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Governing equations

Grain size evolution law

In this study, we use a grain size evolution law which is derived from first principles

(Ricard and Bercovici, 2009) based on the assumption of a self similar and lognormal grain

size distribution (Rozel et al., 2011). We will therefore shortly summarise the main properties

and implications of a self similar and lognormal distribution before describing the grain size

evolution law. For a more detailed derivation, we refer to Ricard and Bercovici (2009) and

Rozel et al. (2011).
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Self similar and lognormal grain size distribution

Inspired by various studies, Rozel et al. (2011) assume the self similarity of the grain size

distribution. The number dn of grains of size R′ per unit volume is simply

dn(R′) = A(R)H
(
R′

R

)
dR′ (S.1)

where R is the mean grain size of the distribution. This means that when normalized by

its amplitude A(R) (in m−4), the distribution as a function of the normalized grain size

u = R′/R is always the same. By definition the sum of the volumes of all the grains per

unit volume is 1 which implies.

A(R) = 3

R4
∫
4πu3H(u)du

(S.2)

Observations suggest that H(u) is roughly a lognormal distribution, which can be written

as:

H (u) =
1√
2πσu

exp

(
−(lnu)2

2σ2

)
(S.3)

The use of this lognormal distribution implies that∫ ∞
0

uaH (u) du = exp

(
a2σ2

2

)
= λa (S.4)

where a is a given real number and σ is the half-width of the lognormal distribution.

Grain boundary energy

The energy per unit volume, eR stored in the grain boundaries of a given grain size

distribution can be written as:

eR =

∫ ∞
0

4πγR′2A(R)H (R′/R) dR′ (S.5)
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where γ is the surface tension. Using (S.2), (S.5) can be written as:

eR =
3γ

R

∫∞
0
u2H (u) du∫∞

0
u3H (u) du

. (S.6)

The integrals in (S.6) can be replaced by λ2 and λ3:

eR =
3λ2γ

λ3R
(S.7)

Grain size evolution law

The grain size evolution law developed in Rozel et al. (2011) is written as

dR
dt

=
G

pRp−1 −
f0FR
γ
R2τ :ε̇dis (S.8)

where G = k0 exp (−Qg/RT ) is a growth term with a prefactor k0 and an activation energy

Qg, τ :ε̇ is the contraction of the stress and dislocation strain tensors,. FR = λ3/3λ2

is a constant factor which depends on the properties of the grain size distribution, with

λi = exp (i2σ2/2) and σ being the half-width of the grain size distribution. f0 (also called

lambda factor or Taylor-Quinney coefficient) denotes a partitioning factor that determines

how much of the work done in dislocation creep is used for grain size reduction (Austin and

Evans, 2007; Rozel et al., 2011). This term varies between 0 and 1 and has to be measured

in experiments and studies that indicate that it is both strain and temperature dependent

(Chrysochoos and Belmahjoub, 1992; Austin and Evans, 2009; Rozel et al., 2011). We can

now rearrange (S.8) to obtain an expression for the temporal change in (volume-specific)

grain boundary energy eR:

deR
dt

=
d

dt

(
γ

RFR

)
= f0τ :ε̇dis −

γG
pFR

1

Rp+1
(S.9)

where we assume that the surface tension is a constant, independent of temperature.
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Conservation of momentum and viscoelastic rheology

Assuming that intertial effects are negligible and that there are no body forces, conser-

vation of momentum can be written as:

∇.τ = 0 (S.10)

where τ is the stress tensor. The viscoelastic rheology of the slab is modeled using a Maxwell

model with shear modulus G:

ε̇ =
1

G
τ̇ + ε̇dis + ε̇dif (S.11)

where the total strain rate ε̇ equals the sum of the elastic strain rate 1
G

dτ
dt

and the strain

rates of dislocation creep ε̇dis and diffusion creep ε̇dif :

ε̇dis = Adise
−Qdis

RT τn−1II τ (S.12)

ε̇dif = Adife
−

Qdif
RT R−mτ (S.13)

Here τII denotes the second invariant of the stress tensor.

We can now introduce the volume-specific elastic energy eel = τ :τ/2G. As can be seen

from (S.11), deformation of a volume element results in a change in stress and thus also in

stored elastic energy. By contracting (S.11) with τ and rearranging we obtain an expression

for the temporal change in eel:

deel
dt

= τ :ε̇− τ :ε̇dis − τ :ε̇dif (S.14)
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Conservation of energy

In our model we assume that acceleration is negligible, thus the change in total energy

equals the change in internal energy U . The first law of thermodynamics states that a change

in internal energy in a closed system can only be achieved through either work W done by

(or done to) the system or heat supplied to the system Q. In differential form, it can be

written as:

dU

dt
= Q−W (S.15)

where the negative sign indicates that work is done by the system. This implies that

dU

dt
= τ :ε̇+ k∇2T (S.16)

We use Fouriers law for heat flux and assume that thermal conductivity is constant. The

internal energy in our system is also given by :

U = F + ST (S.17)

where F is the Helmholtz free energy and S the entropy. As U , F and S are volume-integrated

quantities, we can rewrite (S.16) in terms of specific properties:

ρḟ + ρṡT + ρsṪ = τ :ε̇+ k∇2T (S.18)

where lowercase letters denote specific properties and ˙denotes a time derivative. Keeping in

mind that the volume of our system is constant, we can replace s = −∂f/∂T which results

in:

ρḟ + ρṡT − ρ ∂f
∂T

Ṫ = τ :ε̇+ k∇2T (S.19)
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In the case of viscoelastic deformation coupled with grain size evolution, the Helmholtz free

energy is given by the sum of the specific elastic energy, the specific grain boundary energy

and the specific thermal energy:

f =
eel (τ)

ρ
+
eR (R)
ρ

+
eT (T )

ρ

=
1

ρ

τ :τ

2G
+

1

ρ

γ

RFR
+ cV T (S.20)

With the specific Helmholtz free energy being defined, the term ρṡT in (S.19) can now be

written as:

ρṡT = ρT
∂s

∂τ
:τ̇ + ρT

∂s

∂R
Ṙ+ ρT

∂s

∂T
Ṫ

= − ∂2f

∂τ∂T
:τ̇ − ∂2f

∂R∂T
Ṙ+ ρcV Ṫ (S.21)

where we made use of s = −∂f/∂T and cV = T (∂s/∂T ). With our definition of the specific

Helmholtz free energy, the first two terms with second derivatives on the right hand side of

the above equation equal zero. Therefore using (S.20) and ρṡT = ρcV Ṫ , (S.19) reads as:

1

G
τ :τ̇ − γ

R2FR
Ṙ+ ρcV Ṫ = τ :ε̇+ k∇2T (S.22)

which can be reordered to obtain:

ρcV Ṫ = k∇2T + τ :ε̇− 1

G
τ :τ̇ +

γ

R2FR
Ṙ. (S.23)

Replacing τ :ε̇ = 1
G
τ :τ̇ + τ :ε̇dis + τ :ε̇dif and Ṙ with (S.8) and reordering results in:

ρcV Ṫ = k
∂2T

∂y2
+ (1− f0) τ :ε̇dis + τ :ε̇dif +

γG
pFRRp+1

(S.24)

Note that the last term is related to the grain growth term in (S.8) and G is also dependent

on temperature.
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Numerical solution

As our model consists of a viscoelastic slab sheared under simple shear, the only nonzero

velocity component is in the x-direction and shear stress τxy is uniform in the slab and only

dependent on time, whereas the other components of the stress tensor can be regarded as

zero. By integration of (S.11) and reordering we then obtain an expression for the temporal

change in shear stress:

dτ

dt
= G

[
ε̇BG −

1

L

∫ L/2

−L/2
(ε̇dis + ε̇dif ) dy

]
(S.25)

where the background strain rate ε̇BG = v/L with v being the applied velocity difference

between the top and the bottom of the slab and L the thickness of the slab. If the domain

is homogeneous (S.25) reduces to:

dτ

dt
= G [ε̇BG − (ε̇dis + ε̇dif )] (S.26)

Likewise, the tensor contractions in (S.8) and (S.24) reduce to simple products.

0D model

We define the 0D model as a model where material parameters are homogeneous and

heat transfer is neglected. In this case, we have to solve a system of three coupled ordinary

differential equations (S.26),(S.8) and (S.24) (in their reduced form). As the system becomes

very stiff once thermal runaway occurs, we have to use a fully implicit solver to solve the

system of equations. This is done using the solver ode15i available in the commercial software

package MATLAB.

7



Table DR1. Rheological creep parameters used in this study (from Hirth and Kohlstedt,
2003).
Olivine flow law A [MPa−n µmm ] n m Ea [kJ mol−1]

dry dislocation creep 1.1 · 105 3.5 0 530
dry diffusion creep 1.5 · 109 1 3 375

1D model

In addition to the 0D model, we have to consider the diffusion of heat in the 1D model.

This is done by discretising the domain using finite differences and computing ∂T/∂t and

∂R/∂t at each node. ∂τ/∂t is computed using (S.25), where we compute the respective

strain rates at each node and then numerically integrate over the whole domain. As for the

0D model, this is done in the framework of the implicit solver ode15i.

Material parameters

In this study, we use different rheologies and grain growth parameters, which are listed

here. For diffusion and dislocation creep, we use the rheological parameters for dry olivine

given in Hirth and Kohlstedt (2003)(see tab.1). Grain growth parameters are taken from

Kameyama and Yuen (1997), Hiraga et al. (2010) and Tasaka et al. (2013) (see tab.2). The

remaining parameters can be found in tab.3.

Influence of the partitioning factor

In our study, we used a constant partitioning factor of f0 = 0.1. To test the influence

of the partitioning factor on the occurrence of thermal runaway, we also ran simulations

with f0 = 0.5 (which is a rather large value). In fig.S.1, we show the occurence of thermal
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Table DR2. Grain size evolution parameters used in this study.
Parameter Value Unit Name

general
γ 1 J m−2 surface tension1

σ 0.6 distribution half-width 2

f0 0.1 and 0.5 partitioning factor

pure Olivine
k0 607 µmp s−1 growth prefactor3
Eg 200 kJ/mol activation energy3

p 2 growth exponent 3

Fo-En mixture
k0 497075 µmp s−1 growth prefactor 4

Eg 300 kJ/mol activation energy 5

p 4 growth exponent4

1 Duyster and Stockhert (2001)
2 Rozel et al. (2011)
3 Kameyama and Yuen (1997)
4 Hiraga et al. (2010)
5 Tasaka et al. (2013)

Table DR3. Other parameters used in this study.
Parameter Value Unit Name

G 5 · 1010 Pa elastic shear modulus
κ 10−6 m2/s heat diffusivity
ρ 3300 kg/m3 density
c 1050 J/(kg K) heat capacity
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runaway for different scenarios and the corresponding stresses (compare with fig.3 in the

main paper). It can be seen that f0 does have a slight effect, but that it is rather limited,

the reason being that the partitioning factor is valid for the whole domain, thus grain size

reduction is also more efficient in the surrounding matrix and the relative effect of grain size

reduction approximately remains the same. Note however that transient stages are affected

by a different choice for f0, as grain size reduction is faster for larger values of f0 (see also

Herwegh et al., 2014).

Marcel Thielmann, Figure S3.pdf
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Figure DR1. Same as Fig.3, but for a partitioning factor f0 = 0.5. Only slight differences

can be observed compared to the results with f0 = 0.1 (the crossing of the runaway regime

boundary with the 600 MPa isoline occurs at slightly lower strain rates for f0 = 0.5)
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