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Project: 2D Stokes equations and geodynamic deformation

Introduction

The basis of basically all mantle convection and lithospheric dynamics codes are the so called Stokes
equations for slowly moving viscous fluids. Here we will describe the governing equations. There are
several ways to solve those equations, and the goal of this project is to use a staggered finite difference
approach in primitive variables. In normal words: we solve the governing equations for vx, vz (velocities)
and P (pressure). Staggered finite differences means that the different unknowns vx, vz, P are defined
at physically different grid points. The main challenges of this project are (1) having several variables
instead of only one (like e.g. temperature) and (2) do the bookkeeping for the present case that the
variables are at different grid points.

Governing equations

It is assumed that the rheology is incompressible and that the rheology is Newtonian viscous. In this
case, the governing equations are (see equation cheat sheet):
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It has been suggested that a particular nice way to solve these equations is to use a staggered grid
(more about this later) and to keep as variables vx, vz and P . Since there are three variables, we need
three equations. Substituting eqns. 4-6 into 2 and 3 leads to:
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Note that we added the term P
γ to the incompressibility equations. This is a ’trick’ called the penalty

method, which ensures that the system of equations does not become ill-posed. For this to work, γ
should be sufficiently large (∼ 104 or so).

Exercise

1. Discretize the equations (7-9) on a staggered grid as shown on fig. 1.

1



Numerische Methoden 1 – B.J.P. Kaus

i-1 i i+1 i+2

j-1

j+1

j P

Vx

Vz

dx

dz z,g

x

j-1/2

j+1/2

i-1/2 i+1/2

Figure 1: Staggered grid definition. Properties such as viscosity and density inside a control volume
(gray) are assumed to be constant. Moreover a constant spacing in x and z-direction is assumed.

2. A MATLAB subroutine is shown on fig. 3. The subroutine sets up the grid, the node numbering
and discretizes the incompressibility equations.
Add the discretization of the force balance equations (including the effects of gravity) into the
equation matrix A. Assume that the viscosity is constant µ = 1 in a first step, but density is
variable.
An example is given in how to verify that the incompressibility equation is incorporated correctly.
This is done by assuming a given (sinusoidal) function for let’s say vx (e.g. vx = cos(ωx) cos(ωz)).
From the incompressibility equation (eq. 1) a solution for vz than follows. By setting those solutions
in the c vector, we can compute Ac and verify that rhs for those equations is indeed zero.

3. Add free-slip boundary conditions on all sides (which means vz = 0, σxz = 0 on the lower and
upper boundaries and σxz = 0, vx = 0 on the side boundaries). Use fictious boundary points to
incorporate the σxz boundary conditions.

4. Assume a model domain x = [0, 1], z = [0, 1], and assume that the density below z = 0.1 cos(2πx)+
0.5 is 1, whereas the density above it is 2. Compute the velocity and pressure, and plot the velocity
vectors.

5. Write the code for the case of variable viscosity (which is relevant for the earth since rock properties
are a strong function of temperature).

6. Add random markers to your code, which describe different rocktypes. Create a routine that
computes a 2D density and viscosity field from the marker distribution and advect the markers
with the Stokes flow field. Now you have a code that you can use to model various geological
problems, such as diapirism, folding, mantle convection (provided you also compute the diffusion
equation)
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Figure 2: Staggered grid definition with the boundary points. Within the purple domain, the finite
difference scheme for center points can be applied. At the boundaries around, we have to apply special
boundary finite difference scheme’s, which employ fictious boundary nodes to correctly set the boundary
equations.
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%Staggered_Stokes

%

% Solve the 2D Stokes equations on a staggered grid, using the Vx,Vz,P

% formulation.

%

clear

% Material properties

% phase #1 phase #2

mu_vec = [1 1 ];

rho_vec = [1 2 ];

% Input parameters

Nx = 20;

Nz = .9*Nx;

W = 1;

H = 1;

g = 1;

% Setup the interface

x_int = 0:.01:W;

z_int = cos(x_int*2*pi/W)*1e-2 - 0.5;

% Setup the grids----------------------------------------------------------

dz = H/(Nz-1);

dx = W/(Nx-1);

[X2d,Z2d] = meshgrid(0:dx:W,-H:dz:0);

% Vx-grid

XVx = [X2d(2:end,:) + X2d(1:end-1,:)]/2;

ZVx = [Z2d(2:end,:) + Z2d(1:end-1,:)]/2;

% Vz-grid

XVz = [X2d(:,2:end) + X2d(:,1:end-1)]/2;

ZVz = [Z2d(:,2:end) + Z2d(:,1:end-1)]/2;

% P-grid

XP = [X2d(2:end,2:end) + X2d(1:end-1,1:end-1)]/2;

ZP = [Z2d(2:end,2:end) + Z2d(1:end-1,1:end-1)]/2;

%--------------------------------------------------------------------------

% Compute material properties from interface-------------------------------

% Properties are computed in the center of a control volume

Rho = ones(Nz-1,Nx-1)*rho_vec(2);

Mu = ones(Nz-1,Nx-1)*mu_vec(2);

z_int_intp = interp1(x_int,z_int,XP(1,:));

for ix = 1:length(z_int_intp)

ind = find(ZVz(:,1)<z_int_intp(ix));

Rho(ind(1:end-1),ix) = mu_vec(1);

Mu(ind(1:end-1),ix) = rho_vec(1);

fac = (z_int_intp(ix) - ZVz(ind(end),1))/dz;

Rho(ind(end),ix) = fac*rho_vec(1) + (1-fac)*rho_vec(2);

Mu(ind(end),ix) = fac*mu_vec( 2) + (1-fac)*mu_vec( 2);

end

%--------------------------------------------------------------------------

% Setup numbering scheme----------------------------------------------------

Number_Phase = zeros(Nz + Nz-1, Nx + Nx-1); % Create the general numbering scheme

Number_ind = zeros(Nz + Nz-1, Nx + Nx-1); % Create the general numbering scheme

Number_Vx = zeros(Nz-1,Nx );

Number_Vz = zeros(Nz ,Nx-1);

Number_P = zeros(Nz-1,Nx-1);

for ix=1:2:Nx+Nx-1, for iz=2:2:Nz+Nz-1, Number_Phase(iz,ix) = 1; end; end % Vx equations

for ix=2:2:Nx+Nx-1, for iz=1:2:Nz+Nz-1, Number_Phase(iz,ix) = 2; end; end % Vz equations

for ix=2:2:Nx+Nx-1, for iz=2:2:Nz+Nz-1, Number_Phase(iz,ix) = 3; end; end % P equations

num = 1;

for ix=1:size(Number_Phase,2)

for iz=1:size(Number_Phase,1)

if Number_Phase(iz,ix)~=0

Number_ind(iz,ix) = num;

num = num+1;

end

end

end

num_eqns = num-1;

ind_Vx = find(Number_Phase==1); Number_Vx(find(Number_Vx==0)) = Number_ind(ind_Vx);

ind_Vz = find(Number_Phase==2); Number_Vz(find(Number_Vz==0)) = Number_ind(ind_Vz);

ind_P = find(Number_Phase==3); Number_P (find(Number_P ==0)) = Number_ind(ind_P );

%--------------------------------------------------------------------------

% Setup the stiffness matrix

A = sparse(num_eqns,num_eqns);

Rhs_vec = zeros(num_eqns,1);

% Setup the incompressibility equations------------------------------------

ind_list = [];

ind_val = [];

%dVx/dx

[ind_list,ind_val] = Add_coeffs(ind_list,ind_val, Number_Vx(:,2:end ), ( 1/dx));

[ind_list,ind_val] = Add_coeffs(ind_list,ind_val, Number_Vx(:,1:end-1), (-1/dx));

%dVz/dz

[ind_list,ind_val] = Add_coeffs(ind_list,ind_val, Number_Vz(2:end,: ), ( 1/dz));

[ind_list,ind_val] = Add_coeffs(ind_list,ind_val, Number_Vz(1:end-1,:), (-1/dz));

% Add local equations to global matrix

for i=1:size(ind_list,2)

A = A + sparse([1:size(ind_list,1)].’,ind_list(:,i),ind_val(:,i),num_eqns,num_eqns);

end

num_incomp = length(ind_list);

%--------------------------------------------------------------------------

% % Perform testing of the system of equations-------------------------------

% % Setup some given matrixes

mu = mu_vec(1);

Vx = cos(XVx).*sin(ZVx);

Vz = -sin(XVz).*cos(ZVz);

P = 2*mu*sin(XP ).*sin(ZP );

C = zeros(num_eqns,1);

C(Number_Vx(:)) = Vx(:);

C(Number_Vz(:)) = Vz(:);

C(Number_P(:)) = P(:);

Rhs = A*C;

% Check whether the compressibility equations are implemented correctly

max(abs(Rhs(1:num_incomp)))

Figure 3: MATLAB script Staggered Stokes.m that sets up numbering, that matrix A and that solves
the incompressibility equations.
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function [ind_list,ind_val] = Add_coeffs(ind_list,ind_val,ind_add,val_add)

% Add coefficients to an array

%

if (length(val_add(:))==1)

val_add = ones(size(ind_add))*val_add;

end

ind_list = [ind_list, ind_add(:)];

ind_val = [ind_val , val_add(:)];

Figure 4: MATLAB script Add coeffs.m, used by Staggered Stokes.m.
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