

NMR Spektroskopie

Mihail Mondeshki

Drehimpuls, magnetisches Moment

3) Zahl von Protonen <u>und</u> Neutronen ungerade I = ganzzahlig (1, 2, ...) JOHANNES GUTEN

Kerne im statischen Magnetfeld

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Richtungsquantelung

Drehimpuls

Magnetische Quantenzahl

$$P_z = m_I \hbar$$

$$m_I = I, I - 1, \dots - I$$

2I + 1 Orientierungen

Komponente des magnetischen Moments in z-Richtung $\mu_z = m_I \gamma \hbar$

Kerne im statischen Magnetfeld

Kerne im statischen Magnetfeld

In einer makroskopischen Probe im thermischen Gleichgewicht folgt die Verteilung der Kerne den Regeln der Boltzmann Statistik:

$$\frac{N_{m_I=-1/2}}{N_{m_I=+1/2}} = \frac{N_{\beta}}{N_{\alpha}} = \exp(\frac{-\Delta E}{k_B T}) = \exp(\frac{-\hbar \gamma B_0}{k_B T})$$

Anregung mit RF Pulse induziert Absorption oder Emission

$$\Delta E = h v_1$$

Die Resonanzbedingung

$$v_L = v_1 = \left|\frac{\gamma}{2\pi}\right| B_0$$

Die Auswahlregel für den Spinübergang durch EM Strahlung ist $\Delta m = \pm 1$ 5

NMR Spektrometer

Messprinzip des Impulsverfahren

Spin 1/2 nuclei in magnetic field B₀

http://www.chem.wisc.edu/areas/reich/nmr/08-tech-01-relax.htm

Messprinzip des Impulsverfahrens

Wie ist die FID gemessen?

- > Die FID ist eine Funktion, die im Laufe der Zeit sich ändert.
- Das schwach elektrische Signal, induziert in der Spule, ist verstärkt, digitalisiert und im Rechner gespeichert.
- Die digitale Repräsentation der FID sind Datenpunkte auf gleichen Intervallen (dw) gemessen

Wie funktioniert die Fouriertransformation

- Die FID ist mit einer Probefunktion mit einer spezifischen Frequenz multipliziert – das Ergebnis ist eine neue Funktion
- Die Fläche unter der Produktfunktion entspricht der Intensität im Spektrum auf diese Frequenz
- Die Fläche unter allen Produktfunktionen ist gegen die Kosinuswellenfrequenz geplottet

J. Keeler, Understanding NMR Spectroscopy, Wiley, 2010

Beschreibung der Relaxation durch Bloch-Gleichungen

$$\frac{dM_{z}}{dt} = -\frac{M_{z} - M_{0}}{T_{1}}$$
$$\frac{dM_{x'}}{dt} = -\frac{M_{x'}}{T_{2}} \quad und \quad \frac{dM_{y'}}{dt} = -\frac{M_{y'}}{T_{2}}$$

- *T*₁ Spin-Gitter-/longitudinale Relaxationszeit (M_z-Magnetisierung)
- **T₂** Spin-Spin-/transversale Relaxationszeit

 $(M_{x'}, M_{y'})$

Signalbreite

 $T_1 \ge T_2$ T_2 ist in der Regel für die Signalbreite hauptverantwortlich. Breite Signale treten bei kurzen Relaxationszeiten auf.

Beschleunigte Relaxation durch:

- Anisotrope magnetische Umgebung
- Quadrupolkerne in Nachbarschaft
- Paramagnetische Verbindungen

Longitudinale Relaxation (T₁)

Differentialgleichung (Felix Bloch)

 $dM_{Z_{-}}$ $(M_0 - M_Z)$ dt

 $M_{Z} = M_{0}(1 - 2e^{-t/T_{1}})$

T₁ Messung

- 1. Beobachtung der Entwicklung der Zeit-abhängigen z-Komponente der Magnetisierung M_z
- 2. Änderung der Besetzung der Energieniveaus Enthalpie Prozess
- 3. Exponentialfunktionsfit
- 4. Feldabhängigkeit
- 5. Nutzen die bekannte T₁ Relaxationszeiten der ähnlichen Substanzen

Saturation recovery

Inversion recovery

T₁ Messung Beispiel - Adamantan

CH₂: δ = 37.8

CH: δ = 28.5

JGU

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Transversale (spin-spin) Relaxation T₂

- 1. Die Phasenkohärenz der transversalen Kern-Spin Magnetisierung geht im Laufe der Zeit verloren
- 2. Grund: Zufallschwankungen des lokalen Magnetfeldes führen zu Zufallvariationen der Präzessionsfrequenz der Kernspins
- 3. Relaxation in der xy-Ebene
- Entropie Prozess keine Änderung in der Besetzung der Energie Niveaus

T₂ Messung

- Später modifiziert zu CPMG Experiment (Carr-Purcell-Meiboom-Gill)
- 90° Puls induziert ein Flip der Magnetisierung in der xy-Ebene
- Nach einer Zeitspanne dephase und umkehren
- Rephase für die gleiche Zeitspanne und messen

Relaxationsmechanismen

- → Dipol-Dipol Wechselwirkung
- \rightarrow Spin-Rotation
- \rightarrow Anisotropie der chemischen Verschiebung
- \rightarrow Skalar Kopplung
- \rightarrow Quadrupol Kopplung
- \rightarrow Wechselwirkung mit ungepaarten Elektronen

us(v) - c

Quantifizierung von 1D Spektren

- Das Spektrum muss mit einem Recycle Delay von mid. 5 T₁ gemessen werden, d.h. man muss T₁ der Probe zuerst wissen und erst danach integrieren
- ➢ Wenn lange T1 Relaxation
- paramagnetische Verbindungen Cr(acac)₃
- Pulse mit kleiner Winkel Ernst Winkel

$$\cos(\theta) = e^{-(d1+at)/T_1}$$

Wechselwirkungen in NMR

NMR in Lösung Zeeman Wechselwirkung: $\mathbf{H}_{\mathbf{z}} = -\gamma \cdot \mathbf{I} \cdot \mathbf{B}_{\mathbf{a}} \xrightarrow{B_0 \parallel z} -\gamma B_0 \cdot \mathbf{I}_{\mathbf{z}}$ J-Kopplung ("through-bond"): $\mathbf{H}_{\mathbf{I}} = 2\pi \cdot \mathbf{I}^{(1)} \cdot J \cdot \mathbf{I}^{(2)} \xrightarrow{CS \ diff} 2\pi \cdot \mathbf{I}_{\mathbf{Z}}^{(1)} \cdot J \cdot \mathbf{I}_{\mathbf{Z}}^{(2)}$ Chemische Verschiebung/ $\mathbf{H}_{cs} = \gamma \cdot \mathbf{I} \cdot \boldsymbol{\sigma} \cdot \mathbf{B}_{0} \xrightarrow{isotropic} \Delta \boldsymbol{\omega} \cdot \mathbf{I}_{z}$ Abschirmung: $\xrightarrow{anisotropic} \Delta \omega(\theta, \phi) \cdot \mathbf{I}_{\mathbf{z}}$ $\mathbf{H}_{\mathbf{D}}^{(ij)} = D_{ii} \cdot \frac{1}{2} (3\cos^2 \theta - 1) (3\mathbf{I}_{\mathbf{Z}}^{(i)} \mathbf{I}_{\mathbf{Z}}^{(j)} - \mathbf{I}^{(i)} \mathbf{I}^{(j)})$ Dipol-Dipol Kopplung: Quadrupol Kopplung (I>1/2): $\mathbf{H}_{Q} = \frac{e^2 q Q}{2I(2I-1) \cdot \hbar} \cdot \frac{1}{2} (3\cos^2 \theta - 1)(3\mathbf{I}_{\mathbf{Z}}\mathbf{I}_{\mathbf{Z}} - \mathbf{I} \cdot \mathbf{I})$ Festkörper NMR

Paar von spin-1/2 Kernen: $\mathbf{H}_{\mathbf{D}}^{(ij)} = D_{ij} \cdot \frac{1}{2} (3\cos^2 \theta - 1) (3\mathbf{I}_{\mathbf{Z}}^{(i)} \mathbf{I}_{\mathbf{Z}}^{(j)} - \mathbf{I}^{(i)} \mathbf{I}^{(j)})$ Coupling constant Space part Spin part

Abschirmung

 $B_{eff} = B_0 - \sigma B_0 = (1 - \sigma)B_0$ σ : Abschirmungskonstante

Resonanzbedingung

$$\nu = \frac{\gamma}{2\pi} (1 - \sigma) B_0$$

$$\sigma = \sigma^{\text{lokal}}_{\text{dia}} + \sigma^{\text{lokal}}_{\text{para}} + \sigma_{\text{N}} + \sigma_{\text{R}} + \sigma_{\text{e}} + \sigma_{\text{i}}$$

σ^{lokal}_{dia}: Das externe Magnetfeld B₀ induziert in der Elektronenverteilung des Grundzustandes einen Ringstrom, somit ein Magnetfeld, das dem äußeren entgegengesetzt gerichtet ist (Lenzsche Regel). (positives Vorzeichen)

> Große Elektronendichte – große Abschirmung M-, I-Effekte spielen eine Rolle (Vgl.: PhNH₂, PhNO₂)

Bsp. für Abschirmung der Protonen

 $\sigma(CHBr_3) < \sigma(CH_2Br_2) < \sigma(CH_3Br) < \sigma(TMS)$

Abschirmung

 σ^{lokal}_{para} :

Durch Mischen des elektronischen Grundzustandes mit niedrigliegenden angeregten Zuständen (magnetisch dipolerlaubte Übergänge) in Anwesenheit des externen Magnetfeldes B₀ wird ein Ringstrom induziert. (negatives Vorzeichen)

(σ^{lokal}_{para} ist bei ¹H-NMR-Spektroskopie weitestgehend vernachlässigbar)

 $\sigma^{\text{lokal}}_{\text{para}}$ ist beispielsweise bei ¹³C-NMR dominant $\sigma^{\text{lokal}}_{\text{para}}$ (Ethin) < $\sigma^{\text{lokal}}_{\text{para}}$ (Ethen), d.h. σ (Ethin) > σ (Ethen)

Nachbargruppeneffekte:

- Magnetische Anisotropie von Nachbargruppen (N)
- Ringstromeffekte (R)
- Elektrische Effekte (e)
- Intermolekulare Wechselwirkungen, wie H-Brücken (i)

Magnetische Anisotropie, Ringstromeffekt

Durch Ringströme wird ein zusätzliches Magnetfeld induziert.

McConnell-Gleichung für Moleküle mit axialsymmetrischer Ladungsverteilung:

$$\bar{\sigma}_N = \frac{1}{3r^3 4\pi} (\chi_{\parallel} - \chi_{\perp}) (1 - 3\cos^2\theta)$$

 $\bar{\sigma}_N = 0 \ mit \ \theta = 54,7^{\circ}$

JGU

$$\delta_{Substanz} \ [ppm] = \frac{\nu_{Substanz} - \nu_{Referenz}}{Spektrometerfrequenz} \ \frac{[Hz]}{[MHz]}$$

Tetramethylsilan (TMS) als interner Standard δ (TMS) = 0 ppm

 $v_{Substanz}$ von äußerem Magnetfeld B₀ abhängig

 $\delta_{Substanz}$ von äußerem Magnetfeld B $_0$ unabhängig!

JGU Orientationsabhängigkeit der NMR Frequenz ERG MAINZ

UNIVERSITÄT

Quadrupole Kopplungen

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

- > Die Größe der Quadrupolwechselwirkung (W_o) ist abhängig von
 - Kern e.g. ²H hat kleinen Quadrupolemoment
 - Symmetrie des Orts e.g. Feldgradienten sind Null bei kubischer Symmetrie
- Flüssigkeiten: Quadrupol-Kerne relaxieren schnell; breite Spektrallinien
- Festkörper: NMR ist komplex, kann aber viel Information liefern...

Direkte (Dipol-Dipol) Spin-Spin-Kopplung

Klassisches Bild

$$D = \frac{\mu_0 \hbar}{4\pi} \frac{\gamma_1 \gamma_2}{r^3} (3\cos^2 \Theta - 1)$$

$$S = \frac{D_{measured}}{D_{static}}$$

S – dynamic order parameter S = 0 - 1 JGU

UNIV

Magic Angle Spinning (MAS)

courtesy of Dr. R. Graf, MPIP

Skalare und Dipol-Dipol Kopplung

Die Kopplung zwischen 2 Kernen – Information über die Struktur

Größe Inter- oder intramolekular Anisotropie (Richtungsabhängigkeit) Distanzabhängigkeit Kopplungskonstante

ⁿJ_{X,Y} [Hz]

n

n = 0

- X, Y koppelnde Kerne
 - Anzahl der Bindungen zwischen X und Y

Keine Kopplung zwischen chemisch äquivalenten Kernen beobachtbar! Größe der Kopplung unabhängig von B₀.

1

Multiplizität von AX_n-Systemen:

M = 2*nI* +1 *n* = Zahl der äquivalenten Nachbarn

Für I = ½:

Pascalsches Dreieck:

n = 1			1		1		
n = 2		1		2		1	
n = 3	1		3		3		1

IGU

In Lösung: Indirekte Kopplung von Kernen über Bindungselektronen (Polarisationsmechanismus)

Beschreibung über direkte Dipol-Dipol-Wechselwirkung zwischen Kern- und Elektronenspin oder über den Fermi-Kontakt-Term

Fermi-Kontakt: Direkte Wechselwirkung zwischen magnetischen Kernmomenten und den magnetischen Momenten der Bindungselektronen

Bindungselektronen in Orbitalen mit hohem s-Charakter – starker Fermi-Kontakt (s. radiale Wellenfunktionen/Verteilungsfunktionen)

Die direkte Kopplung von Kernen durch den Raum (dipolare Kopplung) ist in Lösung zu O gemittelt. (nicht im Festkörper: s. Festkörper-NMR)

Indirekte Spin-Spin-Kopplung (skalare Kopplung)

Polarisationsmechanismus

¹J-Kopplung

²J-Kopplung (geminale Kopplung)

Indirekte Spin-Spin-Kopplung (skalare Kopplung)

Einflussfaktoren der Größe der Kopplungskonstante

¹J_{C,H}-Kopplung

	H ₃ C–CH ₃	H ₂ C=CH ₂	C ₆ H ₆	HC≡CH
¹ J _{C,H} [Hz]	124,9	156,4	158,4	249,0
Hybridisierung	sp ³	sp ²	sp ²	sp
s-Anteil	0,25	0,33	0,33	0,5

Abhängigkeit von der Elektronegativität

¹³ CH ₃ –X	¹ Ј _{С,Н} [Нz]
F	149,1
Cl	150,0
ОН	141,0
Н	125,0
CH_3	124,9
Li	98,0

Indirekte Spin-Spin-Kopplung (skalare Kopplung)

32

IGII

JOHANNES GL

Chemische und magnetische Äquivalenz

Chemische Äquivalenz

gleiche chemische Umgebung der Kerne

- Position der Kerne über Symmetrieoperation ineinander überführbar
- freie Drehbarkeit von Gruppen (gemitteltes Signal)

Bsp.: CH₂Cl₂ (C₂-Achse), CH₂ClBr (Spiegelebene), BrH₂C-CH₃ (freie Drehbarkeit entlang C-C-Bindung)

Magnetische Äquivalenz

- chemische Äquivalenz der Kerne
- identische Kopplungskonstanten mit jedem Kopplungspartner

Bsp.:

H^A chemisch und magnetisch äquivalent

H^A und H^{A'} nur chemisch äquivalent

Kopplungen mit Heterokernen

Einfachster Fall

Heterokerne: I = ½, 100 % Häufigkeit

Behandlung wie Kopplungen zwischen Protonen

I.

37

Bsp.:	LiBH ₄
-------	-------------------

Isotop	Spin	natürl. Häufigkeit / %	gyromagnetisches Verhältnis / 10 ⁷ radT ⁻¹ s ⁻¹	relative Rezeptivität	Quadrupol- Moment / 10 ⁻²⁸ m ²	Standard
¹⁰ B	3	19.58	2.8746	2.21 x 10 ⁺¹	8.5 x 10 ⁻²	BF ₃ ·Et ₂ O,15% in
¹¹ B	3/2	80.42	8.5843	7.54 x 10 ⁺²	4.1 x 10 ⁻²	

¹H-NMR (200,13 MHz, [D8]-THF): δ = -0,58 (m, ¹J_{10B,H} = 27,1 Hz, ¹J_{11B,H} = 79,1 Hz) ppm.

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Kopplungen mit Heterokernen

Bsp.:	LiBH ₄
-------	-------------------

lsotop	Spin	natürl. Häufigkeit / %	gyromagnetisches Verhältnis / 10 ⁷ radT ⁻¹ s ⁻¹	relative Rezeptivität	Quadrupol- Moment / 10 ⁻²⁸ m ²	Standard
¹⁰ B	3	19.58	2.8746	2.21 x 10 ⁺¹	8.5 x 10 ⁻²	BF ₃ ·Et ₂ O,15% in CDCl ₃
¹¹ B	3/2	80.42	8.5843	7.54 x 10 ⁺²	4.1 x 10 ⁻²	

 $^{11}\text{B-NMR}$ (64,211 MHz, [D8]-THF): δ = -42,2 (q, $^{1}\text{J}_{11_{\text{B},\text{H}}}$ = 81,2 Hz) ppm.

Sn	¹¹⁵ Sn ¹¹⁷ Sn ¹¹⁹ Sn	$I = \frac{1}{2}, 0.34 \%$ $I = \frac{1}{2}, 7.68 \%$ $I = \frac{1}{2}, 8.59 \%$
Ν	¹⁴ N ¹⁵ N	I = 1, 99.64 % I = ½, 0.36 %
С	¹³ C	$I = \frac{1}{2}, 1.07 \%$
Si	²⁹ Si	$I = \frac{1}{2}, 4.68 \%$
В	¹⁰ B ¹¹ B	I = 3, 19.9 % I = 3/2 80.1 %
Hg	¹⁹⁹ Hg ²⁰¹ Hg	I = ½ 16.9 % I = 3/2 13.18 %

43

JGU JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Kompliziertere Fälle

Heterokerne: I ≥ ½, <100 % natürliche Häufigkeit

Satellitenspektren

¹H-NMR von **WCp₂H₂**

45

Figure 12.24 ¹H NMR spectrum of t-Bu₂SnCl₂ in DMSO with satellites from ³ $J(^{119}Sn,^{1}H)$ (*), ³ $J(^{117}Sn,^{1}H)$ (\circ), and ³ $J(^{115}Sn,^{1}H)$ (Δ) [22].

Figure 3.16 Satellite lines in the ¹H NMR spectrum of bis(trimethylsilyl)mercury: ¹³C (1.1%), ¹ \int (¹³C,¹H) = 119.6 Hz; ¹⁹⁹Hg (16.9%), ³ \int (¹⁹⁹Hg,¹H) = 40.7 Hz; ²⁹Si (4.7%), ² \int (²⁹Si,¹H) = 6.6 Hz.

Empfindlichkeit

Besser Empfindlichkeit mit höheren magnetischen Feldern oder Reduzierung des elektronischen Rauschens (Kryo-Köpfe)

- Signal-Rausch Verhältnis S:N = \sqrt{NS}
- Messtechniken mit Protonenentkopplung
- Polarisationstransfer über die Bindungselektronen oder Dipol-Dipol
 Kopplung
- > NOE Signalverstärkung
- > 2D Messverfahren indirekte Detektion

Verstärkung des Signals - Entkopplung

Messtechniken mit Protonenentkopplung

JGU

MAINZ

JOHANNES GUTENBERG **UNIVERS**

Entdeckt von **Albert Overhauser** 1951-1953 Bestätigt von **Anet** und **Bourn** in 1965

Selektiv Entkopplung von S Kernspin

Durch die Einstrahlung der Resonanzfrequenz eines Kernspins wird das detektierte Signal eines dipolar gekoppelten Kernspins verstärkt.

¹H spectrum of a mixture of azabicyclo-[2,2,2]-octan isomers A & B resonances – methene protons at the C-4 position X & Y resonances – methyl protons

¹H spectrum of a mixture of azabicyclo-[2,2,2]-octan isomers A & B resonances – methene protons at the C-4 position X & Y resonances – methyl protons

Der Effekt kann positiv oder negativ sein (im Fall von ¹H-¹³C: positiv)

Die maximale Verstärkung ist durch die Gleichung beschrieben:

$$NOE_{\max} = \frac{1}{2} \frac{\gamma_{irradiated}}{\gamma_{observed}}$$

Die Intensität im entkoppelten Spektrum ergibt sich aus der Addition des oben ermittelten Wertes zur Intensität in einem gekoppelten Spektrum.

> total predicted intensity = $1 + \text{NOE}_{\text{max}}$ I = $(1 + \text{NOE})I_0$

- Findet zwischen jedem Typ gekoppelten Kernen statt.
- Sowohl die Signalverstärkung, als auch die Reduktion sind möglich (abhängig vom Typ der gekoppelten Kerne – γ und der Korrelationszeit der molekularen Bewegung)
- > Wirkt über einer Entfernung von bis zu 5 Å, NOE ~ 1 / r⁶
- Semiquantitativen Bestimmung von Entfernungen zwischen gekoppelten Kernspins
- Bietet die Möglichkeit unempfindliche Kerne effizient zu messen (Signalverstärkung)

Verstärkung des Signals

Für ein isoliertes gekoppeltes ¹H-¹H Paar

Die Kopplungseffekte sind nicht gezeigt

Gezeigt sind die 4 Kombinationen der Spinzustände der beiden Kerne, N₁₋₄

Die beiden Energiezustände mit der gleichen Orientierung der gekoppelten Spins besitzen die niedrigste und höchste Energie

Die "Mischzustände" sind energetisch entartet

Mögliche Übergänge:

 W_1 – single quantum transition (nur ein Spin flippt)

W₀ – zero quantum transition (beide gekoppelte Kernspins flippen zusammen)

W₂ – double quantum transition

 $NOE = W_2 - W_0$

$$J(\omega) = \frac{2\tau_c}{1 + \omega^2 \tau_c^2}$$

Spectral density function

Abhängigkeit des homonuklearen NOE-Effekts zwischen gekoppelten Protonen vom Produkt von Larmor Frequenz und die Rotations-korrelationszeit

J. Keeler, Understanding NMR Spectroscopy, Wiley, 2010

Verstärkung des Signals

Kern-Overhauser-Effekt - heteronuklear

gated decoulping

power gated decoulping

Verstärkung des Signals - Festkörper

Control of Peptide Secondary Structure and Dynamics in Poly(γ-benzyl-L-glutamate)-b-polyalanine Peptides, Gitsas, A. et al, Macromolecules, 2008, 41, 8072

Verstärkung des Signals - Polarisationstransfer

Polarizationstransfer

SPI (selective population inversion)

Verstärkung des Signals - Polarisationstransfer

MAINZ

Polarizationstransfer

INEPT (insensitive nuclei enhanced by polarization transfer)

$$I_{1x}(p/2) \qquad I_{1x}(p) \qquad I_{1y}(p/2)$$

$$^{1}H \qquad \longleftarrow \qquad 1/2 \qquad$$

Verstärkung des Signals - Polarisationstransfer

INEPT Experiment – die Signalverstärkung ist viel größer als in NOE-Experimente

- negative g sind nicht mehr eine Nachteil

- a. Der 90° Puls führt zu einer tranversalen Magnetisierung von Kern A, die wehrend der Δ Periode von der J-Kopplung mit X moduliert ist
- b. Am Ende von Δ existiert eine Phasendifferenz zwischen die dupllet Vektoren
- c. Nach zwei 180° Pulse präzisieren die beide Vektoren in xy Ebene
- d. Beide haben 180° Phasenuntershied
- e. Der zweite 90° Puls erzeugt erneut longitudinale Magnetisierung, die durch ein 90° Puls in X-Kanal detektiert ist

IG Verstärkung des Signals - Polarisationstrans ERG MAINZ

74

UNIVE

SITAT

Verstärkung des Signals - Polarisationstransfer

Polarizationstransfer – INEPT (insensitive nuclei enhanced by polarization transfer)

MAINZ
Verstärkung des Signals - Polarisationstransfer

(Distortionless Enhanced by Polarization Transfer)

Unterscheidung von quartären C-Atomen, CH-, CH₂- oder CH₃-Gruppen in der protonenentkoppelten ¹³C-NMR-Spektroskopie. Bei anderen Heterokernen anwendbar wie ²⁹Si etc.

Impulsfolge für ¹³C-DEPT-Experiment:

¹H-Kanal: $90^{\circ}_{x'} - \tau - 180^{\circ}_{x'} - \tau - \theta_{y'} - \tau - BB$ -Entkoppler ¹³C-Kanal: $90^{\circ}_{x'} - \tau - 180^{\circ} - \tau - FID(t_2)$

Die Intensitäten Signale der CH-, CH₂- und CH₃-Gruppen hängen von dem Impulswinkel $\theta_{y'}$ ab:

DEPT(45)	I(C) = 0	I(CH), I(CH ₂), I(CH ₃) > 0		
DEPT(90)	$I(C) = I(CH_2) = I(CH_3) = 0$	I(CH) > 0		
DEPT(135)	I(C) = 0	I(CH), I(CH ₃) > 0	$I(CH_2) < 0$	

CH-Subspektrum:	DEPT(90)
CH ₂ -Subspektrum:	DEPT(45) – DEPT(135)
CH₃-Subspektrum:	DEPT(45) + DEPT(135) – 0,707 DEPT(90)

Verstärkung des Signals

Inverse Detektierung in 2D Experimente

2D NMR Spektroskopie- Basics

1. Vorbereitung – während dieser Periode wird die Gleichgewichtmagnetisierung in Kohärenz umgewandelt (90° Puls generiert single quantum coherence, aber es kann auch verschiedene Pulse enthalten wie in Fall von INEPT - MQC)

2. Evolution (t_1) - die Kohärenz entwickelt sich, t_1 ist keine feststehende Periode, but systematically incremented in a series of separate experiments

3. Mixing – the coherence tritt am Ende von t_1 auf und ist in ein sichtbares Signal umgewandelt; Bestimmt den Informationsgehalt des Spektrums

4. Detection (t_2) – sequentielle Aufnahme der gleichen Anzahl an Experimenten wie die Teilstücke von t₁

2D NMR - Basics

 $t_1 = n\Delta_1, \Delta_1$ - sampling interval

Wir nehmen so viele Experimente wie die Zahl von Inkremente auf (besser Auflösung in t_1 , länger Messzeit)

So wir erstellen eine 2D Matrix, wo die Zeitdomain im Form $S(t_1, t_2)$ repräsentiert ist

Die t_2 Daten sind wie ein normaler 1D Experiment aufgenommen.

In die t1 Dimension – nur einige hundert Inkremente – kostet viel Zeit

Wie werden 2D NMR Daten ausgewertet – 2D time domain Matrix wird zu einem 2D Spektrum transformiert

2D NMR - Basics

How the 2D NMR data is processed – Illustration of the double FT on a simple dataset

Projektionen (contour plots) der 3D-Spectren

Die meisten mögliche Experimente sind kategorisiert wie folgt:

Der Vorteil im Vergleich zur Entkopplung – kein Verlust an Information, bessere Auflösung der Überlappunssignale

COSY (correlation spectroscopy)

83

TOCSY (total correlation spectroscopy)

Auch wie HOHAHA (Homonuclear Hartmann-Hahn) bekannt.

Zuordnung der Kerne, die zu einem gemeinsamen Spinsystem gehören, d.h. miteinander koppeln.

t_{mix} kurz – COSY Typ-Spektrum t_{mix} lang – Korrelation über mehrere Bindungen (j5)

Strukturelle Aufklärung von Proteinen, Peptiden, Oligosacchariden.

TOCSY (total correlation spectroscopy)

Heteronukleare Korrelationen

HSQC (heteronuclear single bond correlation)

- Mehrere Pulse
- Empfindlich für Ungenauigkeiten
- in Puls-Bestimmung
- Auflösung

weniger Pulseunempfindlich

HSQC (Heteronuclear single quantum coherence)

- Inverse, protonendetektierende Methode
 - Übertragung der erzeugten Kohärenzen im Kanal der unempfindlichen Kerne (¹³C, ¹⁵N, etc.) auf empfindliche Kerne (¹H)

Kurze Messdauer/Intensitätsgewinn

- Auftreten von Korrelationssignalen bei ${}^{1}J_{X,H}$ -Kopplungen (X = ${}^{13}C$, etc.)
 - keine Korrelationssignale bei quartär gebundenen Kernen X

JGU

- Inverse, protonendetektierende Methode
 - Übertragung der erzeugten Kohärenzen im Kanal der unempfindlichen Kerne (¹³C, ¹⁵N, etc.) auf empfindliche Kerne (¹H)

Kurze Messdauer/Intensitätsgewinn

- Auftreten von Korrelationssignalen bei ${}^{1}J_{X,H}$ -Kopplungen, aber auch für kleinere Kopplungen ${}^{>1}J_{X,H}$ modulierbar (X = ${}^{13}C$, etc.)
 - keine Korrelationssignale bei quartär gebundenen Kernen X bei ¹J_{X,H}-Modulation

IGIU

HMQC (Heteronuclear multiple quantum coherence)

UNIVERSITÄT MAINZ

HMBC (heteronuclear multiple bond correlation)

- Inverse, protonendetektierende Methode
- Auftreten von Korrelationssignalen auch bei quartären Kohlenstoffatomen

JGU

/IAINZ

HMBC (heteronuclear multiple bond correlation)

JGU

UNIVE

ERG

MAINZ

Projektionen (contour plots) der 3D-Spectren

Die meisten mögliche Experimente sind kategorisiert wie folgt:

Der Vorteil im Vergleich zur Entkopplung – kein Verlust an Information, bessere Auflösung der Überlappunssignale

Grundlage des NOESY ist Kern-Overhauser-Effekt (NOE), der auf der Dipol-Dipol Relaxation beruht.

 $D \sim 1/r^6$, γ ; wirkt bei Abstände < 5-6 Å

Lösung NMR – Struktur-/Konformationsaufklärung, Bestimmung von Isomeren

Festkörper NMR - Phasentrennung

IGI

NOESY (NOE-spectroscopy)

94

H. Günther, NMR Spectroscopy, Wiley, 2013

NOESY (NOE-spectroscopy)

EXSY (exchange spectroscopy)

EXSY Experiment – Beobachtung von Cross-Peaks in dynamischen Systeme im Bereich des langsamen Austausch

- a. Der 90° Puls führt zu einer tranversalen Magnetisierung $M_y(A)$ und $M_y(X)$, welsche sich während t_1 auf ihre Larmorfrequenz (LF) entwickeln
- b. Am Ende von t_1 sind die Resonanzsignale dephasiert (durch die LF definiert)
- c. Der zweite 90° Puls führt zu z-Magnetisierung (positiv oder negativ abhängig von der Vektororientierung; auch verschiedene Stärke)
- d. Während der Mischzeit t_m (1-2 s) wird magnetische Transfer vom dynamischen Process ausgelösst
- e. Der dritte 90° Puls erzeugt erneut eine transversale Magnetisierung, welche von t1 und der Effizienz des magnetischen Transfers während t_m abhängt. Der Transferrate hängt von k des Prozesses und der Stärke der Magnetisierung bei $t_m = 0$ ab.

EXSY (exchange spectroscopy)

H. Günther, NMR Spectroscopy, Wiley, 2013

EXSY (exchange spectroscopy)

 $CH_3CH_2OH + HOH_2 \Longrightarrow$

$$= CH_3CH_2O H + H_2O$$

Der Austausch ist langsamer als die NMR-Zeitskala und beim Raumtemperatur ist die Bindungszeit des Protons zu Wasserstoff lang genug, so dass die Kopplung zwischen die OH und CH₂ Gruppen sichtbar im Spektrum ist. IGII

MAINZ

JOHANNES GUTEN

Projektionen (contour plots) der 3D-Spectren

Die meisten mögliche Experimente sind kategorisiert wie folgt:

Der Vorteil im Vergleich zur Entkopplung – kein Verlust an Information, bessere Auflösung der Überlappunssignale

¹H J- resolved NMR Experiment

Berger, Braun, 200 and More NMR Experiments, Wiley, 2011

¹³C J- resolved NMR Experiment

101

Vielen Dank für Ihre Aufmerksamkeit

Skizzieren sie die NMR-Spektren mit Hilfe von Baumdiagrammen unter Angabe der Kopplungskonstanten (${}^{n}J_{X,Y}$) und der relativen Intensitäten der Signale (13 C-Satelliten vernachlässigen).

- a) 13 C-NMR von CDCl₃
- b) ¹³C-NMR von d6-DMSO (nur Multiplizität angeben)
- c) ³¹P{¹H}-NMR von Difluor-triphenylphosphin-carbonyl-nickel (tetraedrischer Bau)
- d) ³¹P{¹H}-NMR von Difluor-triphenylphosphin-carbonyl-nickel (planarer Bau, hypothetisch!)
- e) ¹³C{H}-NMR von SiMe₄

Isotop	Spin	natürl. Häufigkeit / %	gyromagnetisches Verhältnis / 10 ⁷ radT ⁻¹ s ⁻¹	relative NMR- Frequenz / MHz	relative Rezeptivität	Quadrupol- Moment / 10 ⁻²⁸ m ²	Standard
² H	1	1.5 x 10 ⁻²	4.1066	46.073	8.21 x 10 ⁻³	2.8 x 10 ⁻³	SiMe ₄
¹⁹ F	1/2	100	25.181	282.404	4.73 x 10 ⁺³	—	CFCl₃
³¹ P	1/2	100	10.841	121.496	3.77 x 10 ⁺²	—	H ₃ PO ₄ , 85% aq
²⁹ Si	1/2	4.7	-5.3188	59.627	2.09	—	SiMe ₄

Der Metallkomplex mit der Formel HNi $[OP(C_2H_5)_3]_4^+$ zeigt im ¹H-NMR ein Hochfeldsignal, welches hier skizziert ist. Schlagen Sie eine Struktur für den Komplex vor.

M. Enders, Uni Heidelberg

Skizzieren sie die NMR-Spektren mit Hilfe von Baumdiagrammen unter Angabe der Kopplungskonstanten (${}^{n}J_{X,Y}$) und der relativen Intensitäten der Signale von Hexamethyldistannan (Me₃Sn-SnMe₃).

- a) ¹H-NMR
- b) ${}^{13}C{}^{1}H$ -NMR
- c) 119 Sn{ 1 H}-NMR

Isotop	Spin	natürl. Häufigkeit / %	gyromagnetisches Verhältnis / 10 ⁷ radT ⁻¹ s ⁻¹	relative NMR- Frequenz / MHz	relative Rezeptivität	Quadrupol- Moment / 10 ⁻²⁸ m ²	Standard
¹¹⁷ Sn	1/2	7.61	-9.578	106.942	1.95 x 10 ⁺¹	—	SnMe₄
¹¹⁹ Sn	1/2	8.58	-10.021	111.921	2.52 x 10 ⁺¹	—	

Beurteilen Sie die zu erwartenden Signal/Rausch-Verhältnisse (Reihenfolge angeben), indem Sie die Quadrupolmomente der Kerne und die Anisotropie der chemischen Umgebungen vergleichen:

- a) 10 B sowie 11 B von BF₄ und von B(CH₃)₃
- b) 14 N sowie 15 N von Pyridin (C₅H₅N) und von NH₄ $^+$

lsotop	Spin	natürl. Häufigkeit / %	gyromagnetisches Verhältnis / 10 ⁷ radT ⁻¹ s ⁻¹	relative NMR- Frequenz / MHz	relative Rezeptivität	Quadrupol- Moment / 10 ⁻²⁸ m ²	Standard
¹⁰ B	3	19.58	2.8746	32.246	2.21 x 10 ⁺¹	8.5 x 10 ⁻²	BF₃·Et₂O,15% in
¹¹ B	3/2	80.42	8.5843	96.258	7.54 x 10 ⁺²	4.1 x 10 ⁻²	CDCI3
¹⁴ N	1	99.63	1.9338	21.687	5.69	1 x 10 ⁻²	MeNO ₂
¹⁵ N	1/2	0.37	-2.712	30.424	2.19 x 10 ⁻²	—	

- a) Um welches Isomer handelt es sich bei 1? Zeichnen Sie ein Strukturbild.
- b) Ordnen Sie die Resonanzen den einzelnen CO-Gruppen in 1 zu.
- c) Wie sollte das entsprechende Spektrum des anderen Isomers aussehen?
- d) Wie kann man unterscheiden, ob es sich bei den doppelt auftretenden Signalen um verschiedene chemische Verschiebungen oder um Kopplungen handelt?
- e) Welche Konsequenzen ergeben sich daraus in Bezug auf die ¹³C-NMR-Spektren von Wolframcarbonylkomplexen. Sehen Sie im oben abgebildeten Spektrum eine W-C-Wechselwirkung? [I(¹⁸³W) = ½, 14,4% nat. Häufigk.]

Wilkinson-Katalysator (1965) - Katalysezyklus nach Halpern (1976)

- 1. Oxidative H₂-Addition
- 2. Alkenkoordination
- 3. geschwindigkeitsbest. Insertion
- 4. Trans→cis-Umlagerung
- 5. reduktive Eliminierung

In Katalyse nachgewiesene Spezies: (Ph₃P)₃RhH₂Cl, (Ph₃P)₃RhCl, (Ph₃P)₂(Alken)RhCl, [(Ph₃P)₂RhCl]₂ und [(Ph₃P)₂Rh(H)Cl]₂

JGU JOHANNES GUTENBERG UNIVERSITÄT MAIN

Übung

- a) Neben sehen sie das ${}^{31}P{H}$ -NMR von $(Ph_3P)_3RhCl$ I $({}^{103}Rh) = \frac{1}{2}$, 100 % nat. Häufigk.
- Ordnen sie die Resonanzen mit Hilfe eines Baumdiagrammes unter Angabe der relativen Intensitäten und unter Angabe der entsprechenden Kopplungen.
- ii. Welcher Koordinationsgeometrie ergibt sich für diese Verbindung?
- b) In Gegenwart von Wasserstoff bildet sich die stabile Verbindung (Ph₃P)₃RhH₂Cl, ausgehend von (Ph₃P)₃RhCl. In Form welches Isomers liegt diese Verbindung vor, wenn sie anhand des ¹H-NMR-Spektrums (-25 °C) argumentieren . Wie erklären sie sich die Signalverbreiterung bei 28 °C, wenn sie diese Verbindung mit den Spezies in dem Katalysezyklus vergleichen.

¹H-NMR der Hydridregion von *trans*-Pt(P^i Pr₃)₂H(FHF) in D₈-THF bei 400 MHz. (Abb.

aus: Perutz et. al. JACS 2000, 122, 8685.)

- a) Erläutern Sie das Aufspaltungsmuster und Intensitätsverhältnis der Signale der ¹H-NMR-Resonanz des Platin-gebundenen Wasserstoffatoms
 [I(¹⁹⁵Pt) = ½, nat. Häufigk. 33,8 %].
- b) Skizzieren Sie das erwartete ¹⁹F{¹H}-NMR-Spektrum für das metallgebundene Fluoratom mit folgenden Parametern: $J({}^{19}F, {}^{31}P)$ nicht aufgelöst, $J({}^{19}F, {}^{19}F) =$ 100 Hz. $J({}^{19}F, {}^{195}Pt) = 600$ Hz. Zeichnen Sie dazu ein Skala in Hz ein.