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Project: 1D numerical modelling of melt migration in the Earth’s
mantle

There are various indications that the asthenosphere underneath mid-oceanic ridges is partially molten
at a depth of around 50 km. The melt content here is maybe 5-10 percent. This melt leaves the partially
molten zone and is focussed towards a mid oceanic ridge by some mechanism. There has been quite a bit
of research over the last 3 decades to better understand the physics of this melt segregation mechanism
as well as to better understand how melt is focussed towards the ridges. One of the more popular
formulations use a so-called two-phase flow formulation that take into account both the solid matrix and
the melt that is contained in it. In this formulation, the partially molten rock will compact slightly once
the melt leaves the solid matrix (just as you squeeze a sponge after taking a bath). Here the goal is
to solve the two-phase flow equations numerically and to reproduce the results of the attached paper of
Vasyliev et al.

Governing equations

The full set of equations are described in Vasyliev et al. [1998]. The resulting (non-dimensional) set of
non-linear equations that should be solved are

∂φ

∂t
= −∇ (φn (∇Pe + ~ez)) (1)

De
∂Pe

∂t
= ∇ (φn (∇Pe + ~ez))− φmPe (2)

here φ is porosity (melt content which varies from 0-1), Pe the effective pressure, n,m are material
constants, De the nondimensional Deborah number which indicates the importance of elasticity (in the
mantle, De = 0) and ~ez the unit vector in the z-direction (the direction of the gravity vector).

Here, we will focus on solving the equations in 1-D, which means that we have to solve the following
two (coupled) equations

∂φ

∂t
= − ∂

∂z

(
φn

(
∂Pe

∂z
+ 1

))
(3)

De
∂Pe

∂t
=

∂

∂z

(
φn

(
∂Pe

∂z
+ 1

))
− φmPe (4)

Both equations are coupled, as φ is a nonlinear parameter in eq.4 and Pe occurs in eq. 3. Therefore,
nonlinear iterations have to be performed. Moreover, since your code should also work in the case that
De = 0, you see that equation 4 is essentially a steady-state diffusion equation, which should thus be
solved in an implicit manner.

Exercise

1. Discretize and solve the equations (3-4) in the 1D case, using a finite difference discretization. Take
into account the nonlinearities, that is add iterations. Assume n = 3,m = 2.

2. Reproduce figure 1 of Vasyliev et al., using the same initial and boundary conditions.

3. Perform simulations with an initial step-like perturbation in porosity. How do results change
compared to those with an initial gaussian perturbation in porosity? Experiment with different
values of n and m.

4. (Bonus question) Solve the governing equations in 2D. Does melt propagate in dikes, waves or in
tubes?
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Modeling of compaction driven flow in poro-viscoelastic
medium using adaptive wavelet collocation method

Oleg V. Vasilyev,1 Yuri Yu. Podladchikov,2 and David A. Yuen3

Abstract. Different regimes of compaction driven flow have
been studied within the framework of a poro-viscoelastic
medium. A single dimensionless parameter, the Deborah
number De, has been identified, which enables the por-
trayal of the solution from the purely viscous matrix limit
(De� 1) to the poro-elastic (De� 1) matrix limit. In vis-
cous limit the evolution of a porosity disturbance (porosity
wave) is governed by nonlinear convection-diffusion equa-
tion, while in the poro-elastic limit it evolves according to a
Burgers-like non-linear advection equation. In both regimes
porosity waves of higher amplitude propagate faster. How-
ever in the viscous limit porosity waves go through each
other in soliton-like fashion, while in poro-elastic limit they
coalesce and thus enhance melt segregation. The introduc-
tion of other variables, such as chemistry, would induce dif-
ferent responses in the flow for low and high De, allowing
for diverse feedback situations.

Introduction

Compaction-driven flow of one phase (fluid) infiltrating
through another phase (solid) has received great attention in
geological sciences. In the area of magma dynamics most of
the previous work has been concerned with the flow through
a porous viscous matrix [Mc Kenzie, 1984; Scott and Steven-
son, 1986; Spiegelman, 1995]. Recent work by Rubin [1993]
has pointed out the importance of viscoelastic matrix in the
propagation of magma cracks. Up to now, the effects of
viscoelasticity have not been included in the magma segre-
gation problem. Besides magma dynamics, the influences
of viscoelasticity on flow compaction can also be important
in other environmental circumstances, such as metamorphic
reactive flows [Connolly, 1997], petroleum migration [Hunt,
1990], and nuclear waste dispersal [Onishi et al., 1996].

One-dimensional porosity waves (horizontal sheets) with-
in constant viscosity matrix are unstable versus two and
three dimensional perturbations [Scott and Stevenson, 1986].
This instability results in formation of propagating cylinders
or spheres of high porosity, which requires two or three di-
mensional modeling [Khodakovskii et al., 1998; Spiegelman,
1995]. Connolly and Podladchikov [1998] in their systematic
1-D and 2-D numerical study of a simplified system of equa-
tions for viscoelastic compacting media demonstrated the
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stabilization of one-dimensional waves by elasticity and
strengthening upward viscosity profile. These authors also
observed the evident transition from viscous to elastic mode
of wave propagation, given that viscosity of the lithosphere
increases towards the earth surface.

In this paper we will derive the equations for fluid ex-
traction in a viscoelastic matrix and show how one single
control parameter can be extracted for this system, which
will allow the exploration of the different flow regimes, rang-
ing from purely viscous matrix deformation to nearly elastic
behavior for the matrix. We will also show the efficacy of
the wavelet method in solving this problem endowed with
steep gradients.

Equations for Poro-Viscoelastic Flow in
Compacting Media

Let us consider a fluid flow through a viscoelastic porous
matrix composed of solid grains. Conservation of mass for
fluid and solid fractions is given by

∂ (φρf)

∂t
+∇ (φρfVf) = 0, (1a)

∂ ((1 − φ)ρs)

∂t
+∇

(
(1 − φ)ρsVs

)
= 0, (1b)

where ρf and ρs are the density of fluid and solid fractions
respectively and φ is a porosity of the media. Rheological
relations are elastic bulk compressibility of fluid and solid
constitutes given by

dρf

ρf
= KfdPf,

dρs

ρs
= KsdPs (2)

and Maxwell volumetric strain-rate effective mean stress law
for bulk viscoelastic rheology given by

∇ (Vs) = −φ

(
Pe

η
+Kφ

dPe

dt

)
− (1 − φ)Ks

dPs

dt
, (3)

where d
dt

= ∂
∂t

+ Vs∇ is the “material” time derivative rel-
ative to the matrix velocity, Pe = Ptot − Pf is the effective
pressure, Ptot is the total load, Pf and Ps are fluid and ma-
trix pressures respectively, Kf and Ks are fluid and matrix
compressibilities, Kφ is the pore compressibility elastic con-
stant, and η is the bulk viscosity of the matrix which is
assumed to be approximated by η = η0/φ

m−1, where η0 is
a constant.

Additional relationships are stress equilibrium condition
for fluid phase, described by Darcy’s law

φ (Vf −Vs) = −
κ

µf

(
∇Pf + ρfg~ez

)
(4)

and stress equilibrium condition for solid matrix
φPf + (1 − φ)Ps = Ptot, where ~ez is the unit vector along
upward directed z-axis, µf is fluid shear viscosity, which is
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assumed to be constant, g is the gravity acceleration, and
κ is the matrix permeability which is assumed to be ap-
proximated by κ = κ0φ

n, where κ0 is a constant. There
is a considerable variability in the literature concerning the
choice for power-law exponents m and n. In this paper we
assume n = 3 and m = 2.

Substituting Eqn. (2) into (1b) and then using (3) we
obtain the following equation for evolution of porosity:

dφ

dt
= −φ (1 − φ)

(
Pe

η
+Kφ

dPe

dt
−Ks

dPs

dt

)
(5)

Substituting (2) into (1a) and using (4) and (5) we obtain
the following evolution equation

dPf

dt
= B

dPtot

dt
+

1

Q

[
∇

(
κ

µf
(∇Pf + ρfg~ez)

)
+ φ

Pe

η

]
+
Kf

Q

κ

µf

(∇Pf + ρfg~ez)∇Pf , (6)

where Q = φ (Kf +Kφ) is effective storativity and B =
Kφ

Kf+Kφ
is the Biot’s constant. The above two equations

represent the full problem formulation. A limiting form of
these equations can be found in [Connolly and Podladchikov,
1998].

Eqns. (5) and (6) contain many different physical mecha-
nisms and for simplification we make the following assump-
tions:

1. porosity is small, i.e. φ� 1,
2. total pressure is isostatic, i.e. Ptot = p0 − ρsgz,
3. compressibility of fluid and solid fractions is negligi-

ble,
4. convection of solid matrix is negligible, i.e.

d
dt

= ∂
∂t

+ Vs∇ ≈ ∂
∂t

.

Under these assumptions the following set of equations de-
scribing the evolution of porosity φ and effective pressure Pe

is obtained:

∂φ

∂t
= −φ

Pe

η
−Q

∂Pe

∂t
, (7a)

∂Pe

∂t
=

1

Q

[
∇

(
κ

µf

(
∇Pe + ∆ρg~ez

))
− φ

Pe

η

]
, (7b)

where ∆ρ = ρs − ρf and Q = φKφ, which is assumed to be
constant.

Equations (7) are written for dimensional quantities.
There are two natural choices for scaling the effective pres-
sure. One is based on scaling using compressibility Q and is
a good choice in the case when poro-elastic effects are dom-
inating. The second one, which is used in this research, is
based on balancing of the buoyant and viscous forces and
is effective in the viscous limit. Thus the following char-
acteristic scales are chosen: porosity φ∗, effective pressure
P ∗e = ∆ρgL∗, time t∗ = η0/

(
P ∗e φ

∗m−1
)
, and viscous com-

paction length L∗ =
(
κ0η0φ

∗n−m/µf

)1/2
. Using this nondi-

mensialization equations (7) can be rewritten as

∂φ

∂t
= −∇

(
φ
n
(
∇Pe + ~ez

))
, (8a)

De
∂Pe

∂t
= ∇

(
φ
n
(
∇Pe + ~ez

))
− φmPe, (8b)

where De = Q∆ρgL∗/φ∗ is the Deborah number used in
viscoelastic applications (e.g. [Connolly and Podladchikov,

1998]), which determines the character of flow dynamics,
ranging from viscous regime (De � 1) to the poro-elastic
regime (De � 1). For realistic Earth parameters, De may
lie between 10−2 to 102 with corresponding time scales be-
tween 10−1 and 102 Myrs and spatial scales between 5 and
500 km.

An alternative way to understand the importance of Deb-
orah number is to inspect the ratio of time scales Tφ and
TPe associated with evolution of porosity and pressure dis-
turbances respectively. The porosity time scale Tφ does not
depend on value of De and is always of the order O(1), while
the effective pressure time scale TPe changes with De and
is O(De). Thus the dynamics of porosity pressure interac-
tions is different for low and large De regimes. In the case of
low De porosity disturbance dominates the dynamics of the
evolution, while pressure adjusts to the changes in porosity
on the time scale O(De) via nonlinear diffusion mechanism
shown in Eqn. (8b). In other words, for low values of De
pressure behaves as a slave variable to porosity evolution. In
the case of De = 0 pressure reflects changes instantaneously
and the system of equations (8) reduces to the a similar
form of the viscous equations used by Khodakovskii et al.
[1995]. In the limit of large values of De, TPe is consider-
ably larger then Tφ. In most applications we are interested
in the evolution of porosity disturbance, and thus the time
scale of interest is Tφ. However due to pressure porosity
coupling in Eqns. (8a,8b) the effective pressure participates
in the dynamics of evolution and should also change on the
same time scale. This can only occur when the effective
pressure is of the order O(1/De). A larger pressure pertur-
bation results in redistribution of porosity which compen-
sate for pressure gradient. The dynamics of time evolution
of porosity perturbation is different for viscous and poro-
elastic regimes. In the case of low De the porosity follows
a non-linear convective-diffusion equation, while in the high
De regime the evolution of porosity is described by Burgers-
like nonlinear advection equation. For De ∼ 1, both time
scales are comparable and viscous and poro-elastic effects
are nonlinearly coupled.

Problem Formulation

For the purpose of simplicity we consider the one-dimen-
sional problem. In this case, the system of equations (8)
becomes:

∂φ

∂t
= −

∂

∂z

(
φ
n
(
∂Pe

∂z
+ 1
))

, (9a)

De
∂Pe

∂t
=

∂

∂z

(
φ
n
(
∂Pe

∂z
+ 1
))
− φmPe. (9b)

As it can be easily seen the solution φ = const and Pe = 0
is steady state solution of this equation. At time t = 0
we introduce local porosity and pressure perturbations at
locations z1 and z2, which results in the following initial
conditions:

φ(z, 0) = φ0 + ∆φ1f(z, z1) + ∆φ2f(z, z2), (10a)

Pe(z, 0) = −∆Pe1f(z, z1)−∆Pe2f(z, z2), (10b)

where f(z, zk) = exp
(
− (z−zk)2

λ2

)
. The choice for negative

effective pressure perturbation is motivated by the fact that
chemical reactions can generate regions of high porosity with
high negative effective pressure [Connolly, 1997]. We have
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imposed initial disturbances with different amplitudes in or-
der to study their subsequent interaction in the nonlinear
evolution. The Deborah number dependence of time evo-
lution of the high porosity region is studied by varying De
in the range 10−2 − 102 while fixing the initial conditions.
In this paper we limit our consideration to the following
choice of the parameters: φ0 = 1, ∆φ1 = 8, ∆φ2 = 1,
∆Pe1 = ∆φ1/De, ∆Pe2 = ∆φ2/De, z1 = 0, z2 = 40, λ = 1.

The system (9) with initial conditions (10) is solved
numerically using a highly accurate dynamically adaptive
wavelet collocation algorithm developed by Vasilyev and
Paolucci [1996]. The multilevel structure of the algorithm
provides a simple way to adapt computational refinements to
local demands of the solution. High resolution computations
are performed only in regions where singularities or sharp
transitions occur. This property of the multilevel wavelet
approximation allows local grid refinement up to an arbi-
trary small scale without a drastic increase of the number
of grid points (e.g. 1-D case [Vasilyev and Paolucci, 1996]
and 2-D case [Vasilyev and Paolucci, 1997; Vasilyev et al.,
1997]). For details of the algorithm we refer to [ Vasilyev,
1996] and [Vasilyev and Paolucci, 1997].

Results

The results have been obtained by using the adaptive
wavelet collocation method. The correlation function of
Daubechies scaling function of order five [Beylkin and Saito,
1993] was employed with the threshold parameter of 10−4,
which means that the local relative error of the solution is
everywhere less than 10−4.

Fig. 1 shows the spatial and temporal evolution of the
porosity and pressure disturbances for a range of De val-
ues ranging from 10−2 to 102. The time evolution of the
initial disturbances is very different in viscous and poro-
elastic limit. In viscous limit initial localized disturbance
evolves in isolated structure (porosity wave) that travels
with constant speed. In poro-elastic limit initial localized
disturbance evolves in saw-tooth shape porosity wave, the
steepness of which increases with the increase of De. The
front of the wave travels faster then the tail, which results in
constant widening of the wave and decrease of its amplitude
since the fluid mass of the wave remains constant. In both
viscous and poro-elastic regimes higher amplitude porosity
waves propagate faster. However, the dynamics of the wave
interaction is quite different. In the viscous limit (low De)
porosity waves go through each other in soliton-like fashion,
which is consistent with the earlier observation of Barcilon
and Richter [1986]. In poro-elastic limit porosity waves co-
alesce. It has important implications in the context of the
melt segregation from the source rocks. Indeed, viscoelastic
waves are capable of accumulating melt distributed in small
patches ending up with one big pocket of high melt frac-
tion, i.e. viscoelastic waves are effective in the melt segrega-
tion. In contrast with viscoelastic waves, viscous soliton-like
waves do not accumulate melt at all. However viscous waves
may detach from the source and are able to transport the
melt over significant distances since they do not leave the
melt in the tail behind them.

It should be noted that the poro-viscoelastic wave propa-
gation is highly nonlinear phenomenon. The numerical com-
plexity increases with the increase of porosity contrast. Ad-
ditional numerical difficulties are associated with increasing
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Figure 1. Spatial (z-axis) and temporal (t-axis) evolution
of porosity φ (left column) and effective pressure Pe (right
column) disturbances for Deborah number De ranging from
10−2 to 102.

the stiffness of the problem for low values of De and ap-
pearance of sharp moving fronts for large values of De. The
efficient resolution of shock like structures requires a robust
method such as wavelet based numerical algorithm, which
can handle sharp gradients without drastically increasing
the number of grid points. For example, present calculations
at the highest resolution were using less then 300 wavelets,
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which is equivalent to an equally spaced finite difference grid
of 32, 768 or 215 points. Finally, we note that the ripples
observed in Fig.1 for the small De case are not a numerical
artifact, but they correspond to the train of solitary waves
with decreasing amplitude.

Concluding Remarks

We have analyzed and provided a rational way of non-
dimensionalizing the equations for the extraction of fluids
from porous viscoelastic matrix. One dimensionless param-
eter De has been found to govern this set of equations. Two
different regimes characterizing the behavior of the solutions
for porosity and pressure have been identified. For the low
De regime the solution is dominated by the non-linear dif-
fusive character of the porosity distribution, while for the
high De regime porosity behaves similar to the shock-wave
solution of a non-linear Burgers’ equation. In viscous limit
(low De) the dynamics of porosity wave evolution is solely
controlled by the porosity distribution while pressure be-
haves as a slave variable. ForDe of order unity, the porosity
and the pressure solutions are nonlinearly coupled and this
regime is extremely interesting, since it is of direct relevance
in some geological situations [Connolly and Podladchikov,
1998]. The introduction of other variables into this nonlin-
ear system, such as chemical species, would have different
influences for all regimes, since chemical reactions, which
differ significantly with pressure, may not only change the
energy balance but may become a porosity source, depend-
ing on the environmental circumstances.
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