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Geological processes such as mountain belt formation, subduction of tectonic plates and the
development of sedimentary basins occur on a million-year timescale and involve rocks that
have nonlinear visco-elasto-plastic material properties and experienced very large deformations.
In order to simulate such processes in 3D, we developed a scalable parallel code, LaMEM, that
employs a staggered finite difference discretisation combined with a marker and cell approach.
Here, we describe the numerical approach and discuss some case studies in which we employed
the code (i) to study the physics of crustal scale folding and faulting, (ii) to understand how
continental collision might result in mountain belt and plateau formation, (iii) how it can be
combined with an inversion strategy to constrain the rheology of the crust and lithosphere.

1 Introduction

Computational geodynamics uses numerical modelling to understand fundamental geo-
scientific questions such as: Why do we have plate tectonics on Earth and not on other
planets? How did mountain belts such as the Alps and the Himalaya form and what is
the role of erosion in this? At the same time, computational geodynamics also addresses
more practical questions related to the evolution of so-called fold-and-thrust-belts and salt
structures, which are closely linked with the majority of the world’s oil reservoirs. Nu-
merically, the problems are challenging as the rheology of rocks varies from elasto-plastic
at low temperatures (close to the Earth surface), to viscous at higher temperatures (deeper
in the lithosphere and mantle). In addition, the codes should be able to handle very large
strains (even after plastic material failure has occurred). As geological processes are slow,
inertial terms are negligible and one has to solve the (incompressible) Stokes equations but
with visco-plastic or visco-elasto-plastic rheologies, which results in an elliptic system of
equations with strongly varying coefficients (that can be 6 orders of magnitude or more
over several grid cells). Over the last few years, we have developed a new code (LaMEM
- Lithosphere and Mantle Evolution Model), which fulfils these requirements and has a
range of multigrid preconditioners combined with Newton iterations for nonlinearities to
solve the resulting equations. In addition, we have coupled the code with a Monte-Carlo
inversion approach, in order to better constrain the mechanical structure of active mountain
belts.
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We will describe the mathematical background and numerical implementation of the
forward and inverse modelling approach in Sec. 2, and discuss some modelling results in
Sec. 3.

2 Numerical Approach

2.1 Mathematical Approach

We solve the coupled system of momentum, mass, and energy conservation equations,
respectively, with velocity (vi), pressure (p) and temperature (T ) as primary unknowns:
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Here xi(i = 1, 2, 3) denotes Cartesian coordinates, ⌧ij = �ij + p�ij is the Cauchy stress
deviator, ⇢ density, gi the gravity acceleration vector, K the bulk modulus, ↵ the thermal
expansion coefficient, Cp the specific heat, � thermal conductivity, H volumetric heat
source, and D/Dt stands for the material time derivative, respectively. The visco-elasto-
plastic constitutive equation for the deviatoric stress is given by:
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viscous creep strain rate is subdivided into diffusion ("̇l), and dislocation ("̇n) components:

"̇vsII = "̇l + "̇n = Al ⌧II + An (⌧II)
n , (5)

where n is the stress exponent of the dislocation creep, and the pre-exponential factor (A)
of each creep mechanism is defined by:

Al = Bl exp
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�
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RT

�
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Here B, E, and V denote the creep constant, activation energy, and activation volume,
respectively, of the corresponding creep mechanism, and R is the gas constant. The mag-
nitude of the plastic strain rate ("̇plII ) is determined by enforcing the Drucker-Prager yield
criterion:

⌧II  ⌧Y = sin(�) p + cos(�) c, (7)
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Legend:

Figure 1. Staggered grid finite difference spatial discretisation, illustrating how the variables are ordered.

where � is the friction angle, and c is the cohesion. The volumetric heat source includes
shear heating, controlled by efficiency parameter 0  �  1, and the radiogenic heat (A):

H = �⌧ij
�
"̇ij � "̇elij

�
+ ⇢A. (8)

2.2 Numerical Formulation

We discretise the conservation Eqs. 1–3 in space using staggered grid finite differences1

as it is a low-order but stable discretisation for (nearly) incompressible fluid flow (see
Fig. 1 for grid layout). To achieve scalability on massively parallel machines we use the
distributed arrays (DMDA) and iterative solvers (KSP, SNES) from the PETSc library2.The
free surface is implemented using a so-called sticky air approach, which assigns a relatively
low but nonzero viscosity to the air phase, together with an appropriate stabilisation method
to allow for sufficiently large time steps3, 4. The topography of the free surface is explicitly
tracked by an internal 2D grid that covers the entire domain.

We employ a Marker And Cell (MAC) method1 to track material properties and im-
plement material advection in an Eulerian kinematical framework. To prevent spurious
clustering of the material particles (markers) we use a combination of a 4th-order Runge-
Kutta method with a conservative velocity interpolation scheme5. During the advection,
the elastic history stresses from previous time step (⌧n

ij) are corrected on the markers to
account for the rigid-body rotation, and then interpolated on the edge and cell control vol-
umes (Fig. 1) using the distance-based averaging4 to obtain the effective strain rates:
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2G�t
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ij = ⌧n
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wik⌧
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�
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The second invariant of the effective strain rate is computed by cross-interpolation and
averaging of the missing data (squares of the corresponding components) between all the
control volumes.

The effective viscosity (⌘⇤) and the updated deviatoric stresses (⌧ij) are computed from
the effective strain rates, using the standard quasi-viscous expression:

⌧ij = 2⌘⇤"̇⇤ij , ⌘⇤ = min
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Here, the individual creep viscosities are defined by
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The discretised coupled system of nonlinear algebraic equations is solved at each time step
using the preconditioned Jacobian-Free Newton-Krylov (JFNK) method with line-search
as implemented in the PETSc SNES nonlinear solver framework2:

A�1J (xk) �xk = �A�1r (xk) , xk+1

= xk + ↵ �xk, (12)

where r and x are the coupled residual and solution vectors, respectively, �x is the iterative
correction vector, k is the iteration index, and ↵ the line-search step length. The Jacobian
(J) is defined implicitly by a matrix-vector product approximated by finite differencing.
The preconditioning matrix (A) is obtained by discretising the conservation Eqs. 1–3 using
the current effective viscosity and by ignoring the coupling terms between the Stokes block
and the energy equation. J and A are given by:

Jy ⇡ r (x + h y) � r (x)

h
, A =
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where h is the perturbation parameter, y is an arbitrary vector to be multiplied with the
Jacobian, K, C, and E denote the stiffness matrices of the velocity, pressure, and tempera-
ture blocks, respectively, G is the pressure gradient matrix and D is the velocity divergence
matrix.

To achieve optimal scalability of the linear solver we employ a multigrid method to
approximately invert the Stokes block in the preconditioning matrix. The coarse grid
operators for the k-th level are obtained algebraically via Galerkin coarsening: process
Ak = Rk

k+1

Ak+1

Pk+1

k . We have incorporated custom restriction (R) and prolonga-
tion (P) operators suitable for the staggered grid discretisation6 into the PETSc multigrid
framework. The multigrid preconditioner is implemented in either a coupled form, us-
ing simultaneous coarsening of the velocity and pressure blocks, or in a block triangular
form, in which coarsening is applied only to the velocity matrix. Accordingly, the resulting
preconditioners are referred to as coupled (Ac) or uncoupled (Au)

Ac =
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✓
K G
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◆
. (14)

In both cases, we approximate pressure Schur complement by the inverse viscosity matrix.
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Figure 2. a) Weak scalability test of LaMEM for a single V-cycle with 323 gridpoints/processor. The largest
simulation has > 15 billion grid points. b) Convergence of a solver step for a variable viscosity falling block
test with viscosity contrast 103, demonstrating that our coupled multigrid preconditioner results in resolution
independent convergence (KSP: GMRES, with GMG and Chebyshev/Jacobi(3,3) smoothers & GMRES/GAMG
as coarse grid solver). c) convergence of the nonlinear residual for various time steps for the viscoelastoplastic
shear localisation setup shown in the inset.

2.3 Scalability Tests

We performed a number of tests to verify the scalability of LaMEM on JUQUEEN. A weak
scalability test shows nearly perfect scalability for a single multigrid step up to the whole
machine size (Fig. 2a). Our coupled multigrid preconditioner gives convergence behaviour
that is resolution independent for a variable viscosity setup with a viscosity contrast of 1000
and 10 falling spheres, which was demonstrated to be a realistic test setup for geodynamic
problems (Fig. 2b)7. A typical example of convergence during a visco-elasto-plastic shear
localisation test during several time steps shows that the Newton solver results in rapid
convergence once the initial residual has been reduced sufficiently (Fig. 2c).

3 Application Examples

3.1 Crustal-Scale Folding and Faulting

Under compression, crustal rocks can either fault or deform through folding. Folding re-
sults in quasi-regular structures, but it was incompletely understood how such structures
grow, particularly in 3D. We therefore performed a systematic study and could demon-
strate, using a combination of scaling laws and 3D simulations, that the wavelength of
folds is mainly controlled by the effective viscosity structure of the crust that is deformed
above a weaker salt layer. Lateral growth of folds results in linking of individual segments
in a way that is quite similar to those observed in the Zagros (Iran)8. Yet, in some locations
in the Zagros, salt crops out at the surface. Geological arguments suggest that these salt
outcrops are salt diapirs sourced at a deep salt level, but that they were shallowly buried or
exposed at the surface before the onset of collision. The formation of such salt structures
is controlled by the speed with which sediments are deposited on top of the salt9. As such
pre-existing salt structures form large-scale heterogeneities, they might affect the folding
process. In order to understand that, we performed simulations in which we added the
observed salt structure spacing in the Zagros to the initial model setup. Results show that
this indeed localises deformation and result in folds with larger amplitudes, even though
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Figure 3. Examples of fold-and-thrust belt simulations: a) 3D fold pattern formation that develops once a system
of multilayered crustal rocks above a weaker salt layer is compressed. Random heterogeneities are added to
initiate the instability. Yet, fold spacing is mainly controlled by the material properties of the rocks. b) If pre-
existing salt diapirs are present before the onset of collision, they affect the fold amplitudes but not their spacing.
c) example of brittle fault formation and interaction during compression.

the fold spacing is unaffected (Fig. 3b)10. In additional work, we studied the effect of ero-
sion on folding patterns and could demonstrate that erosion by itself does not affect fold
spacing11 dramatically, even though it might result in a faster growth of the structures and
affect the manner in which folds link laterally12.

Yet, folding is not the only response to compression. If crustal rocks are relatively cold,
or have no or only few mechanically weak layers, fault zones will develop. In order to un-
derstand how this process works, we performed simulations of a brittle crust, which show
that there is significant lateral interaction between fault zones, which ultimately develop
larger scale structures (Fig. 3c) .

3.2 Continental Collision and Plateau Formation

The collision of India with Asia resulted in the largest mountain belt on Earth, the Hi-
malaya, but also in the Tibetan plateau, which has an average height (⇠ 5km) that is more
than the highest mountain in Europe. A similar plateau exists in the Andes (Altiplano),
whereas the Alps does not have one. Why does a plateau form in some cases and not in
others? In order to understand this, we performed systematic simulations using a setup in
which an oceanic plate subducts underneath an overriding continental plate, followed by
continent-continent collision. The results show that in order to form a plateau, we need to
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Figure 4. a) Simulation to study how subduction followed by continental collision results in the formation of
a mountain belt and a high-elevation plateau (for example the Tibetan plateau)13. b) Example of geodynamic
inverse modelling of salt-tectonics. During the inversion process, we assume that the geometry is known and we
vary the density and viscosity of each of the layers. The modelled surface velocity and gravity anomalies are
compared with the “observed” ones (in this case taken from a synthetic setup with known parameters). Results
give a probability density function for each of the inversion parameters.

have sufficiently large convergence velocities, strong parts in the overriding lithosphere and
a sufficiently large viscosity of the lithosphere (Fig. 4). We could demonstrate that there are
4 different types of plateaus that can form, which are controlled by two non-dimensional
numbers, and which can be used to explain the observations13.

3.3 Constraining the Rheology of the Lithosphere through Geodynamic Inverse
Modelling

The largest uncertainty in performing geodynamic models comes from our imprecise
knowledge of the effective viscosity of rocks, which is typically measured in the labo-
ratory by deforming small rocks samples. Rather than relying on these data, we developed
a new approach that couples lithospheric-scale geodynamic models with geophysical ob-
servations such as the GPS velocities with which plates deform, the topography of the
lithosphere and measured gravity anomalies. During the inversion process, we automat-
ically adopt the input parameters until a low misfit is obtained. As it is unclear whether
a single global minimum exists, we employ a Monte Carlo based method in combination
with geometrical constraints, which is able to deal with multiple local minima14. We could
demonstrate with an analytical solution that this geodynamic inversion gives unique results
for a rising sphere example, which is a significant improvement over earlier gravity-only
inversions that has non-unique results. In a next step, we performed synthetic tests using
linear viscous 3D models and showed that the method is able to retrieve the material param-
eters of layers that contribute to the large-scale dynamics of the model14. More recently,
we could demonstrate that it also works for fully non-linear and temperature dependent
rheologies that include plastic yielding15, which implies that it can be employed to con-
strain the rheology of the lithosphere. A first application to the India-Asia collision zone
shows that the viscosity of the Indian lithosphere must be rather large, but also that the
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viscosity beneath Asia can be less well constrained given the current data15. Overall, our
results suggest that the geodynamics inversion is a very promising new research direction
that will give new insights in our understanding of the physics of the lithosphere.
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