
Numerische Methoden 1, WS 11/12 – B.J.P. Kaus

2 Finite difference basics

The basics of the finite difference method are best understood with an example. Consider the one-
dimensional transient heat conduction equation

ρcp
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
(1)

where ρ is density, cp heat capacity, k thermal conductivity, T temperature, x distance and t time. If
the thermal conductivity, density and heat capacity are constant over the model domain, the equation
can be simplified to

∂T

∂t
= κ

∂2T

∂x2
(2)

where κ = k
ρcp

is the thermal diffusivity (a common value for rocks is κ = 10−6 m2s−1). We are interested
in the temperature evolution versus time T (x, t) which satisfies equation 2, given an initial temperature
distribution (Fig. 1A). An example would be the intrusion of a basaltic dike in cooler country rocks.
How long does it take to cool the dike to a certain temperature? What is the maximum temperature
that the country rock experiences?

The first step in the finite differences method is to construct a grid with points on which we are
interested in solving the equation (this is called discretization, see Fig. 1B).

The next step is to replace the continuous derivatives of equation 2 with their finite difference ap-
proximations. The derivative of temperature versus time ∂T

∂t can be approximated with a forward finite
difference approximation as

∂T

∂t
≈ Tn+1

i − Tni
tn+1 − tn

=
Tn+1
i − Tni

∆t
=
Tnewi − T currenti

∆t
(3)

here n represents the temperature at the current timestep whereas n + 1 represents the new (future)
temperature. The subscript i refers to the location (Fig. 1B). Both n and i are integers; n varies from 1
to nt (total number of time steps) and i varies from 1 to nx (total number of grid points in x-direction).
The spatial derivative of equation 2 is replaced by a central finite difference approximation, i.e.,

∂2T

∂x2
=

∂

∂x

(
∂T

∂x

)
≈

Tn
i+1−T

n
i

∆x − Tn
i −T

n
i−1

∆x

∆x
=
Tni+1 − 2Tni + Tni−1

∆x2
(4)

Substituting equation 4 and 3 into equation 2 gives

Tn+1
i − Tni

∆t
= κ

(
Tni+1 − 2Tni + Tni−1

∆x2

)
(5)

The third and last step is a rearrangement of the discretized equation, so that all known quantities (i.e.
temperature at time n) are on the right hand side and the unknown quantities on the left-hand side
(properties at n+ 1). This results in:

Tn+1
i = Tni + κ∆t

(
Tni+1 − 2Tni + Tni−1

∆x2

)
(6)

Because the temperature at the current timestep (n) is known, we can use equation 6 to compute the
new temperature. The last step is to specify the initial and the boundary conditions. If for example the
country rock has a temperature of 300◦C and the dike a width of 2 meters, with a magma temperature
of 1200◦C, we can write as initial conditions:

T (x < −1, x > 1, t = 0) = 300 (7)
T (−1 ≤ x ≤ 1, t = 0) = 1200 (8)

1

Numerische Methoden 1, WS 11/12 – B.J.P. Kaus

country rock dikecountry rock

x

T(x,0)

A B

space
ti
m

e

L

boundary nodes

Dx

Dt

i,n

i,n-1

i,n+1

i+1,ni-1,n

L

Figure 1: A) Setup of the model considered here. A hot basaltic dike intrudes cooler country rocks. Only
variations in x-direction are considered; properties in the other directions are assumed to be constant.
The initial temperature distribution T (x, 0) has a step-like perturbation. B) Finite difference discretiza-
tion of the 1D heat equation. The finite difference method approximates the temperature at given grid
points, with spacing ∆x. The time-evolution is also computed at given times with timestep ∆t.

In addition we assume that the temperature far away from the dike center (at |L/2|) remains at a
constant temperature. The boundary conditions are thus

T (x = −L/2, t) = 300 (9)
T (x = L/2, t) = 300 (10)

So now you have a feeling about finite differences. The attached MATLAB code shows an example
in which the grid is initialized, and a time loop is performed. In the exercise, you will fill in the
questionmarks and obtain a working code that solves equation 2.

3 Exercises

1. Open the MATLAB editor and create an empty file with the name ”heat1Dexplicit.m”. Fill in
the question marks and run the file by typing heat1Dexplicit in the MATLAB command window
(make sure you’re in the correct directory).

2. Vary the parameters (e.g. use more gridpoints, a larger timestep). Note that if the timestep is
increased beyond a certain value (what does this value depend on?), the numerical method becomes
unstable. This is a major drawback of explicit finite difference codes such as the one presented
here. In the next lesson we will learn methods that do not have these limitations.

3. Go through the rest of the handout and see how one derives finite difference approximations.

4. Record and plot the temperature evolution versus time at a distance of 5 meter from the dike/country
rock contact. What is the maximum temperature the country rock experiences at this location and
when is it reached? Assume that the country rock was composed of shales, and that those shales
were transformed to hornfels above a temperature of 600◦C. What is the width of the metamorphic
aureole?

5. Bonus question: Derive a finite-difference approximation for variable k and variable ∆x.

2

Numerische Methoden 1, WS 11/12 – B.J.P. Kaus

%heat1Dexplicit.m
%
% Solves the 1D heat equation with an explicit finite difference scheme

clear

%Physical parameters
L = 100; % Length of modeled domain [m]
Tmagma = 1200; % Temperature of magma [C]
Trock = 300; % Temperature of country rock [C]
kappa = 1e-6; % Thermal diffusivity of rock [m2/s]
W = 5; % Width of dike [m]
day = 3600*24; % # seconds per day
dt = 1*day; % Timestep [s]

% Numerical parameters
nx = 201; % Number of gridpoints in x-direction
nt = 500; % Number of timesteps to compute
dx = L/(nx-1); % Spacing of grid
x = -L/2:dx:L/2;% Grid

% Setup initial temperature profile
T = ones(size(x))*Trock;
T(find(abs(x)<=W/2)) = Tmagma;

time = 0;
for n=1:nt % Timestep loop

% Compute new temperature
Tnew = zeros(1,nx);
for i=2:nx-1

Tnew(i) = T(i) + ?????;
end

% Set boundary conditions
Tnew(1) = T(1);
Tnew(nx) = T(nx);

% Update temperature and time
T = Tnew;
time = time+dt;

% Plot solution
figure(1), clf
plot(x,Tnew);
xlabel(’x [m]’)
ylabel(’Temperature [^oC]’)
title([’Temperature evolution after ’,num2str(time/day),’ days’])

drawnow
end

Figure 2: MATLAB script to solve equation 2 (once the question marks are filled...).

3

Numerische Methoden 1, WS 11/12 – B.J.P. Kaus

Taylor-series expansions and finite differences

Finite difference approximations can be derived through the use of Taylor series expansions. Suppose
we have a function f(x), which is continuous and differentiable over the range of interest. Let’s also
assume we know the value f(x0) and all the derivatives at x = x0. The forward Taylor-series expansion
for f(x0 + ∆x) about x0 gives

f(x0 +∆x) = f(x0)+
∂f(x0)
∂x

∆x+
∂2f(x0)
∂x2

(∆x)2

2!
+
∂3f(x0)
∂x3

(∆x)3

3!
+
∂nf(x0)
∂xn

(∆x)n

n!
+O(∆x)n+1 (11)

We can compute the first derivative by rearranging equation 11

∂f(x0)
∂x

=
f(x0 + ∆x)− f(x0)

∆x
− ∂2f(x0)

∂x2

(∆x)
2!
− ∂3f(x0)

∂x3

(∆x)2

3!
... (12)

This can also be written in discretized notation as:

∂f(xi)
∂x

=
fi+1 − fi

∆x
+O(∆x) (13)

here O(∆x) is called the truncation error, which means that if the distance ∆x is made smaller and
smaller, the (numerical approximation) error decreases as ∆x. This derivative is also called first order
accurate.

We can also expand the Taylor series backward

f(x0 −∆x) = f(x0)− ∂f(x0)
∂x

∆x+
∂2f(x0)
∂x2

(∆x)2

2!
− ∂3f(x0)

∂x3

(∆x)3

3!
+ ... (14)

In this case, the first (backward) derivative can be written as

∂f(x0)
∂x

=
f(x0)− f(x0 −∆x)

∆x
+
∂2f(x0)
∂x2

(∆x)
2!
− ∂3f(x0)

∂x3

(∆x)2

3!
... (15)

∂f(xi)
∂x

=
fi − fi−1

∆x
+O(∆x) (16)

By adding equations 12 and 15 and dividing by two a second order accurate first order derivative is
obtained

∂f(xi)
∂x

=
fi+1 − fi−1

2∆x
+O(∆x)2 (17)

By adding equations 11 and 14 an approximation of the second derivative is obtained

∂f2(xi)
∂x2

=
fi+1 − 2fi + fi−1

(∆x)2
+O(∆x)2 (18)

With this approach we can basically derive all possible finite difference approximations. A different way
to derive the second derivative is by computing the first derivative at i+1/2 and at i−1/2 and computing
the second derivative at i by using those two first derivatives:

∂f(xi+1/2)
∂x

=
fi+1 − fi
xi+1 − xi

(19)

∂f(xi−1/2)
∂x

=
fi − fi−1

xi − xi−1
(20)

∂f2(xi)
∂x2

=
∂f(xi+1/2)

∂x − ∂f(xi−1/2)

∂x

xi+1/2 − xi−1/2
=

fi+1−fi

xi+1−xi
− fi−fi−1

xi−xi−1

0.5(xi+1 − xi−1)
(21)

Similarly we can derive higher order derivatives. Note that the highest order derivative that usually
occurs in geodynamics is the 4th-order derivative.

4

Numerische Methoden 1, WS 11/12 – B.J.P. Kaus

Finite difference approximations

The following equations are common finite difference approximations of derivatives. If you in the future
need to write a finite difference approximation, come back here.
Left-sided first derivative, first order∣∣∣∣∂u∂x

∣∣∣∣
i−1/2

=
ui − ui−1

∆x
+O(∆x) (22)

Right-sided first derivative, first order∣∣∣∣∂u∂x
∣∣∣∣
i+1/2

=
ui+1 − ui

∆x
+O(∆x) (23)

Central first derivative, second order∣∣∣∣∂u∂x
∣∣∣∣
i

=
ui+1 − ui−1

2∆x
+O(∆x)2 (24)

Central first derivative, fourth order∣∣∣∣∂u∂x
∣∣∣∣
i

=
−ui+2 + 8ui+1 − 8ui−1 + ui−2

12∆x
+O(∆x)4 (25)

Central second derivative, second order∣∣∣∣∂2u

∂x2

∣∣∣∣
i

=
ui+1 − 2ui + ui−1

∆x2
+O(∆x)2 (26)

Central second derivative, fourth order∣∣∣∣∂2u

∂x2

∣∣∣∣
i

=
−ui+2 + 16ui+1 − 30ui + 16ui−1 − ui−2

12∆x2
+O(∆x)4 (27)

Central third derivative, second order∣∣∣∣∂3u

∂x3

∣∣∣∣
i

=
ui+2 − 2ui+1 + 2ui−1 − ui−2

2∆x3
+O(∆x)2 (28)

Central third derivative, fourth order∣∣∣∣∂3u

∂x3

∣∣∣∣
i

=
−ui+3 + 8ui+2 − 13ui+1 + 13ui−1 − 8ui−2 + ui−3

8∆x3
+O(∆x)4 (29)

Central fourth derivative∣∣∣∣∂4u

∂x4

∣∣∣∣
i

=
ui+2 − 4ui+1 + 6ui − 4ui−1 + ui−2

∆x4
+O(∆x)2 (30)

Note that the higher the order of the finite difference scheme, the more adjacent points are required. It
is also important to note that derivatives of the following form

∂

∂x

(
k
∂u

∂x

)
(31)

should be formed as follows∣∣∣∣ ∂∂x
(
k
∂u

∂x

)∣∣∣∣
i

=
ki+1/2

ui+1−ui

∆x − ki−1/2
ui−ui−1

∆x

∆x
+O(∆x)2 (32)

5

Numerische Methoden 1, WS 11/12 – B.J.P. Kaus

If k is spatially varying, the following approximations are wrong (but are commonly made mistakes...)!!!!∣∣∣∣ ∂∂x
(
k
∂u

∂x

)∣∣∣∣
i

=
ki+1

ui+1−ui

∆x − ki ui−ui−1
∆x

∆x
(33)

∣∣∣∣ ∂∂x
(
k
∂u

∂x

)∣∣∣∣
i

= ki
ui+1 − 2ui + ui−1

∆x2
(34)

6

