without weakening by decom-
paction plasticity would be highly inefficient.

3.4 Tensile failure

The third regime of tectonically coupled melt extraction emerges
at high host rock viscosities of η0 ≥ 1e + 22 Pa s, values that are
found in relatively cool regions of the lithosphere and crust, es-
pecially the upper crust. This regime is observed to set in as the
shear stress τ II reaches the magnitude of the tensile yield strength
σT at compaction pressures Pc close to zero. The dominant features
of melt extraction in this regime are subvertical, sharply localized
zones of deformation, in which melt is transported away from the
source region. These features are a continuum representation of
tensile fractures; in this case melt-bearing dykes. Fig. 8 displays
two snapshots of the run d122r4, the results of which are represen-
tative of this regime (η0 = 1e + 22 Pa s, σT = C/4 = 10 MPa, see
Movies S5 and S6 for animated time evolution).

3.4.1 Geometry of tensile fractures

The features of melt transport found in this regime are a set of
narrow, subvertical deformation zones propagating upwards from
the initial melt pulse. If these features are indeed to be identified
as tensile fractures or dykes, they should align perpendicular to
the direction of least compressive stress. As the pure shear exten-
sional stress field caused by the kinematic side boundaries is slightly
perturbed by the presence of the melt source in the middle of the
lower boundary, the orientation of the two fractures in Fig. 8, with
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Figure 8. Snapshots of run d122r4 (η0 = 1e + 22 Pa s, σT = 10 MPa) resulting in tensile fracturing. Visualization as in Fig. 4.

a slight deviation from the vertical, pointing radially away from
the initial melt pulse, supports the hypothesis that these are, in
fact, tensile fractures. Additionally, preliminary tests revealed that
if compressive kinematic boundary conditions are applied instead,
tensile fractures extend horizontally away from an initial melt pulse,
which is again the direction perpendicular to the least compressive
stress.

Furthermore, the width of these fractures typically extends over
no more than one or two elements of the finite-element mesh, a
characteristic shared by brittle plastic shear fractures in computa-
tional continuum mechanics. If numerical resolution is increased,
the orientation of brittle fractures remains the same, but the num-
ber of parallel fractures is increased, while each individual fracture
again localizes down to the grid level (Buiter et al. 2006). Prelimi-
nary high-resolution tests reveal that the same is true for the tensile
fractures observed here. This property of brittle plasticity in com-
putational continuum mechanics implies that brittle fractures are
not resolved numerically on their characteristic length scale, which
from field geology and rock physics is known to be as small as a
few millimetres.

Tensile fractures in Fig. 8 are observed to propagate into melt-
free rock, while continually being infiltrated by melt from below.
While dykes in nature are discrete fractures completely filled by
melt, the simulated tensile fractures here only accumulate a rather
low melt fraction of 10–25 per cent. We interpret this result in the
light of numerical resolution. As the characteristic width of a tensile
fracture is below the spatial resolution of the numerical method, the
volumetric strain rate obtained on the available numerical resolution
is underestimated by the ratio of the grid spacing towards the real
width of a fracture. The following example should serve to illustrate
this point: If a real fracture is narrower than the numerical element
size by a factor of 100, the volumetric strain rate measured on the
numerical grid would be smaller than the actual value by a factor of
100 as well, and thus, the evolution of melt content in the simulated
dyke is underestimated by the same factor. While there are means

by which this underestimation of melt transport by dykes simulated
on a regular continuum grid could be corrected (e.g. increasing
permeability as a function of plastic yielding, parametrized increase
of volumetric strain rates inside dykes, etc.), we have made no such
attempts here, but simply observed the features that self-consistently
arise from the visco-elasto-plastic rheology.

3.4.2 Deformation in tensile failure regime

Closer examination of the melt velocity (arrows in Fig. 8) reveals
that melt is extracted upwards inside the dykes. All melt extraction
is limited to the narrow zones of volumetric deformation visible
in Fig. 8, meaning that no pervasive melt transport occurs outside
these fractures. The flow field of the host rock conversely displays
a 180◦ change of horizontal velocity across the width of a single
finite element, while the vertical velocity component remains mostly
unchanged across the fracture. This flow signature constitutes the
closest possible continuum approximation of the discontinuous flow
field caused by a brittle fracture.

Fig. 9 displays the viscous, elastic and plastic components of
shear and compaction deformation during the propagation of tensile
fractures in the simulation d122r2. Viscous compaction deformation
(top left panel) is active mainly in the area of the initial melt pulse,
albeit only at a small relative amplitude. Viscous shear deformation
(top right panel), however, is mainly active at the trailing ends of
both dykes, where the most melt has been accumulated. Once again,
viscous shear deformation is concentrated by the melt-weakening
of the solid shear viscosity, as observed in the decompaction chan-
neling regime above.

Elastic volumetric deformation (middle left panel) has a small
relative amplitude and is somewhat erratically distributed along the
fracture zones, probably an artefact of the numerical grid resolution.
A more consistent pattern, however, is observed in the partially
molten area of the initial melt pulse, where a set of subvertical
bands of elastic compaction strain rate is found. Observing these
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Figure 9. Viscous, elastic and plastic components of deformation from a snapshot of run d122r4 (η0 = 1e + 22 Pa s, σT = 10 MPa), displaying compaction
strain rate components (left) and shear strain rate components (right).

bands through their time evolution (Movies S5 and S6) reveals
that they are mobile, travelling through the partially molten area
at a characteristic wave length and speed. Thus, these features are
identified with the mobile decompaction bands observed in the
previous regime. Elastic shear deformation (middle right panel) is
concentrated to the propagating tip of each fracture, where elastic
stress concentration facilitates the propagation of the crack tip.

Not surprisingly, plastic deformation accounts for the major part
of deformation associated with tensile fractures (bottom panels).
Note that the plastic shear strain rates are found at approximately
half the amplitude of the plastic volumetric component, a ratio that
is predicted by plasticity theory for an opening fracture (effective
dilatancy angle of 90◦) (Vermeer & De Borst 1984). The decom-
paction bands found in the partially molten area at the root of the
dykes are clearly visible in the plastic strain rate fields, as expected
from observation above.

Other runs at solid viscosities of 1.e+22 Pa s or higher that are
similarly dominated by tensile fractures as the preferred mode of
melt transport include d122r2/8 (see summary Fig. 13 for the final
outcome of these runs) and d123r2/4/8 (see Fig. 10 for results of
d123r4, representative of the three runs at 1e+23 Pa s). The only
additional features observed at viscosities greater than 1.e+22 are
normal faults that emerge where shear stresses outside the partially
molten regions of the model box reach stresses high enough to
cause shear failure. Fig. 10 gives two snapshots of the run d123r4,

showing melt fraction with melt velocity arrows (left column of
panels) and solid shear strain rates with solid velocity arrows (right
column of panels). Initially, three vertical dykes are observed to
emerge from the melt source (best visible in the strain rate field,
upper right panel). In the first snapshot, the two outer dykes are
connected at their tip to a set of conjugated normal faults, whereas
the middle is not connected to any shear fractures. Later, in the
second snapshot, the two outer dykes have ceased to propagate,
whereas the middle dyke is still active and is now, in turn, con-
nected to a pair of normal faults. These observations are relevant
as they demonstrate the vital connection between magmatism and
tectonics. Magmatic structures always constitute weak zones in the
fabric of the lithosphere and crust, thus providing stress inhomo-
geneities on which brittle fractures preferentially nucleate. On the
other hand, this close connection between magmatism and brittle
tectonics serves to explain why many areas of magmatic activity are
found in close proximity of major fault systems.

3.4.3 Efficiency of melt extraction by tensile fractures

Crack propagation in nature may be recorded on the timescale of
earthquakes, and thus constitutes the fastest known process of melt
extraction. However, the transported volumes of melt in dykes are
relatively small, as dykes found in the geological record are typically
reported at width to length ratios of 1e−2 to 1e−4 (Rubin 1995).
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Figure 10. Snapshots of run d123r4 (η0 = 1e + 23 Pa s, σT = 10 MPa) resulting in tensile and shear fracturing. Visualization as in Fig. 4.

Still, melt flow in a tensile fracture is very efficient, as the pure melt
phase has a very low viscosity and may thus move at high speed
through a tensile fracture once it is opened.

As we assess the efficiency of melt extraction by dyking, the
question arises how properties like the width, speed of propagation
and the accumulated melt content of the dykes simulated here are
to be interpreted. As discussed above, the dyke width is limited to
the element size of the numerical grid. Simulated dykes propagate
at speeds of the order of centimetres per year, depending on model
properties such as the solid shear viscosity and shear modulus,
the permeability and fluid viscosity and the amplitude of imposed
extension. Melt fractions accumulated inside the dykes reach val-
ues of around 25 per cent in this suite of simulations. Comparing
these findings to the theoretical and observational characteristics of
melt-bearing tensile fractures, we note that the simulated dykes are
much wider, slower in propagation and lower in melt content. All of
these limitations are bound up with the spatial resolution available
to numerical models on a geodynamically relevant scale. However,
despite these limitations, dyking is the most efficient feature of
melt transport in all simulation runs at high viscosities. Where ten-
sile fractures emerge, they consistently propagate with significantly
higher speed than all other modes of melt transport and thus cre-
ate conduits for melt extraction even under the mechanically most
competent conditions in the host rock.

3.5 Numerical models of melt ascent from asthenosphere
to crust

Having sampled host rock conditions from ductile to brittle crustal
levels in a simple setup, we now proceed to two additional sim-
ulations on a lithospheric scale in order to see how the observed
modes of melt transport discussed above self-consistently emerge
and interact as melt is extracted from the LAB to the upper crust.
To this end, we construct a model setup representing a continental

lithosphere and crust with background viscosity profiles established
from two different thermal profiles. Note that temperature advection
or diffusion is not treated here, but a realistic geotherm obtained
from a standard half-space cooling model is used to constrain the
initial viscosity profile of the model runs.

The model box has dimensions of 160 × 240 km and con-
sists of three layers: 20 km of upper crust with a density of
ρUC = 2500 kg m−3, followed by 20 km of lower crust with a den-
sity of ρLC = 2700 kg m−3and a mantle lithosphere with a density
of ρML = 3000 kg m−3. With a melt density of ρ f = 2600 kg m−3,
a reversal of density contrast at the lower to upper crust bound-
ary is achieved. The depth profiles of intrinsic rock viscosity are
calculated from the geotherm using an Arrhenius law, with slightly
varying pre-exponential factor and activation energy to reflect lower
strength of crustal rocks with respect to the mantle. The resulting
strength profiles of a thermally younger and a thermally older litho-
sphere are given in Figs 11 and 12, respectively. As initial melt
fraction distribution, a circular region with a diameter of 12 km and
a melt content of 80 per cent is imposed at the lower boundary. The
reference permeability is set to k0 = 1e − 7 m2 and the extensional
kinematic boundary condition is given by a background strain rate
of ε̇BG = −5e − 15 s−1. The constant fluid pressure boundary con-
dition is switched off and thus pressure boundaries are zero flux on
all sides. All other model parameters are as listed in Table 2.

To provide a seed for plastic shear and tensile failure to nucleate,
random noise is added to both friction angle (maximum amplitude
of 1◦) and cohesion (maximum amplitude of 0.2 MPa). Plastic shear
strain rates are integrated over time and a linear weakening of the
friction angle proportional to accumulated plastic strain is added to
the method in order to provide a damage memory, by which plastic
faults constitute tectonic weak zones, even after they are no longer
active.

Snapshots of melt fraction and shear strain rate of runs with a
thermally younger, and thus mechanically weaker, and a thermally
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Figure 11. Snapshots of whole-lithosphere run with a thermally younger lithosphere, displaying the strength profile of lithosphere and crust with depth (left),
melt fractions (per cent) with melt velocity arrows (middle) and shear strain rates relative to background strain rate (right). The applied density structure is
such that the depth of neutral buoyancy is at 20 km.

Figure 12. Snapshots of whole-lithosphere run with a thermally older lithosphere. Visualization as in Fig. 11.

older, and mechanically stronger, lithosphere are given in Figs 11
and 12 (see Movies S7–S10 for animated time evolutions of these
results). In both runs, most of the melt transport features described
above emerge and interact self-consistently over the range of host
rock conditions found from the LAB to the surface. We do not
observe any melt diapirism here, as the initial melt volumes are
placed directly on the LAB, where viscosities are already higher
than values for which diapirism would be the preferred mode of
melt transport.

In both runs, the circular melt volume first penetrates the LAB by
means of a process not present in the runs presented above. Here,
a layer of overlaying host rock along the top boundary of the melt
pulse is weakened by the infiltration of overpressured melt, leading
to volumetric failure and causing the weakened layer to delami-
nate into the magma body below. This interaction of an advancing
percolation front with volumetric failure by melt overpressure and
subsequent delamination of the resulting layer of crystal mush was

not observed earlier. This particular mode of deformation requires
melt overpressures of amplitudes reaching the tensile strength of
rock (here σT = 10 MPa) to occur in a low-viscosity host rock. Yet,
because a magma body of sufficiently large dimension is present,
delamination of the weakened rock into the magma body occurs
on a timescale similar to the advancement of the percolation front.
The resulting magma body takes the shape of a funnel (most likely
tube-like in 3-D), narrowing towards the top as a function of the
increasing background viscosity (best visible in Fig. 12, top panels).

As host rock viscosities rise to 1e+21 Pas, the first major regime
transition takes place, as channels of localized volumetric defor-
mation propagate diagonally away from the main magma body.
Although spatial resolution renders the distinction more difficult,
we identify these features as decompaction channels, recognized by
their orientation and deformation pattern. In the simulation with a
weaker lithosphere, two decompaction channels form above the
initial magma body. As they provide a weak zone in the host
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rock, a return flow pattern sets in, causing the lower lithosphere
to flow down and in towards the initial magma body, while large
volumes of melt are moved up and outwards into the widening
channels, up to the point where two new magma bodies are es-
tablished further up and on either side of the initial melt volume
(Fig. 11, top panels). However, the further model evolution shows
that only one of these magma bodies is able to propagate further
up towards the lower crust. Interestingly, a large portion of the
melt trapped in the inactive secondary channel is eventually forced
back by regional tectonic deformation and diverted into the primary
channel.

The second major regime transition occurs, where the imposed
viscosity profile causes a steep increase in mechanical strength up
to the point of brittle strength levels (see strength profiles in Figs 11
and 12). As expected, melt-bearing tensile fractures emerge. Unlike
in other runs presented above (d122r4, d123r4), the orientation of
these fractures is often not vertical, as expected from the regional
extension applied at the side boundaries. Instead, tensile fractures
preferentially form along the weak zones created by pre-existing
shear faults, a behaviour known from geological observation (Rubin
1995). As overpressured melt propagates along pre-existing shear
faults, the walls of the fault are forced apart and the previous pattern
of shear deformation along the fault is changed into an extensional
flow perpendicular to the fault plane. This process, best visible in
Fig. 12 (top panels), illustrates that even though dykes in these mod-
els are limited to the available spatial resolution, the geometry of
tensile fractures is self-consistently determined by material proper-
ties and local stress conditions and, in the long-term evolution, such
fractures evolve into wider conduits for melt extraction through the
mechanically most competent parts of the lithosphere.

As melt eventually reaches the upper crust in both simulations,
the buoyancy contrast between solid and melt phase is inverted and
thus further melt ascent is mostly prohibited. As a consequence, melt
accumulates in the weak lower layer of the upper crust, forming a
magma body of up to 100 per cent melt content. In the simulation
with the weaker strength profile, the shape of this final magma
chamber is that of a laccolith fed from a feeder zone at one end
(Fig. 11, bottom panels), a geometry that incidentally bears some
resemblance to the Torres del Paine plutonic rock complex, although
it occurs at a larger depth in this simulation (e.g. Leuthold et al.
2012).

The geometry of the upper crustal magma body in the second
simulation consists of two roughly elliptical magma bodies linked by
a diagonal conduit of similar dimensions (Fig. 12, lower panels). In
both runs, some melt transport above the depth of neutral buoyancy
is observed. In fact, even though the geometry of the upper crustal
magma bodies is quite different, both runs feature a single, vertical
dyke propagating from the uppermost magma body upwards to the
surface, where eruption would occur. These results demonstrate
that the depth of neutral buoyancy is not the primary control of the
emplacement level of a magma body. Instead, it is the integrated
buoyancy contrast of the interconnected column of melt through
the lithosphere and crust, combined with the forcing imposed by
regional tectonic stress that governs the depth of emplacement or
the ultimate eruption of a magmatic system.

These numerical results of melt ascent from the asthenosphere
to the upper crust again need to be understood with the caveat that
no thermal and chemical coupling of magmatism is included. Nev-
ertheless, they demonstrate the potential of the proposed method
to investigate open questions of melt extraction and magma em-
placement tectonics under a wide variety of conditions found in a
continental lithosphere and crust.

4 D I S C U S S I O N

4.1 Melt transport in a visco-elasto-plastic host rock

These numerical results demonstrate that the implementation of
a visco-elasto-plastic rheology in two-phase flow simulations may
result in at least three distinct modes of melt transport under geody-
namically relevant host rock conditions. Whereas melt diapirism
generally occurs at low viscosities, decompaction channels are
formed at intermediate viscosities, and tensile fractures emerge at
high viscosities. The results also indicate that the proposed method-
ology provides an opportunity to address some of the open issues
related to melt extraction through lithosphere and crust, as it is able
to simulate melt extraction through host rock undergoing both frac-
ture and flow, a feature previously inaccessible to computational
models of magma dynamics.

The aim of this study was to introduce a visco-elasto-plastic
two-phase rheology and demonstrate its potential for the compu-
tational study of melt transport through the lithosphere and crust.
The three observed regimes of tectonically coupled melt transport
that self-consistently emerged from a suite of simple numerical
problems have been characterized in a preliminary way, as a full
discussion of particularly the plastic features of melt transport goes
beyond the scope of this study and would require a much more
comprehensive coverage of the relevant parameter space. Still,
these observations allow some preliminary discussion of impli-
cations these findings might have for the understanding of how
magmatic system evolve coupled to the rock conditions and tec-
tonic deformation of a continental lithosphere. In the following,
we will summarize our analysis of the three regimes of melt trans-
port described above, discuss some of the implications with respect
to magmatic systems and review the limitations of the numerical
method.

4.1.1 Melt transport by diapirism

Summarizing the findings on melt diapirism, we note that melt ex-
traction under mechanically weak asthenospheric conditions (lower
than 1.e+20 Pa s) is dominated by viscous diapirism constituted by
local upwellings driven by the buoyancy of accumulated melt. As
no crystallization is considered here, quantitative aspects of these
results need to be interpreted with caution. Only at very low host
rock viscosities will enough heat be advected for a diapir to keep
a stable melt content over the timescale of vertical transport. Nev-
ertheless, the combination of melt accumulation by incipient com-
paction wave formation and subsequent melt ascent by diapirism
is in our simulations the dominant process by which melt from a
wider region of partial melting in the asthenosphere is collected and
brought upwards towards the LAB. Melt thus arrives at the LAB in
discrete pulses of high melt fraction rather than in a continuous per-
colative flux, providing an important constraint for possible initial
conditions for further models investigating melt extraction through
the lithosphere.

Most likely, the composition of melt collected in a diapir closely
reflects the degree of melting of the asthenospheric source of par-
tial melt the diapir is derived from. During the rise of a melt diapir,
little equilibration with surrounding rock material is expected to
occur and convection dominates over compaction. As any inherited
or newly crystallized grain assemblage is entrained along the con-
vective flow, rather then being removed from the remaining melt,
not much magmatic differentiation may be expected to occur during
melt transport by diapirism.
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4.1.2 Melt transport by decompaction channeling

From our findings on decompaction channeling, we conclude that
melt extraction in rock of intermediate mechanical strength, as it is
found in the relatively high-temperature parts of the lithosphere and
lower crust (1.e+20 to 1.e+22 Pa s), is dominantly facilitated by
decompaction channeling. From the observations presented above,
we arrive at a definition of decompaction channels as elongated
bands of channelized melt percolation in a compacting host rock,
characterized by volumetric failure due to fluid overpressure, and
aligned at steep angles with respect to the least compressive stress
direction.

So far, we have not addressed the question of the physical pro-
cess that underlies volumetric, or decompaction failure. As this
process occurs at low levels of shear stress and in areas of melt
percolation, we propose that the volumetric deformation is ac-
commodated mainly by the opening of grain boundaries, forced
apart by the presence of an overpressured melt. This interpreta-
tion is in line with previous theoretical considerations (Connolly &
Podladchikov 1998, 2007; Ricard & Bercovici 2003). Conceptu-
ally, the nature of these channels is thought of not as a brittle,
macroscopic mode of plastic failure of the host rock, but rather
as a distributed microscopic failure mode manifesting along grain
boundaries in an area of partially molten rock under fluid overpres-
sure. Connolly & Podladchikov (2007) argue that this type of failure
should lead to an overall viscoplastic compaction flow characterized
by a weakening of the effective compaction viscosity under fluid
overpressure, which coincides with our observations.

Furthermore, our numerical results demonstrate that decom-
paction bands may travel through the host rock as a kind of elongated
visco-elasto-plastic compaction wave, driven by shear stresses in
the matrix rather than buoyancy alone. Although the physical origin
of this process cannot be inferred from our models, these decom-
paction bands may be conceptually related to the so-called vug
waves, a concept proposed by Phipps Morgan & Holtzmann (2005)
in order to explain melt band formation in a deforming host rock.
The connection between decompaction channeling and melt band
formation certainly deserves more attention. The volumetric failure
described here effectively behaves as a power-law viscous rheology
with a very high stress exponent, a condition that, according to
the analysis of Katz et al. (2006), favours increased growth rates
of melt bands in a partially molten rock under shear deformation.
Also, the melt bands observed in analogue simple shear experiments
form at angles of 55◦–70◦ to the least compressive stress direction
(Holtzman 2003). We find that decompaction channels grow at sim-
ilar angles in our simulations.

For now, with the conclusive physical interpretation of these fea-
tures left to be determined, localized melt percolation by volumetric
failure of the host rock and the subsequent formation of decom-
paction channels is identified as the likely process, by which melt
may penetrate the thermal boundary layer of the LAB and ascend
into the mechanically stronger lithosphere.

The flow patterns observed in the decompaction channeling
regime lead to an efficient phase separation and, by implication, to
strong magmatic differentiation. Pervasive flow of melt through the
compacting solid phase likely leads to a higher degree of chemical
equilibration with the host rock than convective transport of whole
magma bodies by melt diapirism. Additionally, if crystallization
occurs, forming crystals would follow the downwards compaction
flow of the solid, whereas the remaining melt would continually
be removed, causing fractional crystallization of magmas as they
penetrate into the lower lithosphere.

4.1.3 Melt transport by tensile fracturing

The numerical results demonstrate that melt extraction in rock
of high mechanical strength, as it found in the relatively low-
temperature parts of the lithosphere and crust (viscosity greater
than 1.e+22 Pa s), is dominantly facilitated by the opening of melt-
bearing tensile fractures. Such dykes in our simulations are clearly
distinct from decompaction channels by the following four phe-
nomenological criteria. (i) Width: Tensile fractures have a natural
length scale far below the numerically available spatial resolution,
and therefore dykes in our simulations always localize down to the
width of a single element. Conversely, even narrow decompaction
channels are more diffuse features than tensile cracks, assuming
a width of at least several elements, even at low grid resolutions.
(ii) Position: Simulated tensile fractures are always found to be sta-
tionary features, whereas decompaction bands mostly move through
the rock matrix until they finally assume a fixed location, where
they develop into stationary melt channels. Even stationary decom-
paction channels are easily distinguished from tensile fractures, as
the former generally occur inside or along the boundary of a par-
tially molten area, whereas tensile fractures protrude from a melt
source into melt-free rock. (iii) Orientation: We find that tensile frac-
tures form perpendicular to the least compressive stress direction,
whereas decompaction channels form at angles of around 70◦. Even
when dykes propagate along pre-existing shear faults, the pattern
of deformation indicates that the local stress field has been locally
rotated in such a way that the dyke again is positioned normal to the
least compressive stress. (iv) Stress conditions: Tensile fracturing is
only observed as shear stresses in the mixture approach the magni-
tude of tensile rock strength, whereas volumetric failure leading to
decompaction channeling occurs at lower levels of shear stress, but
higher levels of fluid overpressure.

In the first suite of simulations above, dykes are observed to
propagate relatively quickly into the host rock, but to transport
rather low volumes of melt through it. If, on the other hand, a dyke is
established, local extension is ongoing and enough melt is available
from below, a tensile fracture may be used by larger volumes of
melt and even crystal-bearing magma as a conduit, thus allowing
large volumes of magma to ascend rapidly through the widening
conduit. The two simulations of melt extraction from the LAB to
the upper crust demonstrate that our method is able to capture this
process of how initially narrow dykes widen to provide conduits for
large-scale melt extraction.

4.1.4 Summary of melt transport regimes

Fig. 13 summarizes the findings on the three regimes of tectonically
coupled melt transport as a function of tensile strength and intrinsic
viscosity of the host rock. For clarity of visualization, a background
colour is assigned to each of the three regimes of melt transport.
The red background colour in Fig. 13 indicates the stability field of
melt diapirism (A), the stability field of decompaction channeling
(B) is coloured in yellow, and the one of tensile fracturing (C) in
blue. The characteristic flow pattern of each mode of melt transport
is depicted in the three panels at the bottom of Fig. 13.

4.1.5 Regime transitions

We find from the numerical results that the first regime bound-
ary from diapirism to decompaction channeling occurs where fluid
overpressure reaches the magnitude of tensile rock strength at
shear stresses close to zero. Setting the characteristic pressure scale
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Figure 13. Summary of model results as a function of host rock viscosity and tensile rock strength. Regions of the parameter space are coloured in red where
(A) melt diapirism is dominant, yellow where (B) decompaction channeling is observed and blue where (C) tensile fracturing emerges. Transitions from one
regime to the next occur (1) where fluid overpressure reaches the magnitude of tensile rock strength at low shear stresses (eq. 77), and (2) where shear stresses
reach the magnitude of tensile rock strength at high fluid pressure (eq. 78). Three panels at the bottom, marked (A), (B) and (C), give characteristic flow
patterns taken from representative runs of each regime, with dark blue arrows for the host rock, and red arrows for melt. A contour line encircles regions of
melt content over 5 per cent.

pc = �ρgδc equal to the tensile rock strength and solving for the
intrinsic rock viscosity η0 (contained in the definition of compaction
length) reveals that the level of viscosity at which volumetric fail-
ure may emerge, with given values for other material properties, is
proportional to the square of the tensile rock strength σT :

η0 = φ

(1 − φ)

(
σT

�ρg

)2

K −1
D . (77)

The second regime boundary between decompaction channels
and tensile fractures occurs as shear stresses increase to the mag-
nitude of tensile rock strength at fluid pressures equal to the total
pressure. Setting the shear stress induced by the kinematic boundary
condition (2η∗ε̇BG) equal to σT and again solving for the intrinsic

solid viscosity η0 reveals that the level of viscosity necessary to
excite tensile failure at given values for other material properties is
a linear function of the tensile rock strength σT :

η0 = exp
(
αφφ
)

(1 − φ)

σT

2ε̇BG
. (78)

The two lines forming the boundaries between regimes in Fig. 13
are found by evaluating eqs (77) and (78) at a melt fraction of
1 per cent (other property values as in Table 2) and plotting the
resulting lines in log-log space. The emergence of the three melt
transport regimes in the numerical results stands in excellent agree-
ment with the predicted regime boundaries.

 at Joh G
utenberg U

niversitat on January 28, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/
http://gji.oxfordjournals.org/


Magma dynamics coupled to tectonics 1431

4.3 Model limitations

The main limitations of the proposed methodology are related to
numerical resolution. The physics of tectonically coupled melt ex-
traction involves processes spanning length scales of millimetres to
hundreds of kilometres and timescales spanning seconds to millions
of years. Any modelling approach needs to be limited to a certain
bandwidth of processes, as no simulation framework is able to con-
sider all relevant scales simultaneously. The method adopted here
consists of an approach to simulate magma dynamics as a contin-
uum process at spatial scales of hundreds of metres to hundreds of
kilometres, over timescales of hundreds to millions of years. Typical
rates of deformation therefore should remain below values of a few
metres per year. This focus leads to a choice of model resolutions
that render it necessary to filter out smaller scale processes, as, for
example, small-scale mixing in a magma chamber.

There are two aspects of our method where such limitations apply:
First, a lower cut-off viscosity is needed to ensure that length scales
of simulated flow features remain larger than the grid spacing, and
thus, numerical instabilities are avoided.

Second, fractures cannot localize below the scale of one grid
spacing. Both limitations are common to numerical models of geo-
dynamic processes and cannot be circumvented in any straightfor-
ward manner. In general, however, the characteristics of the features
of melt transport described in this study should not be greatly in-
fluenced by our choice of model resolution, as long as it is kept
in mind that both speed and complexity of flow features in re-
gions of very high melt fraction upwards of 60 per cent are likely
underestimated, and that tensile and shear fractures may only lo-
calize to grid level and thus efficiency of melt transport by dyking
is likely underestimated. However, even with these limitations, the
spontaneous and self-consistent emergence of melt-bearing tensile
fracturing presents an interesting opportunity for the computational
study of magma dynamics in a host rock that may undergo both
fracture and flow.

In this study, we focussed on two-dimensional simulations with
moderate numerical resolutions. We employed direct solvers in
combination with a fixed point iteration method to deal with non-
linearities. If one wishes to solve the same set of equations in three
dimensions at sufficiently large resolutions, efficient (multigrid) it-
erative methods need to be tested, which is likely to be challenging.
Furthermore, adaptive mesh refinement methods could prove help-
ful to better resolve the tensile dykes in our models.

Another model limitation relates to the fact that the proposed
methodology concentrates on the mechanical side of magma dy-
namics in lithosphere and crust, thereby neglecting the thermal and
chemical evolution that a magmatic system would undergo. The
fundamental regimes of melt transport described here are expected
to equally apply to fully coupled thermochemical simulations of
magma dynamics, even though a greater wealth of possible features
is expected to be uncovered, as many feedbacks between composi-
tion, temperature, pressure and stress will modify the style of melt
transport.

5 C O N C LU S I O N S

In this study, we described how to include visco-elasto-plastic con-
stitutive laws for both shear and compaction deformation in an oth-
erwise standard numerical model of two-phase magma dynamics
and discussed how to solve it numerically in two dimensions. The
proposed formulation is found able to capture the most important
modes of melt extraction that are to be expected in a tectonically

active lithosphere and crust. Three regimes of melt transport emerge
in sequence and sometimes overlap, as the intrinsic viscosity of the
host rock increases with decreasing temperatures from the astheno-
sphere towards the surface. These regimes are (i) melt diapirism,
(ii) decompaction channeling and (iii) tensile failure. However, to
physically quantify the detailed properties of each of these deforma-
tion regimes, a more thorough investigation of the model parameter
space and choice of boundary conditions is required. In particular,
the regime of decompaction channeling deserves further investiga-
tion, as the underlying physics are not yet fully understood.

The main strength of the proposed approach is the ability to
simulate magma dynamics in a host rock undergoing both fracture
and flow within a self-consistent physical framework. This study
mainly aimed at introducing the visco-elasto-plastic two-phase rhe-
ology and demonstrating its potential. The proposed formulation
of the two-phase flow equations and their numerical implementa-
tion has been developed using operators and techniques utilized
in standard finite-element Stokes flow discretizations. The evident
similarity between these two types of computational problems sug-
gests that much of the experience gained from Stokes flow mod-
elling of lithosphere deformation may straightforwardly be applied
to tackle tectonically coupled magma dynamics problems in the fu-
ture. Moreover, coupling such models with energy conservation and
magmatic evolution will allow to address various open problems in
the field of igneous rock formation.
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A P P E N D I X A : N U M E R I C A L M E T H O D

A.1 Implementation of governing equations

To find a suitable implementation of the conservation eqs (57)–(59),
we follow a similar strategy as is used for implementing variable
viscosity Stokes flow in finite-element modelling (Zienkiewicz et al.
2005). First, eqs (57)–(59) are rewritten in a simplified matrix–
vector form in terms of the solution variables to give⎡
⎢⎢⎣

BT DB −G −G

−GT −GT KDG 0

−GT 0 −C

⎤
⎥⎥⎦
⎡
⎢⎢⎣

vs

Pf

Pc

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

ρgẑ − BT χ∗
τ τ̃ o

s

GT KDρ f gẑ

−Cχ∗
p�Po

⎤
⎥⎥⎦ ,

(A1)

with the volumetric rheological constant defined as C = 1/ξ ∗
eff , and

using the following relation for the deviatoric stress tensor

τ = DBvs + χ∗
τ τ̃ o

s , (A2)

where the operator B is used to obtain strain rates from the velocity
field

B =

⎡
⎢⎢⎣

∂x 0

0 ∂y

∂y ∂x

⎤
⎥⎥⎦ . (A3)

For shorter notation, we use ∂x to denote a partial derivative with
respect to coordinate x. G is the gradient operator defined as

G =
[

∂x

∂y

]
. (A4)

The constitutive tensor for deviatoric stresses D contains the effec-
tive shear viscosity of the solid phase:

D = η∗
eff

⎡
⎢⎢⎣

4
/

3 −2
/

3 0

−2
/

3 4
/

3 0

0 0 1

⎤
⎥⎥⎦ . (A5)

The Darcy tensor KD contains the Darcy coefficients K D,i j (x, y) =
kφ/η f in direction of coordinates, which in this study are kept
isotropic, but could theoretically describe an anisotropic perme-
ability structure:

KD =
[

K D,xx K D,xy

K D,yx K D,yy

]
. (A6)

In a second step, the problem is discretized on a rectangular
finite-element mesh. Solid velocity and fluid pressure are approxi-
mated on Q1 elements with their respective linear shape functions
Nv = [N1 N1 N2 N2 N3 N3 N4 N4] and N f = [N1 N2 N3 N4], whereas
compaction pressure is defined as piecewise constant on P0 elements
with shape functions Np = 1. After reformulating the equations in

the weak form, we arrive at the following expression (see below for
the detailed finite-element formulation of each submatrix)⎡
⎢⎢⎣

VV VF VC

VFT FF 0

VCT 0 CC

⎤
⎥⎥⎦
⎡
⎢⎢⎣

�
vs

�
p f

�
pc

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

rv

r f

rc

⎤
⎥⎥⎦ , (A7)

which are compactly expressed as

Lx = r. (A8)

Here, L is the global stiffness matrix, x is the solution vector con-
taining the discretized solution variables

�
vs ,

�
p f and

�
pc, and r the

right-hand-side vector containing all forcing terms. The coefficient
matrices VV, VF and VC contain coefficients related to solid de-
viatoric stress divergence and gradients of fluid and compaction
pressure, respectively. The matrix FF contains coefficients related
to the divergence of the Darcy flux and CC contains coefficients
related to compaction/decompaction rheology of the host rock.The
coefficient matrices arising from the finite-element discretization
take the following form:

VV =
∫
V

�

BT D
�

BdV , FF = −
∫
V

�

GT
f KD

�

G f dV ,

VF = −
∫
V

�

GvN f dV , CC = −
∫
V

NT
p NpCdV ,

VC = −
∫
V

�

GvNcdV , (A9)

where
�

B,
�

Gv and
�

G f are the discretized counterparts of the strain rate
and gradient operators introduced above (eqs A1–A4), containing
suitably arranged derivatives of the linear shape functions:

�

B =

⎡
⎢⎢⎣

∂x N1 0 ∂x N2 0 ∂x N3 0 ∂x N4 0

0 ∂y N1 0 ∂y N2 0 ∂y N3 0 ∂y N4

∂y N1 ∂x N1 ∂y N2 ∂x N2 ∂y N3 ∂x N3 ∂y N4 ∂x N4

⎤
⎥⎥⎦ ,

�

Gv=
[
∂x N1 ∂y N1 ∂x N2 ∂y N2 ∂x N3 ∂y N3 ∂x N4 ∂y N4

]
,

�

G f =
[

∂x N1 ∂x N2 ∂x N3 ∂x N4

∂y N1 ∂y N2 ∂y N3 ∂y N4

]
. (A10)

And finally, the components of the right-hand-side vector r are
defined as

rv =
∫
V

NT
v

[
ρgẑ − �

BT χ∗
τ

�

τ̃o
s

]
dV ,

r f =
∫
V

�

GT
f KDρ f gẑdV ,

rc = −
∫
V

NT
c Cχ∗

p�
�
podV , (A11)

where
�

τ̃o
s and �

�
po denote the discrete stresses and pressure dif-

ferences obtained from the previous time step, resulting from the
elastic stress rates that are discretized in order to derive the rheolog-
ical constitutive laws (eqs 23–27 and 33). The coefficients related to
solid velocity divergence in the mass conservation and compaction
equation can, due to the symmetry of the finite element formulation,

 at Joh G
utenberg U

niversitat on January 28, 2014
http://gji.oxfordjournals.org/

D
ow

nloaded from
 

http://gji.oxfordjournals.org/
http://gji.oxfordjournals.org/


Magma dynamics coupled to tectonics 1435

be expressed as the transpose matrices of the two pressure gradi-
ents, VFT and VCT . Therefore, since VV, FF and CC each are
symmetric (provided that the boundary conditions are set properly),
the matrix L is symmetric. Note that the formulation of the gov-
erning equations enables the discrete form of these equations to be
symmetric. Combining this symmetric property, together with the
fact that the bulk mass conservation and compaction equations (un-
like the incompressible Stokes mass conservation) have non-zero
diagonals, we expect to be able to exploit solution strategies which
have been developed to solve variable viscosity Stokes problems.

In this implementation, we solve the linear system of govern-
ing equations using Matlab’s ‘backslash’ direct solver. Some of the
coefficients in these equations, however, are nonlinear. The nonlin-
earity is caused by plasticity-related and melt-fraction-dependent
material properties, those being both effective viscosities, perme-
ability, pore modulus and bulk density. Therefore, we employ a
defect correction, fixed point iteration scheme (Picard) to solve
the system of nonlinear equations. During each nonlinear iteration,
nonlinear material properties in the submatrices VV, FF and CC
are updated to the current solution and the system is solved again
to update the solution. These nonlinear iterations are repeated until
the nonlinear residuals of the solution are decreased below a given
limit. The iteration procedure for solving the governing equations
is executed in the following sequence of steps (i and k denote the
current iterative step and time step, respectively).

1. Assemble the global stiffness matrix and right-hand-side vec-
tor using the values of nonlinear material properties from previous
time step (or initial condition at first time step): L(xk−1), r(xk−1).

2. Solve the full system as an initial solution guess for the non-
linear solve,

xi = L
(
xk−1
) \r
(
xk−1
)
. (A12)

3. Enter nonlinear iteration loop:

a. Update the nonlinear material properties according to the cur-
rent solution and re-assemble global stiffness matrix and right-hand-
side vector L(xi ), r(xi ).

b. Compute the nonlinear residual vector f(xi ) of the current
guess using the updated global stiffness matrix and right-hand-side
vector. Use the norm of residuals normalized by the norm of the
right-hand side ( f i ) to monitor convergence of nonlinear iterations:

f
(
xi
) = L

(
xi
)

xi − r
(
xi
)
, f i =

∥∥f (xi
)∥∥∥∥r (xi )
∥∥ . (A13)

c. Compute iterative update for current solution:

dx
(
xi
) = L

(
xi
) \ − f

(
xi
)
. (A14)

d. Update the current guess of solution using computed iterative
update:

xi+1 = L
(
xi
)+ dx

(
xi
)
. (A15)

e. Repeat steps a to d until converged and f i ≤ fcrit.

Generally, the convergence of these iterations is very well-
behaved with up to one order of magnitude reduction of the non-
linear residuals per iterative update. There are, however, a number
of issues concerning convergence of the nonlinear iterations espe-
cially relating to plasticity, and some other measures are required
to optimize the performance of the code; all of these are outlined in
more detail below.

A.2 Matrix scaling

Rather than using non-dimensionalized equations, a strategy oth-
erwise common in numerical modelling of magma dynamics
(Barcilon & Lovera 1989; Spiegelman 1993b), we use the dimen-
sional form of the two-phase problem in our simulation code. The
main advantage of a non-dimensional approach would be to ex-
tract non-dimensional numbers from the set of equations that help
to understand how physical processes are balanced against each
other. However, we prefer to separate this useful step of additional
analysis from the simulation of the actual physics, as it renders it
more straightforward to relate input or output parameter values to
physical quantities of interest (May & Moresi 2008).

Due to large variations in magnitude of some material proper-
ties (i.e. viscosity and permeability), the coefficients in the global
stiffness matrix L may vary by up to 10 orders of magnitude. Such
a matrix configuration is not optimal for use in a direct solver like
Matlab’s ‘backslash’. To improve solution stability and solver speed,
a scaling of the linear problem is applied with the use of a diago-
nal scaling matrix � (Pelletier et al. 1989). The scaled problem is
expressed as

x̂ = �L�\�r, x=�x̂, (A16)

where x̂ is the scaled solution vector resulting from the scaled
linear solve. The scaling matrix � is a diagonal matrix containing
elementwise scaling factors λel

v, f,c on its diagonal. One possible
choice of finding these scaling factors is related to the diagonal
coefficients of the unscaled global stiffness matrix itself:

� = 1√|L| I. (A17)

This choice leads to the diagonal entries of the scaling matrix to
be of order O(1). Scaling the linear problem may result in a solver
speed-up of up to 400 per cent with Matlab’s ‘backslash’ function,
which is due to the fact that Matlab chooses a more efficient factor-
ization based on the properties of the coefficient matrix.

A.3 Solver stabilization

As mentioned above, we use quadrilateral brick elements to dis-
cretize the two-phase problems. We chose a first-order element
type, primarily because it is the least expensive in terms of memory
requirements and solver time. We use linear Q1 shape functions for
solid velocity and fluid pressure. The linear shape functions facili-
tate the retrieval of strain rates and stresses from the solid velocity
gradients, as well as Darcy flux and fluid velocities from the fluid
pressure gradient. Compaction pressure mainly relates to rheology
and is therefore defined as piecewise constant on P0 elements, as
are all rheological parameters.

However, in the limit of zero melt fraction, the system of equa-
tions reduces to a Stokes flow problem (see Section 2.4.2) dis-
cretized on Q1Q1 elements. This element type is not LBB-stable
for a Stokes problem, and thus it will be susceptible to instabilities
in form of oscillating pressure solutions. Such instabilities mostly
occur in regions of the model, where the compaction length drops
below the resolution of the finite-element mesh due to a very small
or zero melt fraction.

One of the standard strategies used to stabilize the Q1Q1 Stokes
problem is the use of a Laplacian term, introducing a small amount
of diffusivity on the pressure field discretized on Q1 elements (El-
man et al. 2005). Such a term is naturally included in our set of
equations arising from the divergence of Darcy flux in the bulk
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mass conservation equation (eq. 58). In regions, where melt frac-
tion goes to zero, we therefore introduce a non-zero, lower cut-off
to the permeability field to ensure that the stabilizing effect of this
term on the fluid pressure field stays effective. A cut-off value of
1.e − 20 ≤ kcut-off ≤ 1.e − 18 is used in this study, depending on
the grid resolution.

A second instability linked to the use of linear elements is the
occurrence of checkerboard oscillations in the compaction pressure
field, especially around sharply localized zones of deformation due
to brittle plasticity. This instability may be avoided by applying
a small amount of smoothing to the quantities related to plastic
yielding, such as differential strain rates and compaction pressure.
The smoothing is accomplished by an operation representing an
averaging over adjacent elements. For a general property a on the
ith element of the jth row of the regular element mesh (with i, j
denoting the element indices of the regular mesh), we obtain the
smoothed field

�
a with the following relation:

�
ai, j = (1 − γ ) ai, j + γ

(
ai−1, j + ai+1, j + ai, j−1 + ai, j+1

)
. (A18)

The smoothing parameter is chosen as 0.01 ≤ γ ≤ 0.1. Do-
ing so does not qualitatively alter the solution, but renders it
slightly smoother by limiting solution variability from one element
to the next. We apply this smoothing to compaction pressure as
well as deviatoric and volumetric strain rate fields, and use these
smoothed values to update nonlinear material properties (see end of
Section A1.1).

As mentioned above, convergence of the nonlinear iterations is
typically very well-behaved. However, testing the code for various
geodynamically relevant setups, we find two major issues leading to
poor convergence of the nonlinear solver. The first occurs, when few
elements, usually located at sharp edges of brittle fracture zones,
go in and out of plastic yielding from one iteration to the next. This
oscillatory behaviour manifests itself in alternatively weakening and
strengthening the effective viscosity of those elements concerned.
To avoid this instability, we apply a rheological damping parameter
αrheo used to update deviatoric and volumetric viscosities from one
iterative step to the next as

[
η∗

eff , ξ
∗
eff

]i+1 =
([

η∗
eff , ξ

∗
eff

]i+1
)αrheo

([
η∗

eff , ξ
∗
eff

]i)1−αrheo
. (A19)

The second issue is related to plastic yielding representing a hor-
izontal cut-off in a stress–strain rate diagram. Around the cut-off
corner, where the yield criterion intersects the viscoelastic stress
curve, the nonlinear iterations are most susceptible to such oscilla-
tions. To avoid the issues related to a sharp cut-off corner, we may
calculate each visco-elasto-plastic effective viscosity (η∗

eff , ξ
∗
eff ) in

a way that it fits the stress–strain rate curve asymptotically, thus
avoiding the corner. These alternative plastic yield viscosities in-
troduce a small amount of additional weakening of material under
stress conditions just prior to reaching the yield stress. We use the
parameter 0 < βrheo < 1 to weight between the viscosities repre-
senting a cut-off or asymptotical stress curve, so as to avoid the
corner effect with as little additional pre-plastic yielding as possi-
ble. We calculate the effective visco-elasto-plastic viscosities in the
following way:[
η∗

eff , ξ
∗
eff

]cut-off = min
([

η∗
ve, ξ

∗
ve

]
,
[
η∗

eff , ξ
∗
eff

])
,

[
η∗

eff , ξ
∗
eff

]asympt = 1
1

[η∗
ve,ξ

∗
ve]

+ 1
[η∗

eff ,ξ
∗
eff ]

,

[
η∗

eff , ξ
∗
eff

] = ([η∗
eff , ξ

∗
eff

]cut-off
)βrheo

([
η∗

eff , ξ
∗
eff

]asympt
)1−βrheo

. (A20)

A.4 Limits of two-phase flow

In the presence of deep melt (pore space not interconnected to the
surface), the effective pressure generally varies around zero, thus
reducing plastic strength of the host rock to around cohesion. In
regions with very small fluid fraction, the assumption of an inter-
connected pore space sustaining any significant influence on plastic
rock strength becomes invalid. Therefore, we choose to fix com-
paction pressure to zero and set the effective pressure to equal the
total pressure, where φ < φcrit and introduce a parameter xφ indi-
cating the presence of fluid phase beyond the critical melt fraction
necessary for two-phase flow physics to become effective:

xφ =
{

0 for φ < φcrit,

1 for φ ≥ φcrit.
(A21)

The parameter xφ indicates where two-phase flow is active (i.e.
effective pressure is equal to compaction pressure, shear plasticity
is weakened, tensile plasticity is enabled) or inactive (i.e. effective
pressure is equal to total pressure, compaction pressure is held at
zero, shear plasticity is frictional, tensile plasticity is switched off,
kφ = kcut-off). The appropriate value to use for critical melt fraction
probably depends on the grain size and geometry of the host rock
as well as the viscosity of the melt (φcrit ∼ K D). For reasons of
simplicity, however, we use a constant critical melt fraction value
of φcrit = 0.1 per cent.

Additionally, in order to prevent extreme values for melt-fraction-
dependent properties where either fluid or solid fractions go to zero,
we cut off melt and solid fraction at 1.e−6 and 1.e−2, respectively,
wherever they go into the computation of any material-fraction-
dependent properties. For all other situations, we still let material
fractions go from 0 to 1.

A.5 Marker-in-cell advection

For the marker-in-cell advection scheme employed in this study,
material properties are generally defined on two sets of Lagrangian
marker particles, one each for properties of the host rock and of the
silicate melt phase. Each set of marker particles is then advected
with the respective velocity field. To update the material properties
according to the current solution variables, these are interpolated to
the marker particles after each solve. Material properties are only
interpolated to elements or nodes when required to evaluate the
weak form associated with the finite-element discretization.

Solid velocities and fluid pressures are defined on linear shape
functions and are thus consistently interpolated from nodes to mark-
ers using these shape functions. The nodal coordinates of each el-
ement are used to perform an inverse coordinate transformation
determining the local (or natural) coordinates ξ of each marker
within a given element. The four linear shape functions may now
be evaluated at the marker’s local coordinates Ni (ξm). Now, a sim-
ple operation will yield the interpolated property value am at each
marker’s location as

am =
∑

i

Ni (ξm)ai , (A22)

with ai the nodal values, and Ni are the corresponding linear shape
functions evaluated at local coordinates of marker m.

For the inverse interpolation, summing marker contributions am

found around each node means that the sum contains shape functions
that are evaluated in different local coordinate frames of the four
elements surrounding each node. To take into account that elements
might be slightly deformed in case of a free surface or kinematic
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boundary conditions, each contribution needs to be weighted by the
volume of each element, �Vel, leading to the following expression
for marker to node interpolation:

ai =
∑
m

am Ni (ξm) �Vel∑
m

Ni (ξm) �Vel
. (A23)

Element properties (i.e. compaction pressure, melt fraction and all
material properties like density, permeability, viscosity, etc.) are
defined piecewise constant over an element, which leads to a slightly
different interpolation procedure. The shape functions for element
properties are defined as unity; therefore, the interpolation from
elements to marker particles is a simple matter of copying element
properties (ael) to all markers located within an element:

am = ael. (A24)

The inverse interpolation from marker to elements is accom-
plished similarly to eq. (A23), only that the element volumes cancel
out, as the sum of marker properties is assembled in one element
only at one time:

ael =
∑
m

am

nel
, (A25)

with nel denoting the total number of marker particles found in an
element.

It has been found that using a harmonic averaging scheme to in-
terpolate viscosity from markers to elements leads to more accurate
results in the presence of large-viscosity contrasts (Deubelbeiss &
Kaus 2008). We applied the same logic to the permeability field as
well, as it may also vary over orders of magnitude, and thus use the
following relation for interpolations of viscosity and permeability
from markers to elements:

ael = nel∑
m

1
/

am

. (A26)

In order to ensure an accurate time evolution, we update time-
dependent properties on markers incrementally as

am (t + �t) = am (t) + [ael (t + �t) − ael (t)] , (A27)

where each marker property is updated with the incremental change
the property ael has experienced during the current time step. Such
incremental updates coupled with strongly variable velocity fields
may lead to artificial heterogeneities in the marker values. These
may be avoided by applying a small amount of subgrid diffusion
to such marker fields (Gerya & Yuen 2003), accomplished by the
following operation:

am = (1 − κsub) am + κsuba (xm) , (A28)

with a(xm) being the property value fully interpolated from nodes to
marker position. The subgrid diffusion coefficient is chosen at small
values of 0.001 ≤ κsub ≤ 0.1. Incremental time updates combined
with subgrid diffusion are applied to compaction pressure Pc and
solid deviatoric stresses τ s (both time-dependent due to elastic stress
build-up), and melt fraction φ.

A final issue to consider when employing a marker-in-cell advec-
tion scheme in two-phase flow is that both solid and fluid velocity
fields are divergent, thus accumulating marker particles in regions of
υ̇s < 0, and creating gaps in the marker distribution where υ̇s > 0.
We have introduced a particle reseeding algorithm in our code to
ensure that the marker distribution remains approximately uniform.
If the number of markers per element differs from the initial value

by more than 25 per cent, a new set of evenly distributed markers
is inserted into the element under consideration. Marker proper-
ties of newly inserted particles are copied from the nearest particle
presently located in that element. After this reseeding operation, the
original markers in the element under treatment are discarded.

The complete sequence of operations performed to accomplish
marker-in-cell advection after a completed solver cycle during a
given time step is outlined here:

1. Update material properties and solution variable fields on
markers according to the shape functions on which they are dis-
cretized (eqs A22 and A24). Time-dependent fields are updated
incrementally according to eq. (A27).

2. Move two sets of marker particles according to the solid and
fluid velocity field, respectively, to obtain new location of each
marker in global coordinates xm . We employ a 4th-order Runge–
Kutta scheme to ensure accuracy of advective transport.

3. Identify which markers are located in each element after ad-
vection. This is accomplished efficiently through a closest point
algorithm provided by Matlab Central (Tagliasacchi 2008).

4. Calculate local coordinates of each marker particle ξm inside
an element with nodal coordinates xi by solving the inverse of the
nonlinear equation describing the element geometry

xm =
∑

i

Ni (ξm)xi . (A29)

Eq. (A29) is solved by employing a Picard iterative procedure.
5. Interpolate material properties and solution variable fields

back to elements and nodes.
6. Check number of markers per element after advection.

Add/delete markers where necessary.
7. Apply subgrid diffusion according to eq. (A28) to time-

dependent properties.
8. Correct time-dependent marker fields for potential inaccura-

cies introduced by either adding/deleting markers or applying sub-
grid diffusion, using a correction �ael found by comparing interpo-
lated values on elements before to interpolated values on elements
after adding/deleting and/or subgrid diffusion:

�ael =
⎛
⎝
∑
m

am

nel

⎞
⎠

before

−
⎛
⎝
∑
m

am

nel

⎞
⎠

after

,

�
am = am + �ael. (A30)

The resulting advection scheme is both robust and accurate and
avoids numerical diffusion that is inevitable with most grid-based
advection schemes. The only drawback here is the large number of
markers (16–25 particles per element) needed to achieve adequate
resolution. However, if appropriate infrastructure is available, the
marker treatment may nevertheless be done efficiently. In the case
of this study, the factor limiting computational speed is the direct
solver, using up to five times more CPU-time per time step than the
marker-in-cell treatment.

A P P E N D I X B : C O D E B E N C H M A R K S

B.1 Rayleigh–Taylor benchmarks

The methodology presented above reduces to the standard Stokes
flow problem in the absence of any melt phase. In typical appli-
cations of melt extraction from the upper mantle through litho-
sphere and crust, up to 90 per cent of the model domain may
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Figure B1. Relative growth rate q plotted against aspect ratio λ/H for
a two-layer compositional RT-instability. Blue lines indicate analytical so-
lutions, red circles mark numerical results of individual runs at viscosity
contrasts between the two layers of ηupper/ηlower = 100 (uppermost curve),
ηupper/ηlower = 10 (middle curve) and ηupper/ηlower = 1 (lowermost curve).

remain unmolten for the duration of the simulation. Therefore, we
need to ensure that the numerical results for unmolten material
reproduce some common features of Stokes flow, such as compo-
sitional Rayleigh–Taylor (RT) instabilities. Here, we present two
benchmark problems employing a two-layer compositional model
(layer 2 on top of layer 1) with an inverse density difference of
�ρc = ρupper − ρlower (lower density layer below) and a small si-
nusoidal initial amplitude perturbation that will give rise to a RT
instability.

B.1.1 RT growth rate spectrum benchmark

For a two-layer instability with small-amplitude perturbation, the
initial growth rate is known analytically (Ramberg 1981). Plotting
this growth rate at various wave length λ of initial perturbation rela-
tive to the model box thickness H results in a RT growth rate spec-
trum, revealing a maximum growth rate corresponding to a certain
wave length. Such a growth rate depends on a number of parameters,
notably the viscosity contrast between the two layers. For a model
box of depth H , a layer thickness of H/2, a constant density dif-
ference �ρc, a viscosity contrast of ηupper/ηlower = [1, 10, 100] and
an initial amplitude perturbation of a = a0 cos 2π/λ with a0 � H
a very small amplitude, the growth rate spectrum given in Fig. B1
is obtained, run at a numerical resolution of 160×80 elements. The
numerical data fit the analytical spectrum very well for all three
viscosity contrasts we considered.

B.1.2 Van Keken benchmark

This next benchmark problem (Van Keken et al. 1997) again em-
ploys a two-layer compositional RT-instability. Rather than focusing
on initial growth rates, this benchmark deals with the long-term evo-
lution of an isoviscous compositional overturn problem and thus will
above all test the accuracy of the marker-in-cell advection scheme
over long-time evolutions. The initial setup features a model box of
depth H , a buoyant bottom layer of thickness H/5, an aspect ratio

Figure B2. (a) Compositional field of Van Keken convection benchmark
after non-dimensional model time t = 1500; (b) root-mean-square velocity
evolution with time of the same benchmark run, with peak velocities reached
at t = 211, in agreement with the benchmark results.

of ra = 0.9142 (set to this value as it corresponds to the maximum
growth rate of a RT-instability of given geometry), a density contrast
�ρc, an isoviscous rheology (η2/η1 = 1) and an initial amplitude of
a = 0.02H sin π/ra . This simulation was performed using a mesh
of 200×200 elements containing 25 markers per element. Markers
are advected with a 4th-order Runge–Kutta scheme along the solid
velocity field.

The results at non-dimensional model time of 1500 are given
along with the evolution of rms velocity over time in Fig. B2.
The peak velocity occurs at a non-dimensional time of t = 211.
Please refer to the original paper of Van Keken et al. (1997) for a
comparison of these results. Both the timing of the layer overturn
as well as the shape of the resulting flow patterns compares well
with results presented in the original paper, leading us to conclude
that the advection scheme in our code is able to accurately advect
material properties in problems with large total deformation.

B.2 Visco-elasto-plastic benchmarks

An important feature of visco-elasto-plastic Stokes flow of litho-
sphere and crust is the interplay of viscous, elastic and plastic modes
of deformation. To demonstrate the functionality of the visco-elasto-
plastic rheology, we present three benchmark problems testing vis-
coelastic deviatoric stress build-up and plastic shear failure.
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Figure B3. Viscoelastic stress evolution with time under pure shear de-
formation. The black line gives analytical stress solution, the dark green
horizontal line indicates the plastic failure criterion, red circles mark nu-
merical results for a run without plastic failure rheology and blue circles
mark results of a run with plastic failure switched on.

B.2.1 Visco-elasto-plastic evolution of shear stress

In a homogeneous 0-D numerical experiment under pure shear im-
posed by constant strain rate side boundaries (ε̇′

BG), the stress due to
viscoelastic deviatoric deformation in the model box should evolve
according to the relation τ II = 2ηε̇′

BG[1 − exp(−Gt/η)]. If plastic
shear failure is considered as well, the deviatoric stress will be lim-
ited by the given failure criterion τ II ≤ σy . We have performed two
such 0-D tests, the first one allowing only the viscous and elastic
modes of deformation, whereas in the second test plastic shear fail-
ure is considered as well. The numerical results depicted in Fig. B3
show exact agreement with the analytically predicted stress curve;
therefore, we are confident that the visco-elasto-plastic stress evo-
lution is reproduced accurately by our rheological implementation.

B.2.2 Visco-elasto-plastic evolution of compaction stress

Similarly, in a homogeneous 0-D numerical experiment under
volumetric expansion imposed by constant strain rate boundaries
(υ̇BG), the compaction due to viscoelastic volumetric deforma-
tion in the model box should evolve according to the relation
Pc = −(1 − φ)ξ υ̇BG[1 − exp(−Kφ t/ξ )]. If plastic shear failure is
considered as well, the compaction pressure will be limited by the
given failure criterion Pc ≥ Py . We have performed two such 0-
D tests, the first one allowing only the viscous and elastic modes
of deformation, whereas in the second test plastic shear failure
is considered as well. The numerical results depicted in Fig. B4
again show exact agreement with the analytically predicted pres-
sure curve, which illustrates that the visco-elasto-plastic pressure
evolution is implemented accurately as well.

B.2.3 Viscoelastic bending beam

For this next benchmark problem, we employ an initial composi-
tional field representing a dominantly elastic beam, fixed to, and
protruding horizontally from the left wall of the model box. Sur-
rounding the elastic beam is a viscous, but inelastic fluid. All
boundaries are free slip, except for the left wall, which is set
to no slip in order to keep the bending beam fixed to the wall.
The beam has a higher density than the surrounding fluid and

Figure B4. Viscoelastic pressure evolution with time under constant volu-
metric expansion. The black line gives analytical pressure solution, the dark
green horizontal line indicates the plastic failure criterion, red circles mark
numerical results for a run without plastic failure rheology and blue circles
mark results of a run with plastic failure included. Note that the positive
slope of the viscoelastic pressure curve is due to the steadily increasing melt
fraction caused by the imposed constant matrix expansion.

thus will bend down elastically driven by gravity. After the beam
has accumulated some elastic strain through bending down, we
switch off gravity. If the stress evolution is implemented accu-
rately, the elastic beam should now, free from the pull of gravity,
move upwards again and restore its initial position. We run this
setup twice, with constant density difference and constant prop-
erties of the fluid (�ρc = 500 kg m−3, ηfluid = 1e + 18 Pa s and
Gfluid = 1e + 11 Pa), while varying the viscosity of the bending
beam (first run ηbeam = 1e + 24 Pa s, Gbeam = 1e + 10 Pa; second
run ηbeam = 5e + 22 Pa s, same shear modulus). This choice of
parameters leads to a Maxwell time tm = 0.32 yr for the back-
ground fluid and Maxwell times of tm = 3.2 Myr (first run) and
tm = 0.16 Myr (second run), meaning that the deformation in this
benchmark problem, which occurs on a timescale of thousands to
a million years, will lead to dominantly viscous deformation in
the fluid, and dominantly elastic behaviour of the beam in the first
run, and mixed viscoelastic deformation of the beam in the second
run. The numerical resolution used was 300×200 elements, with
16 markers per elements for stress advection.

Two time frames of each run, given in Fig. B5, demonstrate how,
after gravity is switched off at 50 kyr model time, the dominantly
elastic beam of the first run recovers all elastic deformation and
thus returns to its initial position. The mixed viscoelastic beam of
the second run, however, only recovers part of the total deforma-
tion. These results demonstrate how the viscoelastic rheology may
represent both purely elastic deformation, as well as intermediate
combinations of restorable elastic strain and non-restorable viscous
flow.

B.2.4 Visco-elasto-plastic shear bands

Plastic shear failure under pure shear extension or compression
leads to the formation shear bands at characteristic angles. A homo-
geneous 2-D test setup with a small, circular weak inclusion in the
middle should produce shear bands with an angle of around 60◦ rela-
tive to the horizontal direction under extension, whereas shear bands
at an angle of around 30◦ are to be expected under compression.
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Figure B5. Two time frames of two benchmark runs featuring (a) a dominantly elastic beam (red colour, η = 1e + 24 Pa s, G = 1e + 10 Pa, tm = 3.2 Myr),
and (b) a mixed viscoelastic beam (red colour, η = 5e + 22 Pa s, G = 1e + 10 Pa, tm = 0.16 Myr), each bending inside a box of viscous fluid (blue colours),
given at time of maximum deformation (panels to the left) and after full relaxation, after gravity was switched off (panels to the right). Black line indicates the
initial level of the beam for reference. As expected, the elastic beam fully recovers, whereas the viscoelastic beam only partly recovers.

Fig. B6 displays the results of this test, run on a mesh of 240×120 el-
ements, at a reference viscosity of η0 = 1e + 23 Pa s, a shear mod-
ulus of G = 10 GPa, a cohesion of C = 100 MPa, a friction angle
of ϕ = 30◦ and a background strain rate of ε̇′ = ±1e − 14 s−1. The
results demonstrate that our implementation of viscoelastic stress
build-up to plastic failure leads to the formation of shear bands at the
correct characteristic angles under both extension and compression.

B.3 Solitary wave benchmark

A well-known feature of geodynamic two-phase flow equations such
as the ones used in our code is the emergence of melt fraction insta-
bilities in the form of solitary waves. These have been studied both
analytically (Scott & Stevenson 1984; Barcilon & Richter 1986) and
numerically (Barcilon & Lovera 1989; Spiegelman 1993b; Con-
nolly & Podladchikov 1998) in the context of magma dynamics.
Solitary waves thus serve as an apt benchmark problem for nu-
merical codes of magma migration (Simpson & Spiegelman 2011;
Richard et al. 2012). We perform runs on a pseudo-1-D profile of
uniform background melt fraction with depth, perturbed by a dis-
crete representation of a 1-D solitary wave solution. If our numerical
implementation is accurate, this initial wave with relative amplitude
Aφ should propagate upwards at constant non-dimensional speed
of c = 2Aφ + 1 without changing shape. Note, however, that this
analytical solution is valid for the small melt fraction limit only.

We employ a series of runs at various resolutions in space and
time. The 2-D finite-element mesh is used as a pseudo-1-D section

Figure B6. Results of two benchmark runs testing the emergence of char-
acteristic angled shear bands under (a) pure shear extensional and (b) pure
shear compressional boundary conditions. Displayed are deviatoric differ-
ential strain rates relative to background strain rate of ε̇BG = 1e − 14 s−1

in logarithmic scaled.
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by keeping the number of elements in horizontal direction constant
at nx = 4. Vertical resolution is varied as multiples by two of the
coarsest grid with nz = 100. The depth of the modelled profile is
D = 200δ0, with δ0 being the compaction length at background
melt fraction of 0.1 per cent. Other material parameters are chosen
to represent conditions in a partially molten upper mantle at very
low melt fractions. Deviatoric and volumetric solid viscosities are
held equal and constant at 1.e20 Pa s, fluid viscosity is 100 Pa s and
permeability at background melt fraction is 5.e−18 m−2, with a
melt fraction exponent in the permeability law of n = 3.

To quantify the accuracy of the solution, three measures arise
naturally from the problem set: (i) the shape of the solitary wave
should be conserved; (ii) the shape of the compaction pressure
anomaly linked to the solitary wave should be conserved; (iii) the
speed of wave propagation should be constant. To determine all
three quantities, we need to find the phase shift �, defined as the
difference between the analytically predicted and the numerically
computed z-coordinate of the wave peak with time (Simpson &
Spiegelman 2011). In the following, we will denote numerically
computed quantities with a curled over bar. The phase shift is given
by

� = z p − z̃ p. (B1)

The numerical phase speed may subsequently be found from the
relationship

c̃ = c − �

t
. (B2)

We measure the relative error of the phase speed as

ec =
∣∣∣∣ c̃c − 1

∣∣∣∣ . (B3)

The preservation of the shape of melt fraction and compaction
pressure fields is quantified by computing the root-mean-square er-
ror of the melt fraction and compaction pressure solution normalized
by their respective peak amplitude as

e f =
∥∥[φ̃ (z) − φ0 (z − �)

]/
Aφ

∥∥
2√

nz
,

ep =
∥∥[P̃c (z) − P0

c (z − �)
]/

Ap

∥∥
2√

nz
. (B4)

The numerical resolution is chosen relative to the compaction
length at background melt fraction so that hz = [1/2, 1, 2, 4]δ0.
The simulations of each spatial resolution are run with different time
step lengths. Time steps are chosen as multiples of the courant step
for the appropriate phase speed c so that �t = [1/4, 1/2, 1, 2]δ0/c
with resulting courant numbers CLF = c/hz = [1/8 , 1/4 , 1/2 , 1].
The models were run long enough for the solitary wave to travel a
distance at least four times greater than its wave length.

Fig. B7 displays the shape of the numerically computed solitary
wave along with the compaction pressure anomaly after it had trav-
elled approximately three times its own wave length. The analytical
solution is shown for comparison (black line). Two numerical solu-
tions are presented in this figure, one computed with a first-order
accurate time evolution for melt fraction (backward finite difference
in time, blue line), and another one computed with the second-order
accurate time evolution used in all other computations in this study
(Crank–Nicholson scheme in time, see eq. 64, red line). It is evi-
dent that the first-order accurate melt fraction evolution leads to a
strongly diffused wave peak. The second-order melt fraction evolu-

Figure B7. Melt fraction (top panel) and compaction pressure (lower panel)
plotted against vertical coordinate for the solitary wave benchmark. Black
lines give analytical solution for 1-D solitary wave, blue curves indicate
numerical results obtained with a first-order accurate (backward finite dif-
ference) time discretization for melt fraction evolution, red curves indicate
numerical results obtained with a second-order accurate (Crank–Nicholson
scheme) time discretization for melt fraction evolution.

Figure B8. Results of spatial convergence test, plotting errors of compaction
pressure solution relative to 1-D analytical solution (blue asterisks) and
relative to 2-D high-resolution numerical solution (red asterisks), plotted
against grid resolution relative to background compaction length h/δ0. Black
line gives a quadratic convergence trend as reference.

tion, however, retains the shape of the solitary wave very well, but
propagates slightly slower than the analytical solution.

Comparing the error in the initial pressure solution in runs with
increasing spatial resolution reveals that the accuracy at first con-
verges almost quadratically with increasing resolution, but then
saturates at a level of around 2.e−3 (Fig. B8). Further convergence
of the numerical solution cannot be expected, as the solitary wave
solution used as a benchmark is in reality the solution of slightly
simplified system of equations, whereas our code solves the full
equations of two-phase flow. If we compare the same error mea-
surement to a very high-resolution numerical solution, the quadratic
convergence is perfect, demonstrating the coherent functionality of
the solver.

Comparing the error in the shape of the solitary wave and the
compaction pressure field at a given time towards the end of each
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Figure B9. Results of temporal convergence test, giving errors of melt
fraction and compaction pressure solution obtained with a first-order ac-
curate time discretization (red and blue asterisks), and melt fraction and
compaction pressure errors obtained with a second-order accurate time dis-
cretization, plotting against distance a solitary wave travels per time step
relative to background compaction length c�t/δ0. Black lines give a linear
and a quadratic convergence trends as reference.

run, we find that the time-dependent solution converges quadrati-
cally with smaller time step size runs employing the second-order
melt fraction evolution scheme, and linearly for runs employing the
first-order melt fraction evolution scheme (Fig. B9).

The results of this suite of benchmarks sufficiently demonstrate
the functionality and accuracy of the code developed in this study.
Moreover, it is evidently advisable to only use second-order melt
fraction evolution (eq. 64), as the time-dependent error of melt
fraction propagation would be considerable otherwise.

S U P P O RT I N G I N F O R M AT I O N

Additional Supporting Information may be found in the online ver-
sion of this article:

Movie S1. Animation of melt fraction and melt velocity arrows of
run d118r2 (melt diapirism). Colours and scaling the same as in
Fig. 4.
Movie S2. Animation of volumetric strain rate and solid velocity
arrows of run d118r2 (melt diapirism). Colours and scaling the same
as in Fig. 4.
Movie S3. Animation of melt fraction and melt velocity arrows
of run d121r4 (decompaction channeling). Colours and scaling the
same as in Fig. 6.
Movie S4. Animation of volumetric strain rate and solid velocity ar-
rows of run d121r4 (decompaction channeling). Colours and scaling
the same as in Fig. 6.
Movie S5. Animation of melt fraction and melt velocity arrows of
run d122r4 (tensile fracturing). Colours and scaling the same as in
Fig. 8.
Movie S6. Animation of volumetric strain rate and solid velocity
arrows of run d122r4 (tensile fracturing). Colours and scaling the
same as in Fig. 8.
Movie S7. Animation of melt fraction and melt velocity arrows of
melt extraction through a thermally younger lithosphere. Colours
and scaling the same as in Fig. 11.
Movie S8. Animation of shear strain rate and solid velocity arrows
of melt extraction through a thermally younger lithosphere. Colours
and scaling the same as in Fig. 11.
Movie S9. Animation of melt fraction and melt velocity arrows of
melt extraction through a thermally older lithosphere. Colours and
scaling the same as in Fig. 12.
Movie S10. Animation of shear strain rate and solid velocity arrows
of melt extraction through a thermally older lithosphere. Colours
and scaling the same as in Fig. 12 (http://gji.oxfordjournals.org/
lookup/suppl/doi:10.1093/gji/ggt306/-/DC1).

Please note: Oxford University Press are not responsible for the
content or functionality of any supporting materials supplied by
the authors. Any queries (other than missing material) should be
directed to the corresponding author for the article.
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