
Numerische Methoden 1 – B.J.P. Kaus

5 Finite differences: and what about 2D?

The transient heat equation with sources/sinks in 2D is given by

ρcp
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
+

∂

∂z

(
k
∂T

∂z

)
+Q (1)

where, ρ is density, cp heat capacity, k thermal conductivity and Q radiogenic heat production. If the
thermal conductivity is spatially constant, we can rewrite the equation to

∂T

∂t
= κ

(
∂2T

∂x2
+
∂2T

∂z2

)
+

Q

ρcp
(2)

5.1 Explicit method

The simplest way to discretize equation 2 is to employ an explicit discretization scheme

Tn+1
i,j − Tn

i,j

∆t
= κ

(
Tn

i,j+1 − 2Tn
i,j + Tn

i,j−1

∆x2
+
Tn

i+1,j − 2Tn
i,j + Tn

i−1,j

∆z2

)
+
Qn

i,j

ρcp
(3)

rearranging gives

Tn+1
i,j = Tn

i,j +
κ∆t
∆x2

(
Tn

i,j+1 − 2Tn
i,j + Tn

i,j−1

)
+
κ∆t
∆z2

(
Tn

i+1,j − 2Tn
i,j + Tn

i−1,j

)
+
Qn

i,j∆t
ρcp

(4)

Boundary conditions can be set the usual way. A constant temperature on the left-hand side of the
domain (at j = 1), for example, is given by

Ti,j=1 = Tleft (5)

A constant flux on the same boundary is set through fictious boundary points

∂T

∂x
= c1 (6)

Ti,2 − Ti,0

2∆x
= c1 (7)

and Ti,0 can be eliminated by using equation 4. A (major) disadvantage of these explicit schemes is that
it is only stable if

κ∆t
min(∆x2,∆z2)

≤ 0.5 (8)

5.2 Fully implicit method

A way around these stability problems is to employ an implicit discretization scheme (remember the 1D
exercises?). The fully implicit discretization scheme of equation 2 is

Tn+1
i,j − Tn

i,j

∆t
= κ

(
Tn+1

i,j+1 − 2Tn+1
i,j + Tn+1

i,j−1

∆x2
+
Tn+1

i+1,j − 2Tn+1
i,j + Tn+1

i−1,j

∆z2

)
+
Qn

i,j

ρcp
(9)

rearranging to put terms with n+ 1 on the left-hand-side and terms with n on the rhs gives

−szT
n+1
i+1,j + (1 + 2sz + 2sx)Tn+1

i,j − szT
n+1
i−1,j − sxT

n+1
i,j+1 − sxT

n+1
i,j−1 = Tn

i,j +
Qn

i,j∆t
ρcp

(10)

where sx = κ∆t/∆x2 and sz = κ∆t/∆z2.

1

Numerische Methoden 1 – B.J.P. Kaus

As in the 1D case, we have to write these equations in a matrix A and a vector rhs (and use c = A\rhs
to solve for Tn+1). From a practical point of view, this is a bit more complicated than in the 1D
case, since we have to deal with book-keeping issues. As a first step the nodes have to be numbered
continuously (see figure 2 for an example). The derivative versus x-direction is fairly similar to the 1D
case, e.g. (fig. 2)

∂2T

∂x2
|i=3,j=4 = 1/∆x2 (T19 − 2T18 + T17) (11)

The derivative versus z-direction is given by (fig. 2).

∂2T

∂z2
|i=3,j=4 = 1/∆z2 (T25 − 2T18 + T11) (12)

If nx are the number of gridpoints in x-direction and nz the number of points in z-direction, we can
write equations 11 and 12 in a more general way as:

∂2T

∂x2
|i,j = 1/∆x2

(
T(i−1)nx+j+1 − 2T(i−1)nx+j + T(i−1)nx+j−1

)
(13)

∂2T

∂z2
|i,j = 1/∆z2

(
Tinx+j − 2T(i−1)nx+j + T(i−2)nx+j

)
(14)

In matrix format this gives something like

A =

1 0 .. 0 0 0 0 0 0 0 0 .. 0 0
0 1 .. 0 0 0 0 0 0 0 0 .. 0 0
: :
0 0 −sz .. −sx (1 + 2sx + 2sz) −sx .. −sz 0 0 0
0 0 0 −sz .. −sx (1 + 2sx + 2sz) −sx .. −sz 0 0
: : : :
0 0 .. 0 0 0 0 0 0 0 0 .. 1 0
0 0 .. 0 0 0 0 0 0 0 0 .. 0 1

(15)

Note that we now have 5 diagonals filled with numbers as opposed to 3 diagonals in the 1D case. The
coefficient matrix c is given by

c =

Tn+1
1 = T1,1

Tn+1
2 = T1,2

:
Tn+1

(i−1)nx+j = Ti,j

Tn+1
(i−1)nx+j+1 = Ti,j+1

:
Tn+1

nxnz−1 = Tnz,nx−1

Tn+1
nxnz

= Tnz,nx

(16)

and the rhs-vector is given by (ignoring radioactive heat!)

rhs =

Tbottom

Tbottom

:
Tn

(i−1)nx+j

Tn
(i−1)nx+j+1

:
Ttop

Ttop

(17)

2

Numerische Methoden 1 – B.J.P. Kaus

x

z

Dx

Dz

i,j

i-1,j

i+1,j

i,j+1i,j-1

L

H

Figure 1: Finite difference discretization in 2D

5.3 Other methods

The fully implicit method discussed above works fine, but is only first order accurate in time. A simple
modification is to employ a Crank-Nicolson timestep discretization which is second order accurate in
time. I never saw a case where this really makes a big difference, but it is mathematically better and
doesn’t cost much in terms of additional programming, so you may consider using it for diffusion-type
equations.

A different, and more serious, issue is the fact that the cost of solving c = A\rhs is a strong function
of the size of A. This size depends on the number of gridpoints in x- (nx) and z-direction (nz). For a
2D problem with nx × nz internal points, (nx × nz)2 × (nx × nz)2 equations have to be solved at every
timestep. This quickly fills the computer memory (especially if going to 3D cases).

For the special case of the temperature equation, different techniques have therefore been developed.
One such technique, is the socalled alternating direction implicit (ADI) method. It basically consists in
solving the 2D equations half explicit and half implicit along 1D profiles (what you do is the following:
(1) discretize equation 2 implicitly in the x-direction and explicit in the z-direction. (2) solve it for time
n + 1/2, and (3) repeat the same but with an implicit discretization in the z-direction). Compared to
the other method it is fast!! However, ADI-methods only work if the governing equations have time-
derivatives, and unfortunately this is often not the case in geodynamics. In the exercises, we therefore
focuss on the fully implicit formulation. If, however, you have to write a thermal solver at some point,
you may strongly consider to use the ADI method (which is still very fast in 3D).

5.4 Exercises

In the first two exercises you’re gonna program the diffusion equation in 2D both with an explicit and an
implicit discretization scheme. The problem considered is that of the thermal structure of a lithosphere
of 100 km thickness, with an initial linear thermal gradient of 13 K/km. Suddenly a plume with T=1500
C impings at the bottom of the lithosphere. What happen with the thermal structure of the lithosphere?
A related (structural geology) problem is that of the cooling of batholites (like the ones in the Sierra
Nevada).

1. Fill in the question marks in the script ”heat2Dexplicit.m” (fig. 4), by programming the explicit
finite difference scheme. Employ zero flux boundary conditions ∂T

∂x = 0 on the left and on the

3

Numerische Methoden 1 – B.J.P. Kaus

x

z

1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

n
x

n
z

Figure 2: Numbering scheme for a 2D grid with nx = 7 and nz = 5.

right-side of the domain, and constant temperature conditions on the top and bottom. Ignore the
effects of radioactive heat.

2. Finish the code ”heat2Dimplicit.m”, by programming the implicit finite difference approximation
of the 2D temperature equation.

3. A simple (time-dependent) analytical solution for the temperature equation exists for the case that
the initial temperature distribution is

T (x, z, t = 0) = Tmax exp
[
−(x2 + z2)

σ2

]
(18)

where Tmax is the maximum amplitude of the temperature perturbation at (x, z) = (0, 0) and σ
it’s half-width. The solution is than

T (x, z, t) =
Tmax

1 + 4tκ/σ2
exp

[
−(x2 + z2)
σ2 + 4tκ

]
(19)

Program the analytical solution and compare it with the numerical solution with the same initial
condition.

4. Bonus question 1: Add the effects of radioactive heat to the explicit/implicit equations above. Use
Turcotte and Schubert (1981) or google to find typical values of Q, ρ, cp for rocks.

5. Bonus question 2: write a code for the thermal equation with variable thermal conductivity k
(equation 1). Assume that the grid spacing ∆x is constant. This type of code is not only relevant
for thermal problems, but also for problems like (1) hydrogeological problems (Darcy flow; how
much do I have to pump to get drinking water?, or: how far did the chemical waste go into the
aquifer?), (2) fluid movements through the crust and through fault zones (which is related to the
creation of ore deposits), (3) magma migration through the mantle, (4) geochemistry and mineral
reactions at grain-boundary scale, (5) aftershocks and fluids (well, depends whom you ask...).

6. Bonus question 3: write a code for the thermal equation with variable thermal conductivity k
(equation 2), and with variable x- and z-spacing, variable density ρ and variable heat capacity cp.
Include source/sink terms.

4

Numerische Methoden 1 – B.J.P. Kaus

%heat2D_explicit.m

% 1th exercise

% Solves the 2D heat equation with an explicit finite difference scheme

clear

%Physical parameters

L = 150e3; % Width of lithosphere [m]

H = 100e3; % Height of lithosphere [m]

Tbot = 1300; % Temperature of bottom lithosphere [C]

Tsurf = 0; % Temperature of country rock [C]

Tplume = 1500; % Temperature of plume [C]

kappa = 1e-6; % Thermal diffusivity of rock [m2/s]

Wplume = 25e3; % Width of plume [m]

day = 3600*24; % # seconds per day

year = 365.25*day; % # seconds per year

% Numerical parameters

nx = 101; % # gridpoints in x-direction

nz = 51; % # gridpoints in z-direction

nt = 500; % Number of timesteps to compute

dx = L/(nx-1); % Spacing of grid in x-direction

dz = H/(nz-1); % Spacing of grid in z-direction

[x2d,z2d] = meshgrid(-L/2:dx:L/2, -H:dz:0); % create grid

% Compute stable timestep

dt = min([dx,dz])^2/kappa/4;

% Setup initial linear temperature profile

T = abs(z2d./H)*Tbot;

% Imping plume beneath lithosphere

ind = find(abs(x2d(1,:)) <= Wplume/2);

T(1,ind) = Tplume;

time = 0;

for n=1:nt

% Compute new temperature

Tnew = zeros(nz,nx);

sx = kappa*dt/dx^2;

sz = kappa*dt/dz^2;

for j=2:nx-1

for i=2:nz-1

Tnew(i,j) = ????;

end

end

% Set boundary conditions

Tnew(1,:) = T(1 ,:);

Tnew(nz,:) = ?;

for i=2:nz-1

Tnew(i,1) = ?

Tnew(i,nx) = ?

end

T = Tnew;

time = time+dt;

% Plot solution every 50 timesteps

if (mod(n,50)==0)

figure(1), clf

pcolor(x2d/1e3,z2d/1e3,Tnew); shading interp, colorbar

hold on

contour(x2d/1e3,z2d/1e3,Tnew,[100:100:1500],’k’);

xlabel(’x [km]’)

ylabel(’z [km]’)

zlabel(’Temperature [^oC]’)

title([’Temperature evolution after ’,num2str(time/year/1e6),’ Myrs’])

drawnow

end

end

Figure 3: MATLAB script heat2D explicit.m to solve the 2D heat equation.

5

Numerische Methoden 1 – B.J.P. Kaus

%heat2D_implicit.m

% 2nd exercise

% Solves the 2D heat equation with an implicit finite difference scheme

clear

%Physical parameters

L = 150e3; % Width of lithosphere [m]

H = 100e3; % Height of lithosphere [m]

Tbot = 1300; % Temperature of bottom lithosphere [C]

Tsurf = 0; % Temperature of country rock [C]

Tplume = 1500; % Temperature of plume [C]

kappa = 1e-6; % Thermal diffusivity of rock [m2/s]

Wplume = 25e3; % Width of plume [m]

day = 3600*24; % # seconds per day

year = 365.25*day; % # seconds per year

dt = 100e6*year; % timestep

% Numerical parameters

nx = 51; % # gridpoints in x-direction

nz = 51; % # gridpoints in z-direction

nt = 100; % Number of timesteps to compute

dx = L/(nx-1); % Spacing of grid in x-direction

dz = H/(nz-1); % Spacing of grid in z-direction

[x2d,z2d] = meshgrid(-L/2:dx:L/2, -H:dz:0); % create grid

% Setup initial linear temperature profile

T = abs(z2d./H)*Tbot;

% Imping plume beneath lithosphere

ind = find(abs(x2d(1,:)) <= Wplume/2);

T(1,ind) = Tplume;

% Setup numbering

num = 1;

for i=1:nz

for j=1:nx

Number(i,j) = num;

num = num+1;

end

end

% Construct the A matrix

A = sparse(nx*nz,nx*nz);

sx = kappa*dt/dx^2;

sz = kappa*dt/dz^2;

for i = 2:nz-1

for j = 2:nx-1

ii = Number(i,j);

A(ii, Number(i+1,j)) = ??;

A(ii, Number(i ,j+1)) = ??;

??

end

end

% Set lower and upper BC

for j = 1:nx

??

end

% Set left and right BC

for i = 1:nz

??

end

time = 0;

for n=1:nt

% Compute rhs

rhs = zeros(nx*nz,1);

for i = 1:nz

for j = 1:nx

ii = Number(i,j);

??

end

end

% Compute solution vector

Tnew_vector = A\rhs;

% Create 2D matrix from vector

Tnew = Tnew_vector(Number);

T = Tnew;

time = time+dt;

% Plot solution every 50 timesteps

if (mod(n,10)==0)

figure(1), clf

pcolor(x2d/1e3,z2d/1e3,Tnew); shading interp, colorbar

hold on

contour(x2d/1e3,z2d/1e3,Tnew,[100:100:1500],’k’);

xlabel(’x [km]’)

ylabel(’z [km]’)

zlabel(’Temperature [^oC]’)

title([’Temperature evolution after ’,num2str(time/year/1e6),’ Myrs’])

drawnow

end

end

Figure 4: MATLAB script heat2D implicit.m to solve the 2D heat equation.6

