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8 Advection equations and the art of numerical modeling

Sofar we mainly focussed on diffusion equation in a non-moving domain. This is maybe relevant for the
case of a dike intrusion or for a lithosphere which remains undeformed. However there are also cases
where material moves. An example is a plume rising through a convecting mantle. The plume is hot
and hence its density is low compared to the colder mantle around it. The hot material rises with a
given velocity (when term-projects are finished we will have codes that give us those velocities for a
given density distribution). If the numerical grid remains fixed in the background, the hot temperatures
should be moved to different gridpoints (see fig. 1 for an illustration of this effect).

Figure 1: Snapshots of a bottom heated thermal convection model with a Rayleigh-number of 5 × 105

and constant viscosity (no internal heating). Temperature is advected through a fixed (eulerian) grid
(circles) with a velocity (arrows) that is computed with a Stokes solver.

Mathematically, the temperature equation gets an additional term and in 1-D the diffusion-advection
equation becomes (see equation cheat sheet)
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or in 2-D
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where vx, vz are velocities in x-,respectively z-direction.
If diffusion is absent (i.e. k = 0), the advection equations are
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These equations should also be solved if you want to compute the settling of a heavy particle in a fluid,
or in weather prediction codes. In the current lecture we’re going to look at some options on how to
solve these equations with a finite difference scheme on a fixed grid. Even though the equations are fairly
simple, it is far from simple to solve them accurately. If not done carefully, you’ll end up with strong
numerical artifacts such as wiggles and numerical diffusion.
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% advection_central_1D

%

clear all

nx = 201;

W = 40; % width of domain

Vel = -4; % velocity

sigma = 1;

Ampl = 2;

nt = 500; % number of timesteps

dt = 1e-2;

dx = W/(nx-1);

x = 0:dx:W;

% Initial gaussian T-profile

xc = 20;

T = Ampl*exp(-(x-xc).^2/sigma^2);

% Velocity

Vx = ones(1,nx)*Vel;

% Central finite difference discretization

for itime=1:nt

% central fin. diff

for ix=2:nx-1

Tnew(ix) = ??

end

Tnew(1) = T(1);

Tnew(nx) = T(nx);

T = Tnew;

time = itime*dt;

% Analytical solution for this case

T_anal = Ampl*exp(-(x-xc-time*Vel).^2/sigma^2);

figure(1),clf, plot(x,T,x,T_anal), legend(’Numerical’,’Analytical’)

drawnow

end

Figure 2: MATLAB script to be used with exercise 1.

8.1 FTCS method

In a 1-D case the simplest way to discretize equation 3 is by employing a central finite difference scheme
(also called the forward-time, central space or FTCS scheme):
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8.1.1 Exercise 1

• Program the FTCS method in the code of figure 2 and watch what happens. Change the sign of
the velocity. Change the timestep and gridspacing and compute the nondimensional parameter
α = |vx|∆t/∆x. When do unstable results occur?

As you saw from the exercise, the FTCS method does not work... In fact it is a nice example of a
scheme that looks nice (and logical!) on paper, but sucks [you can actually mathematically prove this
by a socalled von Neuman stability analysis, if you’re interested you should read chapter 5 of Marc
Spiegelman’s script on the course webpage; it’s related to the fact that this scheme produces anti-
diffusion, which is numerically instable].

8.2 Lax method

Some day, long ago, there was a guy called Lax and he thought: well let’s replace the Tn
i in the time-

derivative of equation 5 with (Tn
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8.2.1 Exercise 2

• Program the Lax method by modifying the script of the last exercise. Play with different velocities
and compute the Courant number α, which is given by the following equation:

α =
∆x

∆t|vx|
(7)

Is the numerical scheme stable for all Courant numbers?

As you saw from the exercise the Lax method doesn’t blow up, but does have a lot of numerical diffusion.
So it’s an improvement but it’s still not perfect, since you may loose the plumes of figure 1 around
mid-mantle purely due to numerical diffusion (and than you’ll probably find some fancy geochemical
explanation for this...). I hope that you also slowly start to see that numerical modeling is a bit of an
art...

8.3 Upwind scheme

The next scheme that people came up with is the so-called upwind scheme. Here, the spatial finite
difference scheme depends on the sign of the velocity:
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8.3.1 Exercise 3

• Program the upwind scheme method. Play with different velocities and compute the Courant
number α Is the numerical scheme stable for all Courant numbers?

Also the upwind scheme suffers from numerical diffusion.
Sofar we employed explicit discretizations. You’re probably wondering whether implicit discretiza-

tions will save us again this time. Bad news: doesn’t work (try if you want). So we have to come up
with something else.

8.4 Staggered Leapfrog

The explicit discretizations discussed sofar were second order accurate in time, but only first order in
space. We can also come up with a scheme that is second order in time and space
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the difficulty in this scheme is that we’ll have to store two timestep levels: both Tn−1 and Tn (but i’m
sure you’ll manage).

8.4.1 Exercise 4

• Program the staggered leapfrog method (assume that at the first timestep Tn−1 = Tn). Play
around with different values of the Courant number α. Also make the width of the gaussian curve
smaller.

The staggered leapfrog method works quite well regarding the amplitude and wavespeed as long as
α is close to one. If however α << 1 and the lengthscale of the to-be-transported quantity is small
compared to the number of gridpoints (e.g. we have a thin plume), numerical oscillations again occur.
This is typically the case in mantle convection simulations (see Fig. 1), so again we have a numerical
scheme that’s not great for mantle convection simulations.
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8.5 MPDATA

This is a technique that is frequently applied in (older) mantle convection codes. The basic idea is based
on an idea of Smolarkiewicz and is basically a modification of the upwind scheme, where some iterative
corrections are applied. The results are quite ok. However it’s somewhat more complicated to implement
(the system that’s solved is actually nonlinear and requires iterations, which we did not discuss yet).
Moreover we still have a restriction on the timestep (given by the Courant criterium). For this reason
we won’t go into detail here (see Spiegelman’s lecture notes, chapter 5 if you’re interested).

8.6 Marker-based advection

So what we want is a scheme that doesn’t blow up, has only small numerical diffusion and that is
not limited by the Courant criterium. The simplest manner in doing this is to use a marker-based or
tracer-based advection scheme, which -as a nice side-effect- is something you will anyways need to model
geodynamic case studies (as soon as you finished the Stokes solver in one of the next classes).

8.6.1 Basic idea

The basic idea of a marker-based advection method that you add some marker in your code (typically
many more than the number of numerical gridpoints). A marker is a point, which has coordinates ([x]
in 1D, [x, y] in 2D) and a given temperature T . You define your initial temperature field at each marker.

Marker-based advection, than requires the following steps:

1. Interpolate velocity from nodal points to marker. In matlab, the command interp1 (in 1D) or
interp2 (in 2D) can be used to do this.

2. Compute the new marker location with xn+1(p) = xn(p) + ∆tvn
x (p) (where vn

x (p) is the velocity at
marker p).

3. Check for markers that are outside the boundary of the computational model.

4. Interpolate temperature from markers to nodal points. If nodal points have the coordinates x(i),
x(i+1), x(i+2),... a possibility to do this is to find all markers between x(i-1/2) and x(i+1/2) (use
’find’), and compute the average temperature among those particles (use ’mean’ to do this). More
sophisticated schemes involve distance-based averaging (see lecture notes of Taras Gerya).

5. Go back to step 1.

8.6.2 Exercise 5

• Program the marker-based advection scheme in 1D. Assume that your mesh is periodic, which
means that if xmarker > L, you set xmarker = xmarker − L (assuming that your mesh goes from 0
to L.

8.7 2D advection

Marker-based advections schemes are rather powerful which is why we’re going to implement in 2D.
Assume that velocity is given by

vx(x, z) = z (10)
vz(x, z) = −x (11)

Moreover, assume that the initial temperature distribution is gaussian and given by

T (x, z) = 2 exp

((
(x+ 0.25)2 + z2

)
0.12

)
(12)

with x ∈ [−0.5, 0.5], z ∈ [−0.5, 0.5].
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8.7.1 Exercise 7

• Program advection in 2D using a marker-based advection scheme.

The marker-based advection scheme discussed here is first-order accurate in space and time. In
reality, you should use a second order or fourth order accurate scheme in space, combined with a first
order or second-order accurate time-stepping algorithm. Such higher order schemes are known as 2nd- or
4th-order accurate Runga-Kutta schemes, and are described in more detail in the lecture notes of Taras
Gerya, in the Numerical Recipes textbook, and in Wikipedia. Feel free to implement them in the code
above.

8.8 Advection and diffusion: operator splitting

Marker-based advection methods are among the best methods for advection dominated problems. We
also learned how to solve the diffusion equation in 1-D and 2-D. In geodynamics, we often want to
solve the coupled advection-diffusion equation, which is given by equation 1 in 1-D and by equation 2
in 2-D. We can solve this pretty easily by taking the equation apart and by computing the advection
part separately from the diffusion part. This is called operator-splitting, and what’s done in 1-D is the
following. First solve the advection equation
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for example by using a semi-lagrangian advection scheme. Then solve the diffusion equation
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and you’re done (note that I assumed that Q is spatially constant; if not you should consider to slightly
improve the advection scheme by introducing source terms) . In 2D the scheme is identical (but you’ll
have to find your old 2D codes...).

8.8.1 Exercise 8

• Program diffusion-advection in 2D using the marker-based advection scheme coupled with an im-
plicit 2D diffusion code (from last week’s exercise). Base your code on the script of figure ??.
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