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6 Nonlinear problems

All of the equations we considered sofar have been linear partial differential equations, which means that
coefficients in the equations are either constant (or spatially variable), but are independent on the result
of the equation itself. If the coefficients are dependent on the result of the equation, we call it a nonlinear
problem.

There are a number of ways to solve such nonlinear problems. The easiest way, which works in
many cases is to replace the nonlinear PDE by a linear one and perform iterations until the solution
converges (also called Picard iterations). Other tricks exist of which the most important is linearization
of the nonlinear terms and solving the (more complicated) PDE (the keyword here is Newton-Rhapson
iterations). This method is more robust and converges quadratically. I’s however way more complicated
to implement and will therefore not be discussed here.

To illustrate the problem, we consider a case of fluid flow in a porous media (governed by the Darcy
equation) whose diffusivity κ is a function of the fluid pressure (high fluid pressure creates it’s own
permeability). In 1-D the governing equation is
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where P is the fluid pressure [Pa], and κ(P ) the hydraulic diffusivity [m2s−1]. The equation is nonlinear
because the diffusivity is a function of the fluid pressure P , which is related to the effect of dilation and
cracking under enhanced fluid pressure. Let’s assume that the hydraulic diffusivity is given by

κ(P ) = κ0 + cPm (2)

where κ0 is the background diffusivity, c a constant and m a power exponent.
Discretization is done similar to the 1-D thermal diffusion problem with an implicit scheme:
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If, additionally, we have zero flux boundary conditions on top and bottom, we can arrange the equations
in matrix form

Ap = rhs (5)

and solve for Pn+1. The problem, however, is that κ depends on Pn+1. Therefore we have to perform
iterations. The general recipe is

1. Use the pressure Pn to compute the diffusivities κn+1
i±1/2 using equations 2 and 4.

2. Determine the coefficients in A using the estimated diffusivities.

3. Solve the system of equations to find the new pressure Pn+1.

4. Use this new pressure estimate to recalculate diffusivities and the coefficients in A.

5. Return to step 2 and continue until the pressure Pn+1 stops changing, whic indicates that the
solution has converged. Use as an indication of convergence the following error estimate:

error =
max(abs(pit − pit−1))

max(abs(pit))
(6)

If convergence is reached (i.e. error < 1e− 4), continue to the next timestep.
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6.0.1 Exercise

• Write a program that solves the equations described above. Take as values κ0 = 10−4 m2/s,
c = 1e − 8, m = 2. The initial pressure perturbation is 10 MPa, and the model domain is on the
order of 10 km. Compare the nonlinear solutions to the linear ones, obtained by setting c = 0.
Create an initial step-like profile in pressure on the LHS of the model.

• Bonus question: write a 2D version, think of an application and submit a paper to Nature.
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