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Project: Elastic wave propagation in 2-D using a staggered grid
method

The goal is to write a Matlab code that implements a first order time, second order space accurate,
staggered grid, finite difference approach to solving the elastic wave equation for a perfectly elastic,
isotropic medium in a velocitystress formulation. A free surface is to be implemented on the top of the
2-D domain.

Governing equations and implementation

The force balance equations for elastic, isotropic wave propagation in 2-D (x and z coordinates, Cartesian
system) can be written as a function of velocities vx, vy and stresses, τ , as
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where ρ, µ, λ are density, shear modulus, and Lame constant, respectively. (Verify these relationships.)
These equations have time derivatives for velocities and stresses on the left hand side, and spatial

derivatives on the right hand side and are so easily converted into finite differences. This is best done
in a staggered grid scheme, where the node points of velocity and stress evaluation are offset. This is
described in the attached paper by Virieux (1986), and you should follow his implementation, using the
boundary conditions described in his work.

Exercise

• Write a 2D code that solves the wave equations.

• Verify the stability and accuracy criteria as a function of ∆x gridding, ∆t timesteps, and phase
velocity c.

• Visualize waves originating from an explosive point source.

• Build in heterogeneities (for example in density) and show reflected and refracted waves.

• Show the ground motion at the surface of the model for different explosion sources anbd model
heterogeneities.

• Show how a planar wave front gets distorted by slow and fast circular anomalies in the center of
the domain, as a function of wavelength L vrs. size of anomaly a for L >> a and L ∼ a.

• Show how a planar wavefront gets distorted by a fault like structure which sits vertically underneath
the top boundary and has a 10 times reduced shear modulus.
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GEOPHYSICS 

P-SC/ wave propagation in heterogeneous media: 

Velocity-stress finite-difference method 

Jean Virieux* 

ABSTRACT 

I present a finite-difference method for modeling 
P-SV wave propagation in heterogeneous media. This 
is an extension of the method I previously proposed for 
modeling SH-wave propagation by using velocity and 
stress in a discrete grid. The two components of the 
velocity cannot be defined at the same node for a com- 
plete staggered grid: the stability condition and the 
P-wave phase velocity dispersion curve do not depend 
on the Poisson’s ratio, while the S-wave phase velocity 
dispersion curve behavior is rather insensitive to the 
Poisson’s ratio. Therefore, the same code used for elastic 
media can be used for liquid media, where S-wave ve- 

locity goes to zero, and no special treatment is needed 
for a liquid-solid interface. Typical physical phenomena 
arising with P-SV modeling, such as surface waves, are 
in agreement with analytical results. The weathered- 
layer and corner-edge models show in seismograms the 
same converted phases obtained by previous authors. 
This method gives stable results for step discontinuities, 
as shown for a liquid layer above an elastic half-space. 
The head wave preserves the correct amplitude. Finally, 
the corner-edge model illustrates a more complex geom- 
etry for the liquid-solid interface. As the Poisson’s ratio 
v increases from 0.25 to 0.5, the shear converted phases 
are removed from seismograms and from the time sec- 
tion of the wave field. 

INTRODUCTION 

Many different methods proposed for modeling waves in 
heterogeneous media have their own range of validity and in- 
terest. Ray theory (Cerveny et at., 1977), a high-frequency ap- 
proximation, breaks down in many common situations. At 
caustics the predicted amplitude is infinite, and in shadow 
zones the amplitude is zero. Using spectral transformations in 
space and time several extensions for overcoming these difi- 
culties have been proposed, depending on how the inverse 
transformations are performed. Reflectivity (Fuchs and 
Muller, 1971) which integrates numerically on the slowness 
vector, is routinely used for vertically heterogeneous media. 
Numerical integration over wavenumber is used by Aki and 
Larner (1970) and Bard and Bouchon (1980), who introduced 
the Rayleigh ansatz for the diffraction sources, in order to 
model laterally heterogeneous media. More recently, Alekseev 

and Mikhailenko (1980) and Mikhailenko and Korneev (1984) 
performed integration over wavenumber for any interface. 
Going to the complex slowness plane allows inversion by in- 
spcction, giving generalized ray theory (Helmberger, 1968). 
For computing reflection and refraction coefficients glorified 
optics (Hong and Helmberger, 1978) introduces two- 
dimensional (2-D) wave curvature at the interface, while Lee 
and Langston (1983) took into account two curvatures for a 
three-dimensional (3-D) wavefront. Chapman (1978) per- 
formed the frequency integration before the integration over 
real slowness, and obtained a WKBJ seismogram which is 
regular at caustics. By using the Maslov asymptotic transfor- 
mation, Chapman and Drummond (1982) extended the WKBJ 
seismogram for laterally inhomogeneous media. Another 
method called Gaussian beam, which also gives finite results 
at caustics, is seen as a perturbation of spectral decomposition 
(Madariaga and Papadimitriou, 1985). 
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On the other hand, fully numerical techniques in space-time 
domain, in the finite-difference formulation (Boore, 1972) or 
finite-element formulation (Smith, 1975), handle any kind of 
waves in complex media but are limited mainly because nu- 
merical dispersion prevents them from propagating waves 
over large distances, In other words, enough low-frequency 
waves must be used. Another difficulty that arises with nu- 
merical techniques is the interpretation of numerical seismo- 
grams. The situation is better than for the real Earth, because 
the medium is known and fields may be displayed inside the 
whole medium, thereby defining the shape of wavefronts. Of 
course, the interpretation becomes more difficult as the com- 
plexity of the medium increases. 

To model P-SV wave propagation, I apply a finite- 
difference scheme used in Madariaga (1976) for crack propa- 
gation modeling. SH-wave modeling has already been dis- 
cussed in a previous article (Virieux, 1984). Here I follow the 
same formulation of the problem. Numerical analysis is 
lengthier, because of several interesting features of the P-SV 
scheme. Explosive source and surface waves are compared 
with analytical results to gain confidence in this modeling. 
After comparing other numerical simulations with the 
weathered-layer model and the corner-edge model, I discuss 
the discrepancy between results obtained for the corner-edge 
model in the homogeneous and heterogeneous formulations 
(Kelly et al., 1976). Pictures of the medium display the evolu- 
tion of wavefronts with respect to time The liquid-solid inter- 
face is studied, and stable results obtained for a liquid layer 
over an elastic half-space are shown. The case of a complex 
interface is illustrated by a corner-edge and numerical seismo- 
grams for Poisson’s ratios v ranging from 0.25 to 0.5 are pre- 
sented. Pictures of the medium at a given time for different 
Poisson’s ratios help demonstrate its effects on seismograms. 
For modelinga more complex medium iike a salt dome, future 
work is necessary. 

PROBLEM FORMULATION 

I closely follow the development in my previous paper on 
W-wave propagation (Virieux, 1984). I consider a vertical 2-D 
medium with a horizontal axis x and a vertical axis z pointing 
downward. The medium is assumed linearly elastic and iso- 
tropic. 

Equations 

Instead of using the wave equation which is a second-order 
hyperbolic system, I go back to the elastodynamic equations 
which are: 

and 

In these equations, (u, , u,) is the displacement vector and (T,, , 
T,,, zx,) is the stress tensor. p(x, z) is the density, and X(x, z) 
and p(x, z) are Lame coefficients This system is transformed 
into the following first-order hyperbolic system: 

(2) 

and 

In these equations (ox, ziZ) is the velocity vector. b(x, z), the 
lightness or the buoyancy, is the inverse of density. 

Initial conditions 

The medium is supposed to be in equilibrium at time t = 0, 
i.e., stress and velocity are set to zero everywhere in the 
medium. Because of these Initial conditions, propagating stress 
and velocity is also equivalent to propagating “time- 
integrated stress” and displacement. 

Boundary conditions 

Internal interfaces are not treated by explicit boundary con- 
ditions because they are in a homogeneous formulation (Kelly 
et al., 1976). They are represented naturally by changes of 
elastic parameters and density as they are in a heterogeneous 
formulation. Only four explicit boundary conditions have to 
be considered: the four edges of the finite-sized vertical grid. 
Depending on the problem, different boundary conditions can 
be used on the edges: approximate-radiation conditions (for 
simulating an infinite medium), stress-free conditions (also 
known as the Neumann condition or free-surface condition), 
or zero-velocity conditions equivalent to zero-displacement 
conditions (the Dirichlet condition or rigid-surface condition). 
The radiation conditions are equivalent to the condition B-l 
of Clayton and Engquist (1980), and correspond to plane- 
wave radiation conditions. 

Source excitation 

I use an explosive source in this paper. Because, as shown 
later, stresses 5,, and ~~~ are defined at the same nodal point, 
equal incremental amplitudes are added to rXx and z,, at the 
point source to simulate a given source excitation. Because u, 
and ~1, are not computed at the source point, infinite ampli- 
tudes are avoided. As shown by Gauthier (1983) this imple- 
mentation of the source excitation is equivalent to the one 
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used in Alterman and Karal(l968) for this scheme and it saves 
computer time Two source excitations for stress are used: the 
Gaussian pulse 

f(r) = e *(t IO)2 (3) 

for the Lamb’s problem with the parameter a, which controls 
the wavelength content of the excitation, equal to 200, and the 
derivative of a Gaussian pulse for the other models 

g(t) = -2a(t - to)e-u(‘~‘UJ2 (4) 

with the parameter a equal to 40. This means that, for a 
P-wave velocity of 6 000 m/s, the P-wave half-wavelength is 
1 800 m and the S-wave half-wavelength is 1 000 m for a 
Poisson’s ratio v = 0.25. Consequently, a good choice for the 
grid spacing is around 100 m. t, is chosen to give a causal 
signal which is approximately zero for negative time
Throughout this paper,f’(t) is written for a Gaussian pulse and 
g(t) for its derivative. 

NUMERICAL ANALYSIS 

Derivatives are discretized by using centered finite- 
differences. Because the system is a first-order hyperbolic 
system, the interpolation functions are linear functions (Zien- 
kiewicz and Morgan, 1982, p. 154). Assuming equations are 
verified at nodes, discretization leads to a unique staggered 
grid, as shown in Figure 1. The discretization of the medium is 
the last step in the finite-difference formulation. The major 
difference from usual schemes is that the different components 
of the velocity field are not known at the same node. The 
explicit numerical scheme, equivalent to the system (2), is: 

@+ 1 
--i,j+112 = ':1,j+ljZ 

+ Mi.j+l/2 
- u;.:"') 

+ Mi.j+l/z 

(5) 

In these equations, k is the index for time discretization, i for 
x-axis discretization, and j for z-axis discretization. At is the 
grid step in time Ax and AZ are the grid steps for the x-axis 
and for the z-axis, respectively, which are assumed equal in the 
following applications. Numerical velocity (U, V) = (a,, u=) at 
time (k + 1/2)At, and numerical stress (C, s:, T) = (z,, , 7zz, T,,) 
at time (k + 1)At are computed explicitly from velocity at time
(k - 1/2)At and stress at time kAt. B represents the buoyancy 
inside the medium, while L, Jr4 represent Lame coefficients (h, 
u), as shown in Figure 1. 

For homogeneous media, standard spectral analysis gives 
the following numerical stability condition for this explicit 
scheme : 

&At 
J 

1 
=+&cl, (6) 

where VP is the P-wave velocity. The stability condition is 
independent of the S-wave velocity V,, or of the Poisson’s 
ratio v. For the special case Ax = AZ, the stability condition 
reduces to 

V$<‘. 
& 

(7) 

The generalization of this stability condition for an n-D space 
is straightforward and gives the following condition 

(8) 

and, for Axi = Ax, 

(9) 

l U;g 

n V;B 

A 1.T ; L+zM, L 

v Z:M 

FIG. I. Discretization of the medium on a staggered grid. 
Black symbols are for velocities and buoyancy at time kAt. 
White symbols are for stresses and Lame coefficients at time
(k + l/2)*1. 
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where n is the dimension of the space. This condition has been 
verified by Virieux and Madariaga (1982) for 3-D crack mod- 
eling. This stability condition is more restrictive than the one 
obtained for usual finite-difference schemes (Bamberger et al., 
1980 or Stephen, 1983) which, for Ax = AZ, gives 

Jv; + v; g < 1, 

because the S-wave velocity is lower than the P-wave velocity. 
This is the price paid for a complete staggered grid. 

Using the same mathematical framework in Bamberger et 
al., (1980), stability in heterogeneous media is expected provid- 
ed the condition in equation (6) or (7) holds everywhere on the 
grid. For the scheme used here, this seems to be true for any 
Poisson’s ratio, as shown later for a liquid-solid interface. 

I do not develop the numerical analysis of the finite- 
difference scheme here because it is lengthy and because it 
follows standard lines found in many textbooks on numerical 
analysis (Marchuk, 1975). However I do analyze phase veloci- 
ty, because it illustrates why a liquid-solid interface is correct- 
ly modeled with this finite-difference scheme. 

Consider a plane wave with wavenumber k, which makes an 
angle 8 with the x-axis. Following Bamberger et al. (1980), the 
quantity y given by 

(11) 

controls the numerical dispersion, and the quantity H defined 

by 

P-WAVE DISPERSION CURVES 

FOR- ISiFFERENT ANGLES i3 AND 

Z?D FOR ANY POISSON RATIO v 

FIG. 2. Dispersion curves for nondimensional P-wave phase 
velocity with a dispersion parameter y = 0.8. Results for differ- 
ent angles 0 of the plane wave with respect to the x-axis are 
shown. They are independent of Poisson’s ratio v. 

(12) 

controls the number of nodes per wavelength of the plane 
wave. The resulting nondimensional P-wave phase velocity 
(defined by the ratio of numerical P-wave phase velocity to 
true P-wave velocity) is: 

qp=J2sinm’ Y VH [ 
_ v/sin2 (7cH cos 9) + sin’ (7cH sin 0) J2 1 , 

(13) 

where qp is independent of Poisson’s ratio v. Similarly, the 
nondimensional S-wave phase velocity is: 

J 
sin’ (nH cos 0) + sin’ (rcH sin 0) 1 , (14) 

where q, depends on the Poisson’s ratio through V,/V,. For 
y = 0.8, q,(H) is shown on Figure 2 for different angles 8. The 
figure is valid for any Poisson’s ratio, which is not the case for 
standard finite-difference schemes. The quantity qp is always 
lower than 1 and approaches 1 for small H. For H % 0.1, 

qp z 1. This is the rule of thumb stating that ten nodes are 
needed inside a wavelength for correct modeling. For y = 0.8, 
q,(H) is shown on Figure 3 for different angles 8 and for 
different Poisson’s ratios v. The quantity q, is always lower 
than 1. This is not the case for usual finite-difference schemes 
where qs may be found to be higher than 1 (Bamberger et al., 
1980), which means that the numerical-S-wave propagates 
faster than- the_ true S-wave. The quantity 4, approaches~ 1 for 
small H, giving the same rule of thumb as for the P-wave 
modeling. Because the S-walJe velocity is !ower than the 
P-wave velocity, the condition on the S-wave is more re- 
strictive and will overrule the one on the P-wave. Moreover, 
the behavior of 4, does not degrade as v goes to 0.5, while q, 
becomes infinite inside liquids for standard finite-difference 
schemes (Bamberger et al., 1980). This suggests, as is con- 
firmed later, that our numerical scheme behaves correctly 
inside liquids, and at liquid-solid interfaces. 

Finally, for a medium of size 400 x 200, a computer 
memory of 850 K words is needed. 100 s are necessary to 
perform 1 200 time steps on a CRAY 1-S. Although the nu- 
merical code was designed to handle any size of medium by 
using its own virtual memory, this option was not used be- 
cause it increases drastically the I/O computing cost. 

COMPARISON WITH ANALYTICAL RESULTS 

Two problems arise in the modeling of P-SV wave propaga- 
tion which require a numerical solution. These are source 
modeling and surface wave (Rayleigh wave) modeling. These 
features are not simple extensions from the SH-wave case, and 
need to be checked with simple analytical solutions. 

Explosive source 

Although any kind of source may be implemented, an ex- 
plosive source is easily modeled by adding a known value to 
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stress (rXx, T~~) at the point source. A point force at the free 
surface of a half-space is modeled incrementing only rZZ at this 
point source. 

For a source excitation g(t) given by equation (4) with a 
parameter a equal to 40, I~ compared the radial numerical 
displacement with the analytical solution in an infinite 
medium of P-wave velocity equal to 4 COO m/s. Figure 4 pic- 
tures the seismogram at a station 400 m from the source. The 
tangential displacement, which is not zero because of numeri- 
cal dispersion, remains negligible. Its amplitude decreases 
when the parameter y diminishes or when the spectral content 
of the source shifts to lower frequencies. 

Lamb’s problem 

Rayleigh surface waves are strongly excited by a source at 
the free surface of a half-space. Since the work of Lamb (1904), 
analytical solutions have been presented in many textbooks 
(Ewing et al., 1957; Aki and Richards, 1980). The Cagniard-De 
Hoop method is an elegant way of computing body wave 
seismograms (Achenbach, 1975, p. 303). Moreover, the Cag- 
niard path is known analytically for a source at the free sur- 
face. A difficulty arises when the station is also at the free 
surface. The Rayleigh pole in the complex slowness plane is 
located on the Cagniard path: its contribution must be evalu- 
ated by the theorem of residues (Ben-menahem and Singh, 
1981, p. 545). The seismogram for any source excitation is 
obtained by convolution of the solution for Dirac’s 6 pulse 
with the source time function. 

Figure 5, shows the horizontal component due to a vertical 
Gaussian point source f(t) of the type (3) with a spectral 

parameter a = 200. Observe the propagation without disper- 
sion of the surface wave and the build-up of the conical wave. 
The numerical Rayleigh wave has a lower amplitude than 
does the analytical Rayleigh wave. This slight misfit, which is 
then same~ for X = 1 501 m or X -3OeB m; does not depend 
on the propagation and may be explained by the dis- 
cretization of the medium at the source. At early times, inter- 
action between the source and the free surface involves a few 
nodes. Because the propagation is correctly modeled, I consid- 
er that the agreement between numerical and analytical solu- 
tions is satisfactory. 

COMPARJSON WJTH NLJMERJCAL RESULTS 

For more complex models of the medium, only numerical 
solutions are available for comparison. Two models are pre- 
sented: the weathered-layer model for Rayleigh wave exci- 
tation by a point source at depth, and the corner-edge model 
for diffraction. These models were chosen because they present 
more complex wave patterns than do the analytical solutions 
and because they have been studied by Kelly et al. (1976) 
which makes qualitative comparison achievable. 

Weathered-layer model 

The geometry of the medium is shown in Figure 6. The 
upper layer has a very low P-wave velocity of 2 000 m/s com- 
pared to the velocity of the half-space which is 6 000 m/s. 

Density is taken as a constant of 2 500 kg/m3. The source g(r), 
with a spectral content defined by a = 40, see equation (4) is 

S-WAVE DISPERSION CURVES 

v = 0.25 71 = 0,499 

DISPERSION PARAMETER - H - DISPERSION PARAMETER - H - 

FIG. 3. Dispersion curves for nondimensional S-wave phase velocity with a dispersion parameter y = 0.8. Results for 
different angles 0 of the plane wave with respect to the x-axis are shown on the same graph for different Poisson’s 
ratios v. 
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located near the surface in order to obtain efficient Rayleigh 
wave excitation. In Figure 7, seismograms lasting 5 s present 
the features already studied in Kelly et al. (1976). A quantita- 
tive comparison is difficult because of the unknown spectral 
source content of Kelly et al. (1976) and because of the graph- 
ical representation of seismograms. The direct P-wave and the 
Rayleigh wave dominate the seismograms. The PP- and PS- 

wave reflections clearly show a phase shift after the critical 
angle. The reflection at the free surface, which seems to come 
from a ghost source above the free surface, is called GP for the 
P-wave reflection and GS for the S-wave reflection. These 
phases are usually called pP and sP but I use the nomencla- 
ture of Kelly et al. The GP phase is again reflected upward by 
the interface as a P-wave. This so-called GPP phase stands 
between the PP and PS reflection. The head wave can be 
guessed, mainly when it arrives before the direct P-wave. With 
another choice of saturation for the picture, it would have 
been clearly seen. Then, the S reflection of GP phase, called 
GPS, and the P reflectinn oT GS phase, called GSP, arrive in 
front of the phase obviously called GSS. The PPPP phase, 

which is the P incident phase twice reflected at the interface 
and once at the free surface, can hardly be seen at the bottom 
of the seismogram. 

I now show raster pictures instead of the more conventional 
representation in Figure 7. Small energetic phases are better 
seen on raster images. 

Corner-edge model 

This model is a stringent test for the quality of a finite- 
difference scheme. Kelly et al. (1976) showed unacceptable dis- 
crepancies between the solutions obtained with the homoge- 
ncous and heterogeneous formulations of the problem. 

The geometry of the medium is shown in Figure 8. The 
velocity of the upper medium is 6 000 m/s while the lower 
medium has a velocity of 9 000 m/s. The density of the lower 

medium is 2 500 kg/m3. The source g(t) has a spectral content 

HOMOGENEOUS SPACE 

ANALYTICAL SOLUTION CONTINUOUS LINE 

s 
NUMERICAL SOLUTION CROSSES 

FIG. 4. Comparison between numerical and analytical seismo- 
grams for an explosive source in an infinite medium. 

HALF-SPACE VELOCITY Vp = 4 000 M/S 

CAGNIARD-DE HOOP CONTINUOUS LINE 

FINITE-DIFFERENCE METHOD CROSSES 

X = 1 500 m 

‘t X= 2000m 

FIG. 5. Comparison between numerical and analytical hori- 
zontal components for Lamb’s problem at different stations 
on the free surface. 
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defined by a = 40, [see equation (4)]. Figure 9 presents seis- 
mograms lasting 6 s on the free surface for Ax = AZ = 100 m. 
Two models were considered : (1) homogeneous density, where 
the two media have the same density, and (2) homogeneous 
Lam&~coeficients, wkre i&e two media have rhe same h and 
p. They illustrate the phase shifts for the different waves at the 
interface. time arrivals of numerical waves are compared with 
those obtained by ray tracing. I use the same nomenclature of 
phases used in the previous example. After the direct P-wave, 
the PP,,r, reflection is associated with the PPdirf diffraction. 

SO”,Ce 

2 000 m/s 
L 

6 000 m/s 

I: 1 1 2 250 m 

1 I 

I 

66OOm 

The PS,,,, is clearly seen on the horizontal component, but 
interferes later with the ghost GPP,,,, reflection and the ghost 
GPP,,, diffraction, which are strong above the corner and 
source area. Another group of energetic waves, GPS and GSP 

waves, which are the S-wave reflection of the GP phase at the 
interface or the P-wave reflection of the GS phase, are not 
hidden by the residual reflection coming from the bottom 
where npmerical radiation conditions were applied. Kelly et 
al. (1976) mainly observed this reflection because they did not 
apply absorbing radiation conditions. 

These different phases may be followed by snapshots of the 
medium at successive times. Figure 10 shows the horizontal 
and vertical components. Wavefronts are indicated with 
arrows. Attention must be drawn on diffracted fronts, head 
fronts, and corner fronts. The corner front is the same one 
observed for the SH case (Virieux, 1984). This front, called C 
phase in Figure 10, corresponds to the P-wave refracted on 
the horizontal interface, and reflected again on the vertical 
wall as an S wave. 

C 

HORIZONTAL 

FIG. 6. Geometry of the weathered-layer model. 

phase nomenclature 

2.5 - 

GP 

A 
PPPP VERTICAL 

FIG. Z Numerical seismograms at the free surface for the weathered-layer model. The horizontal seismogram is shown 
on the left and the vertical seismogram is shown on the right. Phases are indicated by arrows following the ray 
nomenclature given in the upper right corner. 
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Returning to the discrepancy between the homogeneous 
and heterogeneous formulations of finite-differences at inter- 
faces, Kelly et al. (1976) argue that a possible explanations may 
come from the numerical smoothing of Lame coefficients in 
the heterogeneous formulation. There is a numerical transition 
zone which is not found in the homogeneous formulation be- 
cause of the explicit boundary conditions. With the increasing 
power of computers this argument may be reexamined by 
numerical scaling. By decreasing the grid size, the transition 
zone is reduced, and results for the heterogeneous formulation 
are expected to improve. This is not the case. Taking 
Ax = 200 m, Ax = 100 m and Ax = 50 m, results are remark- 
ably stable and give a very weak PS diffracted signal in the 
forward direction compared with that in the backward direc- 
tion. This signal is not as strong as that found by the homoge- 
neous formulation of Kelly et al. (1976) and the result con- 
firms numerically Gupta’s results (Gupta, 1966) on analytical 
transition zones. A source with a wavelength content between 
10 and 20 nodes cannot distinguish drastically a transition 
zone over 1, 2, or 3 nodes from an abrupt change of physical 
parameters because the source does not have enough resolu- 
tion. Therefore, another explanation may be sought. 1 give two 
arguments for a weak PS diffraction. 

The energy of the incident wave is divided in two parts at a 
plane interface: the reflected part, going upward and the re- 
fracted part, going downward. The diffraction phase, which 
comes from an abrupt end of the interface, connects the 
upward reflected phase to the downward incident phase. The 
incident phase, where the interface is missing, is stronger than 
the refracted phase. Therefore, only a small amount of energy 
is expected to go upward with the diffracted front, while the 
incident phase brings downward the main part of the energy. 

A possible analytical way is to look at asymptotic solutions 
in the high-frequency approximation. I could compare nu- 
merical solutions for a high-frequency source with solutions 
obtained by the geometrical theory of diffraction (Keller, 1962) 
applied to elastic waves. Instead, I argue qualitatively from 
results presented in Achenbach et al. (1982). The corner-edge 
model is not too different from the semiinfinite crack diffrac- 
tion problem. The contribution of the vertical wall of the 
corner is missing, but the contribution from the interruption 
of the horizontal wall is expected to be correctly modeled. 
Illuminating the horizontal wall by a compressional plane 
wave making an angle 8, with the x-axis, Achenbach et al. 
(1982, p. 126148) obtained PS diffraction coefficients. For any 
angle 8r between 0 and 3t/2 of this plane wave, the amplitude 
was an order of magnitude smaller in the forward direction 
than in the backward direction. 

38 000 m 

I 
58OOm I 

I 8 800 m 

2 obo m 
I 

9 000 m/s 

6 000 m/s p 25 000 m 

19ioom 

FIG. 8. The geometry of the corner-edge model. 

As a partial conclusion, the heterogeneous formulation of 
Kelly et al. (1976) or the heterogeneous formulation of this 
article present reasonable solutions while the homogeneous 
formulation of kelly et al. (1976) presents features difficult to 
explain. For a more precise analysis the computer program 
used by Kelly et al. for the homogeneous formulation is 
needed. 

LIQUID OVER SOLID INTERFACE: 

CORNER-EDGE MODEL 

Interest in the liquid-solid interface increases with marine 
seismic exploration. Waves propagate inside water before hit- 
ting the ocean basement and penetrating an elastic medium. 
Does the problem require a new formulation? 

The heterogeneous formulation of standard finite-difference 
schemes exhibits instabilities for step discontinuities at a 
liquid/solid interface or inaccuracies for gradient dis- 
continuities, as clearly shown in Stephen (1983). Solving this 
problem requires the homogeneous formulation of finite- 
difference schemes. Propagation inside water is solved by the 
acoustic equation, while the propagation inside an elastic 
medium is solved by the elastodynamic equations. The liquid- 
solid interface is a common boundary. Different approxi- 
mations used at this interface yield different numerical 
schemes. Modeling complex interfaces with a homogeneous 
formulation is a difficult computational task, and has not yet 
been performed, to my knowledge. 

I illustrate the liquid-solid interface with two models: the 
2-D step discontinuity model for showing stable results, and 
the corner-edge model for analyzing the complex liquid/solid 
interface. 

Step-discontinuity model 

Stephen (1983) studied the same problem but used cylindri- 
cal symmetry to simulate point sources He found unstable 
results for a step discontinuity of velocity and density with 
depth, using a heterogeneous formulation. This instability 
does not come from the cylindrical symmetry of his problem, 
but results from the numerical feature of the standard finite- 
difference scheme he used. Figure 11 presents results for the 
same medium, using my heterogeneous formulation which 
gives stable results. Unfortunately, comparison with Stephen’s 
results is not possible because~ my fiat- 2-i9 geometry is differ- 
ent from his cylindrical calculations. My results exhibit rea- 
sonable amplitudes at any range and a good modeling of 
conical phases at supercritical (4 000 m) range. 

Corner-edge model 

Now consider the corner-edge model presented previously. 
Figure 12 presents seismograms for the same medium as 
Figure 9, but for different Poisson’s ratios ranging from 0.25 
to 0.5. The pattern for the direct P-wave and the PP-wave 
remains essentially the same for the different Poisson’s ratios, 
while the P&wave moves downward because the S-wave ve- 
locity decreases and then disappears completely for the Pois- 
son’s ratio v = 0.5. Small oscillations coming from the S-wave 
generated by the free surface may be observed when the 
number of nodes inside the S wavelength is too small. For this 
scheme, they go to zero when v tends toward 0.5. 

A better understanding of these seismograms may be ob- 
tained from the snapshots of the medium for different Pois- 
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FIG. 9. Numerical seismograms at the free surface for the corner-edge model. The horizontal seismogram is shown on 
the left and the vertical seismogram is shown on the right. Continuous lines are arrival times of different waves from 
ray tracing. 
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FIG. 10. Pictures of the corner-edge medium for different times. Wavefronts are indicated by arrows. 
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son’s ratios v. Figure 13 shows vertical component at time
t =2.995 s inside the medium. To observe the modification of 
the wave pattern, look at the PS reflection/diffraction on the 
corner edge. As the Poisson’s ratio tends towx! 0.5, the PS- 

wavefront becomes increasingly confined near the interface. 
Another modification comes from the free surface. The PS 
reflection at the free surface precedes slightly the GPP reflec- 
tion for v = 0.25. For v = 0.45, the PS reflection is behind the 
GPP reflection, while, for greater v, the PS is unnoticeable and 
disappears for v = 0.5. 

Source Free Surface 
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Stable and accurate results were obtained in Nicoletis (198 1) 
at a liquid-solid interface. Using variational methods, she de- 
signed a numerical scheme for the acoustic problem inside the 
liquid and another scheme for the elastic problem inside the 
solid with an explicit boundary between them. In our tech- 
nique, it is not necessary to use an explicit boundary condition 
between the solid and liquid. The same unique numerical 
scheme is applied to the liquid and solid media. Therefore, 
propagation of elastic waves and acoustic waves across a 
liquid-solid interface is modeled with the same code. No spe- 
cial treatment of the interfaces is needed to allow our method 
to model complex geometries of the interfaces. VERTICAL COMPONENT 

CONCLUSION 

I have shown that elastodynamic equations can be solved 
by a finite-difference technique using velocity and stress as 
conjugate physical quantities distributed on a staggered grid. 
The numerical solution is valid for any Poisson’s ratio. Liquid 
areas can be introduced inside the heterogeneous medium and 
the wave equation can be solved using the same formulation 
used for a solid, thereby avoiding use of the acoustic equation 
inside the liquid and escaping the rather complex problem of 
connecting the liquid and solid areas along an interface. 

The main limitations of our stress-velocity finite-difference 
method come from the numerical dispersion and the finite 
numerical size of the grid. With these restrictions, interpreta- 
tion of numerical seismograms may be very difficult for com- 
plex media. By choosing different hypothetical media, differ- 
ential seismograms may be built to analyze where the energy 
is coming from. Ray theory and its extension may also be used 
to locate different phases. These different methods are essential 
for understanding wave propagation in a complex medium 
(George et al. 1985). 

Another alternative to this trial-and-error method consists 
of applying inverse techniques to the nonlinear problem. 
Techniques are currently being developed using this stress- 
velocity formulation (Gauthier et al., 1985). 
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FIG 11. Numerical vertical seismograms above the interface 
between liquid and solid media, as depicted in the upper left. 
The seismogram at offset 4 000 m is amplified in order to see 
the conical phase propagating at 4 000 m/s. 
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the wavefront interpretation. 
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