3.3 Acids: formation reactions and cloud chemistry3.3.1 Sulfuric acid formation in the gas-phase

Formation of sulfuric acid in the (A) gas-phase:

(1-3) $SO_2 + OH + O_2 + 2 H_2O \rightarrow H_2SO_4 + H_2O + HO_2$.

Then very fast phase change by nucleation ($\rightarrow 3.1 \text{ Aer}$), condensation ($\rightarrow 3.1 \text{ Aer}$)

Only 15% of S(VI) is formed in the gas-phase globally, 85% is formed (B) in cloud droplets and humid aerosol particles

3.3.2 Cloudwater - introduction, significance

- 15% of the volume of the troposphere filled with clouds
- liquid water content L = $0.1-2x10^{-6} V_{water}/V_{air} = 0.1-2 g/m^3$
- = $(0.1-2)x10^{-3} L/m^3 < 10\%$ of total water content (10-40 g/m³!)
- only $\approx 10\%$ of clouds will rain out, while 90% will recycle aerosol particles

- lifetime of clouds hours-days, of cloud droplets (D=5-50 $\mu m)$ minutes

- aqueous composition: dissolved ($c_i \approx 10^{-6} - 10^{-3} \text{ M}$) + eventually nondissolved constituents, droplet-size dependent, $c_i(D)$ - humidity/supersaturation S (:=rh-1) is altitude (above cloud base)dependent

Terminology:

- Hydrometeors = cloud droplets + ice particles + rain droplets + snow flakes + graupel + ...
- Wash-out = below-cloud scavenging + in-cloud scavenging of both gases and particles
- in-cloud scavenging of gases = dissolution
- Wet deposition = rain + snow fall + rime
- occult deposition = droplet deposition from clouds, fogs

some units:

- 1 M = 1 mol/L
- pH 7 \leftrightarrow c_{H3O+} = 10⁻⁷ M
- 1 atm = 10^5 Pa = 10^5 Nm⁻² = 1 bar

pH scale

Courtesy: Jacobson

3.3.3 Sulfuric acid formation in the aqueous phase 3.3.3.1 Dissolution of gases - thermodynamic equilibrium

...with diluted solutions (ideal behaviour). The scavenging efficiency of gaseous molecules is dependent on water solubility: $\epsilon_{i(g) Lsg} = n_{(sol)} / (n_{(sol)} + n_{(g)}) = n_{(sol)} / [n_{(sol)} + p_i V_{air} / (R_g T)] =$ $= n_{(sol)} / [n_{(sol)} + H_i n_{(sol)} V_{air} / (R_g T n_{H2O})] =$ $= [1 + H_i M_w / (R_g T L)]^{-1}$

with: Henry coefficient H_i [atm] = $p_i/x_i = p_i/(c_i/10^3/M_w)$, liquid water content L [g/m³] solubility s(T) = s(T_0) * exp[- $\Delta H_{sol}/R$ * (1/T-1/T_0)] gas constant R_g, M_w[g/mol], 10³[cm³/L], (Warneck, 1986) Another, very common Henry coefficient: K_H [M bar⁻¹] = 10² s/M_wp = (10³/M_w)* ρ_{H2O}/H s [mg/L], R_g= 8.206*10⁻⁵ m³ atm/mol/K

... confusing: there are more common so-called ,Henry coefficients ': Air-water partitioning coefficient:

 K_{aw} [] = $M_w p / (10^5 R_g T s) = 1 / (10^3 R_g T K_H)$

Henry coefficients

Solubility increases with decreasing temperatures, e.g. 78, 63 and 53% of O₂ at 0°C is soluble at 10, 20 and 30°C, respectively.

Constituent	$K_{\rm H}^{\ominus a}$ /mol dm ⁻³ atm ⁻¹	$rac{(\Delta H_{ m soln}/R_{ m g})}{/ m K}$	$R_{g}TK_{H}$	a ^b	k_t^{c}/s^{-1}	$ au_{ m H}{}^{d}/ m s$	Ref. ^e
O ₂	1.3×10^{-3}	1500	3.8×10^{-2}	0.01*	5.3×10^{2}	8.9×10^{-8}	19
\tilde{O}_{3}^{2}	1.1×10^{-2}	2300	3.7×10^{-1}	0.004	5.3×10^{2}	2.1×10^{-6}	20
ОЙ	3.0×10^{1}	4500	1.9×10^{3}	0.004	3.5×10^{5}	3.9×10^{-3}	21
HO ₂	4.0×10^{3}	5900	2.3×10^{5}	0.01	4.2×10^{5}	8.2×10^{-1}	21
H ₂ Ô ₂	1.0×10^{5}	6300	6.1×10^{6}	0.11	1.0×10^{6}	5.9	22
CH ₃ ÔOH	3.0×10^{2}	5300	1.6×10^{4}	0.004	1.8×10^{5}	4.5×10^{-2}	22
CH ₃ OO	6.0	_	1.4×10^{2}	0.01*	5.3×10^{2}	4.0×10^{-4}	23
CH ₃ OH	2.2×10^{2}	4900	1.1×10^{4}	0.02	6.4×10^{5}	1.7×10^{-2}	24
НСНО	3.0×10^{3}	7200	2.1×10^{5}	0.01*	4.4×10^{5}	4.8×10^{-1}	25
HCOOH	5.5×10^{3}	5700	3.1×10^5	0.013	4.6×10^{5}	4.5	26
CO_2	3.4×10^{-2}	2400	1.1	2×10^{-4}	5.3×10^{2}	1.1×10^{-4}	10
NO	1.9×10^{-3}	1500	5.6×10^{-2}	0.02*	5.3×10^{2}	8.4×10^{-8}	27
NO ₂	7.0×10^{-3}	2500	2.4×10^{-1}	0.001*	5.3×10^{2}	2.1×10^{-6}	28
NO ²	2.0	2000	6.4×10^{1}	0.003	5.3×10^{2}	3.4×10^{-4}	29
$N_2 O_5$	∞	_	_	0.02	3.5×10^{5}		
HNO ₂	5.0×10^{1}	4900	2.5×10^{3}	0.05	7.5×10^{5}	5.0×10^{-2}	30
HNO ₃	$2.4 \times 10^6 / K_A$	8700	1.5×10^{7}	0.05	6.5×10^{5}	2.8×10^{2}	31
HOONO ₂	1.4×10^{4}	_	3.2×10^{5}	0.01*	2.7×10^{5}	1.6	32
NH ₃	6.1×10^{1}	4200	2.7×10^{3}	0.09	1.4×10^{6}	2.8×10^{2}	33
SO	1.2	3200	4.6×10^{1}	0.1	7.5×10^{5}	4.3×10^{-2}	34
SO ₃	8			0.01*	2.7×10^{5}		

Table 3 Henry's law partition coefficients $K_{\rm H}^{\ominus}$ at T = 298 K, heats of vaporization $\Delta H_{\rm soln}$ divided by the gas constant $R_{\rm g}$, mass accommodation coefficients α , transfer coefficients $k_{\rm t}$, and the associated time constants for the approach to Henry's law equilibrium

^{$^{\circ}_{\text{CH}}$} Compilation of K_H :

- for warneck, Phys. Chem. Chem. Phys. 1 (1999) 5471-5483
 - download from Rolf Sander's webpage, MPI-C

http://www.mpch-mainz.mpg.de/~sander/res/henry.html

²¹ for icients 's law

9)

 $\begin{array}{ccc} CO_2(aq) + H_2O(aq) & \Longrightarrow & H_2CO_3(aq) & \Longrightarrow & H^+ + HCO_3^- & \bigstar & 2H^+ + CO_3^{2-} \\ Dissolved & Liquid & Dissolved & Hydrogen & Bicarbonate & Hydrogen & Carbonate \\ carbon & dioxide & water & carbonic & acid & ion & ion & ion & ion \\ \end{array}$

Solubility of CO₂ (g) \rightarrow CO_{2 aqu} + 20 kJ/mol (1) K_H = c_{CO2 aqu} / p_{CO2} = 3.4x10⁻⁷ mol/L/Pa (298 K)

CO_{2 aqu} + H₂O
$$\rightarrow$$
 HCO₃⁻ + H₃O⁺
(2) K_{S1} = (c_{HCO3} c_{H3O}) / c_{CO2 aqu} = 10^{-6.35}
HCO₃⁻ + H₂O \rightarrow CO₃²⁻ + H₃O⁺
(3) K_{S2} = (c_{CO3} c_{H3O}) / c_{HCO3} = 10^{-10.33}

Dissolved fraction is pH dependent, expressed as the effective Henry coeff. H*: $K_{H CO2}^{*} = (c_{CO2 aqu} + c_{HCO3-} + c_{CO3--}) / p (mol/l/Pa)$ $K_{H}^{*} = K_{H} (1 + K_{S1} / c_{H3O+} + K_{S1}K_{S2} / c_{H3O+}^{2})$

pH of water in the atmosphere in equilibrium with CO₂ ($p_{CO2} = 36$ Pa): (1) in (2): $c_{HCO3-} c_{H3O+} = K_{S1} H_{CO2} p_{CO2}$ $c_{HCO3-} = c_{H3O+}$ $c_{H3O+} = (K_{S1} H_{CO2} p_{CO2})^{0.5}$ $pH = -0.5 (-pK_{S1} - \log K_{H CO2} - \log p_{CO2})$ $pH = 0.5 (6.35 - \log 3.4x 10^{-7} - \log 36) = 5.63$ S(IV) phase equilibrium and reactions determined by Henry coeff. K_{H} , pH, T

$$S(IV): = SO_{2 aqu} + HSO_3 + SO_3^2 + SO_3^2$$

Phase equilibrium (Henry coeff., physical solubility of SO₂): $SO_2 = SO_2_{aqu.}$ $K_{H(298K)} := c_{SO2}/p_{SO2} = 1.2x10^{-5} \text{ M/Pa}$

Dissociation equilibria:

 $SO_{2 \text{ aqu.}} + 2 H_2O = HSO_3^- + H_3O^+$ $K_{S1 (298K)} = 1.7 \times 10^{-2} M$

 $HSO_3^- + H_2O = SO_3^{2-} + H_3O^+$ $K_{S2(298K)} = 6.5 \times 10^{-8} M$ Substances which interact with water to form ions via acid-base dissociation equilibria K_H must be replaced by a modified coefficient K_H^* : (,modified Henry coeff.'):

$$K_{H(298K)}^* := c_{S(IV)}^{/}/p_{SO2}^{} = K_H^{(1 + K_{S1}^{/}/c_{H3O^+}^{} + K_{S1}^{}K_{S2}^{/}/c_{H3O^+}^{2}) = f(pH)$$

... and S(VI) phase equilibrium and dissociation

$$S(IV): = SO_{2 aqu} + HSO_3 + SO_3^{2}$$

Phase equilibrium (Henry coeff., physical solubility of SO_2): $SO_2 = SO_{2 \text{ aqu.}} = HSO_3^- + H_3O^+ = SO_3^{2-} + H_3O^+$ Sulfur dissolved bisulfite sulfite sulfite

$$S(VI) = SO_4^{2-}_{aqu} + HSO_4^{-}_{aqu} + H_2SO_4^{*}(H_2O)_n$$

3.3.3.2 Bulk aqueous phase chemistry

Acid-base dissociation equilibrium

Reaction	K_{298} /mol dm ⁻³	K ₂₈₅
$H_2O \rightleftharpoons H^+ + OH^-$	1.0×10^{-14}	3.6×10^{-15}
$HO_2 \rightleftharpoons H^+ + O_2^-$	1.6×10^{-5}	1.7×10^{-5}
$HCOOH \rightleftharpoons H^+ + HCOO^-$	1.8×10^{-4}	1.8×10^{-4}
$CO_{2a} \rightleftharpoons H^+ + HCO_3^-$	4.3×10^{-7}	3.6×10^{-7}
$HNO_2 \rightleftharpoons H^+ + NO_2^-$	6.1×10^{-4}	4.6×10^{-4}
$HNO_{3} \rightleftharpoons H^{+} + NO_{3}^{-}$	1.5×10^{1}	1.5×10^{1}
$HOONO_2 \rightleftharpoons H^+ + NO_4^-$	_	1.0×10^{-5}
$NH_3 + H_2O \rightleftharpoons OH^- + NH_4^+$	1.8×10^{-5}	1.7×10^{-5}
$SO_{2a} \rightleftharpoons H^{+} + HSO_{3}^{-}$	1.7×10^{-2}	2.2×10^{-2}
$HS\tilde{O}_{3}^{-} \rightleftharpoons H^{+} + S\tilde{O}_{3}^{2-}$	6.5×10^{-8}	7.7×10^{-8}
$HSO_4^{-} \rightleftharpoons H^+ + SO_4^{-2}$	1.0×10^{-2}	1.5×10^{-2}
	(W	arneck, 1999)

Dissociated / undissociated species exist in ratios determined by acidity (pH) and the dissociation constant, K_S . E.g. $SO_{2 \text{ aqu.}}$ for pH < -log K_{S1} = 1.7, SO_3^{2-} for pH > -log K_{S2} = 7.1 and HSO_3^{-} in between.

S(IV) oxidation reactions

(1)
$$SO_{3}^{2-}_{aqu} + HO_{2}^{+}_{aqu} \rightarrow SO_{4}^{2-}_{aqu} + OH^{+}_{aqu}$$

(2) $+ OH^{+}_{aqu} \rightarrow SO_{3}^{-+}_{aqu} + OH^{-}_{aqu} \rightarrow SO_{5}^{-+}_{aqu} \rightarrow \rightarrow SO_{4}^{2-}_{aqu}$
(3a) $HSO_{3}^{-}_{aqu} + O_{3}_{aqu} \rightarrow HSO_{4}^{-}_{aqu} + H_{2}O$ $k_{3a}=3.2x10^{5} M^{-1}s^{-1}$
(3b) $SO_{3}^{2-}_{aqu} + O_{3}_{aqu} \rightarrow SO_{4}^{2-}_{aqu} + H_{2}O$ $k_{3b}=1.5x10^{9} M^{-1}s^{-1}$
(4) $HSO_{3}^{-}_{aqu} + H_{2}O_{2}_{aqu} \rightarrow HSO_{4}^{-}_{aqu} + H_{2}O k_{4}=4.0x10^{7} c_{H^{+}} M^{-1}s^{-1}$
(5) $2 HSO_{3}^{-}_{aqu} + O_{2}_{aqu} \rightarrow 2 HSO_{4}^{-}_{aqu}$ "autoxidation" reactions

(Graedel & Weschler, 1981; Warneck, 1999)

Acidity formation in the troposphere: sulfuric acid

pH dependent oxidations, because in individual steps of the reactions of $SO_{2 aqu}$, $HSO_{3}^{-}_{aqu}$ and $SO_{3}^{2-}_{aqu}$ (which are present in pH-dependent fraction according to K_{S1} , K_{S2}) is H $^{+}_{aqu}$ consumed or formed.

for $L = V_{H2O(1)}/V = 3x10^{-6}$ (Seinfeld, Calvert)

Sulfuric acid: precursors other than anthropogenic SO₂

Γ	Date	Na ⁺	Cl-	NO3	SO4 ² 7	ISSS	MSA	MSA NSS: wt/w	
0	5-06/1/92	164	37.5	1.11	9.28	7.34	2.97	40.4	
0	6-07/1/92	154	30.8	3.50	13.2	11.6	3.46	29.8	
0	7-08/1/92	27.8	47.3	2.87	9.21	6.77	1.08	16.2	
0	8-09/1/92	160	58.2	1.48	8.21	5.19	0.94	18.1	
	2	104	24.6	1.18	8.23	7.17	2.43	33.9	
Terminology:	12	19.5	47.9	1.00	5.53	3.05	0.93	30.4	
	2	210	8.34	0.69	7.69	7.20	2.83	39.4	
• $NSSS = non-sea salt sulfate$	2	9.26	25.9	1.00	7.51	6.20	1.98	31.9	
	2	150	61.6	1.55	11.9	8.70	1.68	19.3	
• DMS = dimethylsulfide, CH_3SCI	2 2	169	110	0.76	15.0	9.24	0.60	6.54	
$\Lambda = 100$ $\Lambda = 1000$	2 2	320	269	0.92	18.4	4.51	1.16	25.6	
• $INISA =$ methanesultonate, CH_3SC	J ₃ 12	66.4	49.9	0.74	9.24	6.66	1.90	28.5	
2	0-21/1/92	134	63.0	0.81	7.70	4.44	1.38	31.0	

3.3.4 Dimethylsulfide3.3.4.1 Formation of carbonyl sulfide

(Gas-phase chemistry)

(1) $CH_3SCH_3 + OH \rightarrow CH_3SCH_2 + H_2O$ $CH_3SCH_2 + O_2 + M \rightarrow CH_3SCH_2OO + M$ (2) $CH_3SCH_2OO + NO \rightarrow CH_3SCH_2O + NO_2$ (3a) $CH_3SCH_2O \rightarrow HCHO + CH_3S \rightarrow HCHO + CH_3S \rightarrow HCHO + CH_3S \rightarrow HCHO + HO_2 \rightarrow CH_3SCHO + CH_3SCHO$

major

minor

In DMS oxidation the COS yield is much smaller than 1 COS/CH₃SCH₃ because of reaction decomposition of the alkoxy radical, CH₃SCH₂O, and as much of the intermediate products are washed out ($\tau <$ week)

Other carbonyl sulfide, COS, sources

(1a) CS ₂	$+ OH + O_2$	$\rightarrow COS + SO_2 + H$ ·
(1b)	+ hv	$\rightarrow CS_2^*$
(2b) CS_2^*	$+ O_2$	$\rightarrow COS + O$.

(Crutzen, 1983)

Significance of COS

As $\tau_{COS} \approx$ years it is transported globally and reaches the stratosphere. Its photolysis there produces SO_2 and H_2SO_4 and explains the stratopheric sulfate layer during periods of low volcanic activity

3.3.4.2 Formation of SO₂

in the marine boundary layer: $CH_3SCH_3 \rightarrow CH_3S^{-1}$

 $\begin{array}{c} \mathrm{CH}_3\mathrm{S}{}\cdot \to \to \\ \mathrm{S}(\mathrm{IV}) \to \to \mathrm{S}(\mathrm{VI}) \end{array}$

Hypothetical neg. feedback mechanism in the marine boundary layer (so-called CLAW hypothesis): $CH_3SCH_3 \rightarrow clouds \rightarrow$ radiation \rightarrow phytoplankton \rightarrow

(Charlson et al., 1987)

1.5.2 Heterogeneous reactions in the gas/water droplet system 1.5.2.1 In phase equilibrium

Acidity formation in the troposphere: sulfuric acid

Example: $c_{SO2} = 2 \text{ nmol m}^{-3}$, $c_{H2O2} = 40 \text{ nmol m}^{-3}$, T = 298 K(near Bermuda 1988)

1. Gas-phase: $dc_{S(VI)}/dt = 5.6 \times 10^{-6} \text{ nmol m}^{-3} \text{ s}^{-1}$

2. Aqueous phase: $dc_{SO4--}/dt = k_4 p_{H2O2} K_{H H2O2} p_{SO2} K_{H SO2}^* (M s^{-1})$ $K_{H SO2}^* = K_{H SO2} x (1 + K_{S1} / c_{H^+} + K_{S1} K_{S2} / c_{H^+}^2)$ $dc_{S(VI)}/dt = dc_{S(VI)}/dt (M s^{-1}) x L (L m^{-3}) x 10^9 (nmol mol^{-1}) =$ $= 32x10^{-6} nmol m^{-3} s^{-1}$

1.5.2.2 Deviation from phase equilibrium due to kinetic limitations - mass transport considerations

Transfer from gas to aqueous phase treated like a chemical reaction (,pseudo-reaction'):

 $\frac{dc_{i \text{ aqu}}}{dt} = k_{mt} \left(c_{i (g)} - c_{i \text{ aqu}} / RTK_{H}^{*} \right)$

Table 3 Henry's law partition coefficients $K_{\rm H}^{\ominus}$ at T = 298 K, heats of vaporization $\Delta H_{\rm soln}$ divided by the gas constant $R_{\rm g}$, mass accommodation coefficients α , transfer coefficients $k_{\rm t}$, and the associated time constants for the approach to Henry's law equilibrium

Constituent	$K_{\rm H}^{\ominus a}$ /mol dm ⁻³ atm ⁻¹	$rac{(\Delta H_{ m soln}/R_{ m g})}{/{ m K}}$	$R_{\rm g}TK_{\rm H}$	α ^b	k_t^{c}/s^{-1}	$ au_{ m H}{}^{a}/ m s$	Ref. ^e
0 ₂	1.3×10^{-3}	1500	3.8×10^{-2}	0.01*	5.3×10^{2}	8.9×10^{-8}	19
O_3	1.1×10^{-2}	2300	3.7×10^{-1}	0.004	5.3×10^{2}	2.1×10^{-6}	20
OH	3.0×10^{1}	4500	1.9×10^{3}	0.004	3.5×10^{5}	3.9×10^{-3}	21
HO_2	4.0×10^{3}	5900	2.3×10^{5}	0.01	4.2×10^{5}	8.2×10^{-1}	21
H_2O_2	1.0×10^{5}	6300	6.1×10^{6}	0.11	1.0×10^{6}	5.9	22
CH ₃ ÕOH	3.0×10^2	5300	1.6×10^{4}	0.004	1.8×10^{5}	4.5×10^{-2}	22
CH ₃ OO	6.0		1.4×10^{2}	0.01*	5.3×10^{2}	4.0×10^{-4}	23
CH ₃ OH	2.2×10^2	4900	1.1×10^{4}	0.02	6.4×10^{5}	1.7×10^{-2}	24
HCHO	3.0×10^{3}	7200	2.1×10^{5}	0.01*	4.4×10^{5}	4.8×10^{-1}	25
HCOOH	5.5×10^{3}	5700	3.1×10^{5}	0.013	4.6×10^{5}	4.5	26
CO_2	3.4×10^{-2}	2400	1.1	2×10^{-4}	5.3×10^{2}	1.1×10^{-4}	10
NO	1.9×10^{-3}	1500	5.6×10^{-2}	0.02*	5.3×10^{2}	8.4×10^{-8}	27
NO_2	7.0×10^{-3}	2500	2.4×10^{-1}	0.001*	5.3×10^{2}	2.1×10^{-6}	28
NO ₃	2.0	2000	6.4×10^{1}	0.003	5.3×10^{2}	3.4×10^{-4}	29
N_2O_5	8	_	_	0.02	3.5×10^{5}	_	
HNO ₂	5.0×10^{1}	4900	2.5×10^{3}	0.05	7.5×10^{5}	5.0×10^{-2}	30
HNO ₃	$2.4 \times 10^{6}/K_{d}$	8700	1.5×10^{7}	0.05	6.5×10^{5}	2.8×10^2	31
$HOONO_2$	1.4×10^4	_	3.2×10^{5}	0.01*	2.7×10^{5}	1.6	32
NH ₃	6.1×10^{1}	4200	2.7×10^{3}	0.09	1.4×10^{6}	2.8×10^{2}	33
SO ₂	1.2	3200	4.6×10^{1}	0.1	7.5×10^{5}	4.3×10^{-2}	34
SO ₃	00	-	-	0.01*	2.7×10^{5}	_	

^a 1 atm = 1.01325×10^5 Pa. ^b Mass accommodation coefficients are from Warneck *et al.*¹² except for OH and HO₂ from Hanson *et al.*²¹ for CH₃OOH, CH₃OH and HNO₃ from Davidovits *et al.*³⁵ and for NO₃ from Thomas *et al.*²⁹ Asterisks indicate estimates. ^e Transfer coefficients for O₂, O₃, CH₃OO, CH₃OH, CO₂, NO, NO₂ and NO₃ are determined by molecular diffusion in the aqueous phase. ^d Modified Henry's law coefficients were used in calculating $\tau_{\rm H}$ (pH 4.5). ^e References for Henry's law coefficients. (Warneck, 1999)

Fig. 4 (Top). Various physicochemical processes that control a multiphase reaction of a molecule X with another molecule Z in a liquid droplet. The subscripts g and I refer to gas and liquid phases. It is assumed that the concentration of Z in the liquid phase is controlled by the gas-phase abundance and its Henry's law solubility coefficient, H. The steps are described in the text and noted in the figure, except for the diffusion into and out of the liquid. (**Bottom**) The concentrations, in arbitrary units and different scales for gas and liquid phases, of species X and Z as a function of radial distance from the surface of a spherical droplet. It is assumed that there is no concentration gradient in either the gas or liquid

	Condensed phase: Liquid
Transport in the gas phase Initial interaction	$\Gamma_{g;} \tau_{dg} = r^2 / (3D_g)$ Sat. after $K_H RT \tau_{dg}$
Reversible sorption	Accommodation coefficient α
Reaction on surface	<i>Reactive uptake coeff.</i> γ_r
Crossing of interface ('uptake', interfacial m.trp)	$\tau_i = 4r/(3 < v > \alpha)$ Sat. after $\tau_u = K_u RT \tau_i$
Solvation Rapid chemical equilibrium	$\gamma_{\rm sol} \approx 0$
Diffusion into bulk Reaction in bulk	$K_{aq;} \tau_{da} = r^2 / (\pi^2 D_a)$
Reaction in bulk liquid	$\tau_{\rm r} = c_{\rm A} / (a \Delta c_{\rm A} / \Delta t)$ for: $aA \rightarrow$

(Schwartz, 1986)

Kinetic description of mass transfer: water uptake

$$k_{mt} = f(D, \alpha):$$

$$K_{mt SO2} = 7.5 \times 10^5 \text{ s}^{-1} (\alpha = 0.1) \tau_{\text{H}} = 0.043 \text{ s}$$

$$K_{mt O3} = 5.3 \times 10^2 \text{ s}^{-1} (\alpha = 0.004) \tau_{\text{H}} = 2.1 \times 10^{-6} \text{ s}$$

$$K_{mt \text{ HCOOH}} = 4.6 \times 10^5 \text{ s}^{-1} (\alpha = 0.013) \tau_{\text{H}} = 4.5 \text{ s}$$

(Schwartz, 1986; Warneck, 1986)

Kinetic description of mass transfer: water uptake

Transfer from gas to aqueous phase treated like a chemical reaction (,pseudo-reaction'):

$$dc_{i aqu}/dt = k_{mt} (c_{i (g)} - c_{i aqu}/RTK_{H}^{*})$$

with mass transfer rate coefficient $k_{mt} = (\Sigma_i \tau_i)^{-1}$

• Slightly soluble gases (i.e. $\text{RTK}_{\text{H}} < 750$): Henry's law equilibrium rapidly established at the drop surface, transport rate limiting is diffusion within the drop: $k_{\text{mt}} \approx \tau_{\text{da}} = r^2/(\pi^2 D_a)$ • Soluble gases (i.e. $\text{RTK}_{\text{H}} > 750$): Henry's law equilibrium establishment limited by diffusion in the gas-phase and by transport through the interface: $k_{\text{mt}} \approx \tau_{\text{da}} = [r^2/(3D_g) + 4r/(3\alpha < v>)]^{-1}$

(Schwartz, 1986)

In more detail including dependency on mass transport kinetics (accommodation coefficient α; Calvert et

al., 1985): L = 1 g/m³

Oxidants

a = 50 ppbv O₃ at -5°C
b = 50 ppbv O₃ at +15°C
c = 10⁻⁵ M Fe(III), 10⁻⁶ M Mn(II)
d = 10⁻⁷ M Fe(III), 10⁻⁸ M Mn(II)
e = OH_{aqu}
$$\alpha$$
 = 0.1,0.01, or 0.001
f = 1ppbv H₂O₂ at -5°C
g = 1ppbv H₂O₂ at +15°C
h = 1ppbv CH₃OOH at -5°C
i = 1ppbv CH₃OOH at +15°C
j = 1ppbv CH₃C(O)OOH at -5°C
k = 1ppbv CH₃C(O)OOH at +15°C

Fig. 6 Theoretical instantaneous rates of liquid-phase oxidation of S(IV); $SO_2(g)$ at 1 p.p.b. in equilibrium with cloud water; left-hand ordinate gives rates independent of the liquid water content (L) of the cloud; right-hand ordinate gives the equivalent gas-phase oxidation rate for SO_2 for a cloud with L=1 g m⁻³; see text for the specific reactant conditions chosen for the calculations in curves a-m.

3.3.5 Deviation from air/water equilibrium due to organic films

Apart from kinetic control: Another reason for apparent deviation from gas-aqueous phase equilibrium is lipophilicity in combination with (organic) surface films

> Table IV. Aqueous-Phase Enrichment Factors (K_{AW}/D) for the Distribution of Pesticides between Fogwater and Air

Example: Fogwater in agricultural area, California, 1986

	aut						
compound	1/8-9	1/9	1/11ª	1/12	1/12-13	mean	
diazinon	6	59	14	50	160	58	
parathion	4	12	5	18	29	14	
chlorpyrifos	7	55	35	40	74	42	
methidathion	0.06	3	0.02	1.4	2.3	1.4	
paraoxon	2.1	15	10	48	>69	>19	

data

 $c_{(g)}/c_{aqu}$ predicted (K_{aw}) vs. observed (D)

OP(OCH2CH3)2

Methidathion

(Glotfelty et al., 1990)

Diazinon

3.3.6 Tropospheric ozone and clouds

Ozone reactions

 $\begin{array}{ll} (1a) O_{3 aqu} & + OH^{-}_{aqu} \rightarrow O_{2}^{-}_{aqu} + HO_{2}^{\cdot}_{aqu} \\ (1b) & + HO_{2}^{\cdot}_{aqu} \rightarrow 2 O_{2 aqu} + OH^{\cdot}_{aqu} \\ (1c) & + OH^{\cdot}_{aqu} \rightarrow O_{2 aqu} + HO_{2}^{\cdot}_{aqu} \\ (2a) HO_{2}^{\cdot}_{aqu} & + OH^{\cdot}_{aqu} \rightarrow O_{2 aqu} + H_{2}O \\ (2b) & + HO_{2}^{\cdot}_{aqu} \rightarrow O_{2 aqu} + H_{2}O_{2} \\ (3b) H_{2}O_{2} + hv & \rightarrow 2 OH^{\cdot}_{aqu} \end{array}$

	TABLE 1 Gas-phase, gas-liquid equilibrium and aqueous-phase reactions						
Gas-phase reactio	ns			Rate constant*		Ref.	
61	0 + hv	_	$O(^{1}D) + 0$	1.6×10^{-5}		27	
G2	$O_{a} + h\nu$		0+0	36×10 ⁻⁴		27	
G3	$NO_2 + h\nu$		NO + 0	5.6×10^{-3}		27	
G4	$H_2 O_2 + h \nu$	\rightarrow	20H	4.6×10^{-6}		27	
G5	$CH_{2}O + h\nu + 2O_{2}$	\rightarrow	2H02 + CO	1.7×10^{-5}		27	
G6	$CH_2O + h\nu$	\rightarrow	$H_2 + CO$	3.3×10^{-5}		27	
G7	$CH_{3}OOH + h\nu + O_{2}$	\rightarrow	$CH_2O + HO_2 + O_2$	4.6×10^{-6}		27	
G8	$NO_3 + h\nu$	\rightarrow	$NO + O_2$	1.4×10^{-2}		27	
G9	$NO_3 + h\nu + O_2$	\rightarrow	$NO_2 + O_3$	1.2×10^{-1}		27	
G10	$HNO_3 + h\nu$	\rightarrow	$NO_2 + OH$	3.2×10'		27	
G11	$N_2O_5 + h\nu$	-	$NO_2 + NO_3$	2.7×10 ⁻⁵		27	
G12	O(*D) + M	-•	0+M	$2.0 \times 10^{-11} \exp(100/T)$		27	
613	$0 + 0_2(+M)$		0 ₃ (+M)	1.5×10 **		21	
G14	0(-D)+H ₂ O	-	20H	22×10^{-12} and $(1.000/T)$		27	
GIS	03+10	-	NU2+U2	$2.0 \times 10^{-14} \exp(-1.400/7)$		27	
610	0 +04	7		$1.1 \times 10^{-12} \exp(-900/7)$		27	
011	NO + OH(+M)	_	$HO_2 + O_2$	1.0×10 exp(-540/7)		27	
619		_	H-0+0-	$4.6 \times 10^{-11} \exp{(230/T)}$		27	
620	$H_{2}O_{2} + OH$		HO. + H.O	$3.3 \times 10^{-12} \exp(-200/7)$		27	
G21	$HO_{a} + HO_{a}$		$H_{0}O_{0} + O_{0}$	$2.3 \times 10^{-13} \exp(600/T)$		27	
622	$HO_{2} \pm NO$	-	NO ₂ + OH	$3.7 \times 10^{-12} \exp(240/T)$		27	
G23	$NO_2 + O_2$	-	NO. + 0.	$1.4 \times 10^{-13} \exp(-2.500/T)$		27	
G24	NO + NO		2N0-	$1.7 \times 10^{-11} \exp(150/T)$		27	
G25	$NO_2 + NO_2(+M)$		$N_2O_{\kappa}(+M)$	8.1×10 ⁻¹¹ (7/300) ^{-4.1}		28	
G26	N ₂ O ₅ (+M)	-+	NO2 +NO3(+M)) 4.6×10 ¹⁶ (7/300) ^{-4.4} exp (-1	11,080/7)	28	
G27	$CH_4 + OH + O_2(+M)$	\rightarrow	CH302+H20(+	HM) 2.3×10 ⁻¹² exp (~1,700/T)		27	
G28	$CH_{3}O_{2} + NO + O_{2}$	\rightarrow	CH20 + HO2 + N	4.2×10 ⁻¹² exp (180/T)		27	
G29	$CH_3O_2 + HO_2$	\rightarrow	CH300H+02	4.0×10^{-12}		29	
G30	CH ₃ O ₂ + HO ₂	\rightarrow	$CH_2O + H_2O + C$	$D_2 = 2.0 \times 10^{-12}$		29	
G31	CH20 + OH + 02	\rightarrow	$HO_2 + H_2O + CC$	1.1×10^{-11}		28	
G32	CH300H + 0H	-	$CH_{2}O + OH + H_{2}$	20 4.4×10 ⁻¹²		30	
G33	CH ₃ OOH + OH	-	$CH_{3}O_{2} + H_{2}O$	5.6×10		30	
G34	C0+0H+02	-	CO ₂ + HO ₂	2.4×10 ⁻¹³		27	
G35	$CH_{3}O_{2} + CH_{3}O_{2} + O_{2}$	-	2CH ₂ 0 + 2HO ₂	1.9×10 ⁻¹⁵ exp (220/7)		21	
Gas-aqueous and	aqueous-phase equilibria			κ ₂₉₈ †	$-\Delta H/R$	Ref.	
E1	HO ₂ (gas)	=	HO ₂ (aq)	2.0×10^{3}	6,600	31	
E2	HO ₂ (aq)	=	$0_{2}^{-} + H^{+}$	3.5×10^{-5}		32	
E3	H ₂ O ₂ (gas)	=	H2O2 (aq)	7.4×10^{4}	6,615	33	
E4	O3 (gas)	=	O3 (aq)	1.1×10^{-2}	2,300	34	
E5	CH ₂ O (gas)	#	CH ₂ (OH) ₂	6.3×10^{3}	6,425	8	
E6	HCOOH (gas)	=	HCOOH (aq)	3.7×10*	5,700	35	
E7	HCOOH (aq)		HCOO +H+	1.8×10 *	-1,510	35	
E8	CH ₃ OOH (gas)	=	CH ₃ OOH (aq)	2.2×10 ²	5,653	33	
E9	CH ₃ O ₂ (gas)	-	CH ₃ O ₂ (aq)	2.0×10-	6,600	E9=E1	
E10	HNU ₃ (gas)	=	HNU3 (aq)	2.1×10	8,700	30	
E11 E12	HNO ₃ (aq)	=	NO (col)	15.4 19×10 ⁻³	1 490	30	
E12 E12	NO (das)		NO (aq)	64×10 ⁻³	2,400	37	
E13	NO ₂ (gas)		$NO_2(aq)$	150	2,500	12	
F15	OH (das)	-	OH (an)	90×10 ³		38	
E16	CO ₂ (gas)	=	CO _n (aq)	3.4×10 ⁻²	2.420	39	
E17	CO ₂ (aq)	=	$HCO_3^- + H^+$	4.5×10^{-7}	-1,000	39	
Aqueous-phase re	actions			Kras*	-E./R§	Ref.	
41	H_O_+bu	-	20H	9.2×10 ⁻⁶	a -	1	
42	0.+b+++0	_	H-0-+0-	3.2×10 ⁻⁶			
A3	$CH_{2}(OH)_{0} + OH + O_{0}$		H_0 + HCOOH +	HD 20×10 ⁹	-1.500	40 41	
A4	HCOOH + OH + 0-	-	CO. +H.O +HC	1.6×10 ⁸	-1.500	42	
A5	HC00 + 0H + 0-		CO2 + OH" + HO	0 ₂ 2.5×10 ⁹	-1.500	43	
A6	03+02+H20		OH+202+0H	1.5×10 ⁹	-1,500	44, 45	
A7	HO ₂ + 0-	-	H0 - + 02	1.0×10^{8}	-1,500	46	
A8	$HO_{2}^{-} + H^{+}$	-	H ₂ O ₂	5.0×10 ¹⁰	-1,500	2	
A9	$H_2O_2 + OH$	\rightarrow	HO2 + H20	2.7×10^{7}	-1,715	47	
A10	N205+H20	-	2HNO ₃			1	
A11	$CH_3O_2 + O_2^- + H_2O$	-	CH300H+02+	OH 5.0×10	-1,610	4	
A12	CH300H + OH	\rightarrow	CH302 + H20	2.7×10 ⁷	-1,715	4	
A13	CH300H+0H	-	CH ₂ (OH) ₂ + OH	1.9×10′	-1,860	4	
A14	HCO ₃ + OH	\rightarrow	$H_20 + C0_3^-$	1.0×10'	-1,500	48	
A15	$HCO_{3}^{-}+O_{2}^{-}$	\rightarrow	$HO_2 + CO_3$	1.5×10°	-1,500	48	
A10	CO3 + H2O2	-	$HO_2 + HCO_3$	8.0×10°	2,800	49	
mil.	$CO_3 + O_2$	-	02+003	4.0 × 10-	-1,500	49	

G. E and A are gas-phase reactions, gas-liquid equilibrium and aqueous-phase reactions, respectively. These are the most important reactions from the more extended reaction scheme in the model. Some reactions summarize several reaction steps. Aqueous-phase processes at mid-latitudes in the Northern Hernisphere are simulated at pH 4.5, for other latitudes in Table PH 5 is adopted¹⁰. Photolysis rate coefficients and water vapour concentrations in clouds are kept equal to those during clear sky to emphasize photochemical differences. Daytime average (hotolysis rates are applied. Accommodation coefficients, as used for gas-to-aqueous-phase transfer processes¹⁴, are taken from refs 51–56. For those components with unknown commondation coefficients waise of 0.5.

* Reaction rate constants of first-order reactions are in s⁻¹, of second-order reactions in the gas phase (G) in molecule ¹ cm³ s⁻¹, in the aqueous phase (A) in mol⁻¹ t s⁻¹. Photodissociation ate constants are calculated per season, latitude and altitude. The given values pertain to the Equator in July, at 700 mbar.

 $\uparrow K_{298}$ is in mol l^{-1} atm⁻¹ for Henry's law constants and in mol l^{-1} for aqueous-phase equilibria. The temperature dependence is calculated by $K = K_{298} \exp \left[(-\Delta H/R) (1/T) - (1/298) \right]$ \uparrow Assumed.

§ Ea values are taken from ref. 4.

J.L., thesis in preparation.

Gas-to-aqueous-phase transfer of N₂O₅ is limited by gas-phase diffusion and transfer through the interface. We assume that reaction A10 then occurs instantaneously, so that dissolution i irreversible.

FIG. 2 Concentrations of some gases during sunlit hours of day 14 of the simulations, pertaining to the Equator at 3 km altitude (case 6, Table 2 and 3*a*), with NO_x fixed. For the cloudy period (t_c) total gas-phase plus aqueous-phase concentrations are depicted. O₂(-1)=HO₂(gas)+HO₂(aq)+O₂⁻.

Differences in solubility and chemical reactivity in the aqueous phase result in changed (overall) chemistry of the atmosphe pH dependent O_3 sink, e.g. A6 (Lelieveld & Crutzen, 1990) **3.3.7 Nitrogen compounds in the aqueous phase**

Acidity formation in the troposphere: N

during the day: $NO_2 + OH \rightarrow HNO_3$ during night: $NO_2 + NO_3 = N_2O_5$

phase equilibria of N(-III), N(IV), N(V) species: $NH_3 = NH_{3 \text{ aqu.}}$ $HNO_3 = HNO_{3 \text{ aqu}}$ $N_2O_5 = N_2O_{5 \text{ aqu}}$

dissociation, hydration N(-III), N(V): $NH_{3 aqu} + H_2O \rightarrow NH_4^+_{aqu} + OH_{aqu}^ HNO_{3 aqu} + H_2O \rightarrow H_3O_{aqu}^+ + NO_3^-_{aqu}$ $2 NO_2 + 3 H_2O \rightarrow NO_2^-_{aqu} + NO_3^-_{aqu} + 2 H_3O_{aqu}^+$ slow (Lee & Schwartz, 1981) $N_2O_{5 aqu} + 3 H_2O \rightarrow 2 H_3O_{aqu}^+ + 2 NO_3^-_{aqu}$ more phase equilibria of N(-III), N(IV), N(V) species: $HNO_2 = HNO_{2 aqu}$ $HNO_4 = HNO_{4 aqu}$

dissociation, hydration N(-III), N(V): $HNO_{2 aqu} + H_2O = H_3O_{aqu}^+ + NO_{2 aqu}^-$

$$HNO_{4 aqu} + H_2O = H_3O_{aqu}^+ + NO_{4 aqu}^-$$

$$HNO_{4 aqu} = HO_2 \cdot_{aqu} + NO_{2 aqu}^-$$

$$NO_{4 aqu} \rightarrow O_{2 aqu} + NO_{2 aqu}^-$$

$$K_{\rm S} = 0.6 {\rm x} 10^{-5} {\rm M}$$

HNO₃ production: sources

N(III) and N(V) chemical sinks in the aqueous phase

 $(1) \text{HNO}_{2 \text{ aqu}} + hv (< 390 \text{ nm}) \rightarrow \text{NO} + \text{OH}_{aqu}^{*}$ $(2) + OH_{aqu}^{*} \rightarrow \text{NO}_{2 \text{ aqu}} + H_2O$ $(3) + R_2\text{NH}_{aqu} \rightarrow R_2\text{NNO}_{aqu} + H_2O$ $(4) \text{NO}_{2^{-}aqu} + OH_{aqu}^{*} \rightarrow \text{NO}_{2 \text{ aqu}} + OH_{aqu}^{*}$ $(5) + O_{2 \text{ aqu}} \rightarrow \text{NO}_{3^{-}aqu} + O_{3 \text{ aqu}}$ $(6) \text{NO}_{3^{-}aqu} + hv (< 350 \text{ nm}) \rightarrow \text{NO}_{2^{-}aqu}^{*} + OH_{aqu}^{*}$ $(7) \rightarrow \text{NO}_{2 \text{ aqu}}^{*} + O_{aqu}^{*}$

(Graedel & Weschler, 1981)

\rightarrow Slower, than deposition

3.3.8 Organic chemistry in the aqueous phase

Oxidation of organics

Aliphatic hydrocarbons:

(1) $\operatorname{RCH}_{3 \operatorname{aqu}} + \operatorname{OH}_{\operatorname{aqu}} \rightarrow \operatorname{RCH}_{2\operatorname{aqu}} + \operatorname{H}_{2}\operatorname{O}$

(1) $\operatorname{RCH}_2\operatorname{OH}_{\operatorname{aqu}} + \operatorname{OH}_{\operatorname{aqu}} \rightarrow \operatorname{RCH}_{\operatorname{aqu}} + \operatorname{H}_2\operatorname{O}$ (2) $\operatorname{RCH}_{\operatorname{OH}_{\operatorname{aqu}}} + \operatorname{O}_{\operatorname{2aqu}} \rightarrow \operatorname{RCHO}_{\operatorname{aqu}} + \operatorname{HO}_2_{\operatorname{aqu}} + \operatorname{HO}_2_{\operatorname{aqu}}$ (3) $\operatorname{RCHO}_{\operatorname{aqu}} + \operatorname{H}_2\operatorname{O} = \operatorname{RCH}(\operatorname{OH})_{\operatorname{2aqu}}$

Aromatic hydrocarbons: (1) $\phi CH_3 + OH_{aqu} \rightarrow \phi CH_3(OH)$ (2) $\phi CH_3(OH) + O_{2aqu} \rightarrow \phi CH_3(OH) + HO_2$ $2 HO_2$ (6) $H_2O_2 + hv \rightarrow 2 OH_{aqu}$

 \rightarrow Similar to gas-phase chemistry in many regards, - but without NO

Acidity formation in the troposphere: carboxylic acids, example HCOOH

```
NO_{3} = NO_{3} aqu
HCHO*H_{2}O_{(aqu)} = HOCH_{2}OH_{(aqu.)}
NO_{3} aqu + HOCH_{2}OH_{(aqu)} \rightarrow H_{4}^{+} aqu + NO_{3}^{-} aqu + HOCH_{2}O aqu
HOCH_{2}O aqu \rightarrow HO_{2} (aqu) + HCOOH_{aqu}
2 HO_{2} aqu \rightarrow H_{2}O_{2} aqu + O_{2} aqu
```

Acidity formation in the troposphere: Example oxalic acid

 $r = k \text{ [mol m}^{-3} \text{ s}^{-1} \text{] (Warneck, 2003)}$

Reactivity of organics in the aqueous phase: Overview OH reactions

TABLE 21. Rate Constants for Reactions of Organic Compounds in Aqueous Solution

Reaction	k _{23°C}	Reference
$CH_3 \cdot + O_2 \rightarrow CH_3O_2 \cdot$	$(4.7 \pm 0.7) \times 10^9$	Thomas [1967]
$R \cdot + O_2 \rightarrow RO_2 \cdot$	$\sim 3 \times 10^{9}$	Howard [1973]
$HCHO + H_2O \rightarrow CH_2(OH)_2$	(9.8 ± 0.8)	Sutton and Downes [1972]
$HOCH_2O_2 \rightarrow HCHO + HO_2 \rightarrow$	(9.9 ± 2.5)	Downes and Sutton [1973]
$OH \cdot + CH_4 \rightarrow CH_3 \cdot + H_2O$	$(1.2 \pm 0.4) \times 10^8$	FR
$OH \cdot + HCHO \rightarrow CHO \cdot + H_2O$	$(6.9 \pm 1.7) \times 10^8$	FR
$OH \cdot + CH_3OH \rightarrow CH_2OH \cdot + H_2O$	$(9.4 \pm 2.3) \times 10^8$	FR
$OH \cdot + CH_2 = CH_2 \rightarrow HOCH_2CH_2 \cdot$	$(4.8 \pm 1.2) \times 10^9$	FR
$OH + CH_3CHO \rightarrow \text{products}$	$(5.0 \pm 1.2) \times 10^8$	FR
$OH \cdot + CH_3CH_2OH \rightarrow CH_3CHOH \cdot + H_2O$	$(1.8 \pm 0.5) \times 10^9$	FR
$OH \cdot + CH_3C(O)CH_3 \rightarrow \text{products}$	$(9.7 \pm 2.4) \times 10^7$	FR
OH · + ∧ CHO → HO/CHO	$(7.0 \pm 1.8) \times 10^9$	FR
$OH \cdot + \wedge^{OH} \rightarrow \wedge^{OH} + H_2O$	$(3.0 \pm 0.8) \times 10^9$	FR
$OH \cdot + H_{OM} \rightarrow products$	$(2.0 \pm 0.5) \times 10^9$	FR
$OH \cdot + / \to products$	$(7.7 \pm 1.9) \times 10^{9}$	FR
$OH \cdot + // \rightarrow products$	$(7.7 \pm 1.9) \times 10^9$	FR
$OH \cdot + \bigwedge_{\circ}^{\circ H \circ} \rightarrow products$	$(3.8 \pm 1.0) \times 10^9$	FR
$OH \cdot + // \rightarrow products$	$(9.0 \pm 2.2) \times 10^8$	FR
OH · +∕∕oн→ products	$(4.6 \pm 1.2) \times 10^9$	FR
$OH \cdot + \bigwedge ^{OH} \rightarrow \text{products}$	$(5.5 \pm 1.4) \times 10^9$	FR
$OH \cdot + \bigcirc \rightarrow \bigcirc H_2O$	$(3.0 \pm 0.8) \times 10^9$	FR
$OH \cdot + \wedge \wedge \to \text{products}$	$(5.9 \pm 1.5) \times 10^9$	FR
$OH \cdot + {}^{HO} \swarrow {}^{OH} \rightarrow products$	$(4.6 \pm 1.2) \times 10^9$	FR
$OH \cdot + \bigcirc \rightarrow \bigcirc + H_2O$	$(8.8 \pm 2.2) \times 10^9$	FR
$OH \cdot + \bigcirc \rightarrow \bigcirc \bigcirc ^{OH}$	$(5.1 \pm 1.3) \times 10^9$	FR
OH · + O ^{OH} → O ^H	$(1.8 \pm 0.5) \times 10^{10}$	FR

Compilation of k_{aou} can be found in

• Warneck, Phys Chem Chem Phys 1 (1999) 5471-5483: N, S chemistry

• Herrmann, Chem Rev 103 (2003) 4691-4716: N, S, HC_x chemistry

$OH + O \rightarrow products$	$(7.0 \pm 1.8) \times 10^9$	FR	
$OH \cdot + OK_{OH} \rightarrow products$	$(1.1 \pm 0.3) \times 10^{10}$	FR	
$OH + + Of \rightarrow products$	$(1.2 \pm 0.2) \times 10^{10}$	FR	
$OH \cdot + \bigcup_{N \to 0} \text{ products}$	$(4.4 \pm 0.5) \times 10^9$	Steenken and O'Neill [1979]	
$OH \cdot + H_{HN} \xrightarrow{n} products$	$(3.6 \pm 0.9) \times 10^9$	Steenken and O'Neill [1979]	

(Graedel & Weschler, 1981)

[L/M/s]

FR denotes *Farhataziz and Ross* [1977]. Units are $1 \text{ mole}^{-1} \text{ s}^{-1}$ for bimolecular reactions and s^{-1} for unimolecular reactions.

3.3.9 Impacts of atmospheric acidity in ecosystems

TABLE 1. Overview of Simulations, Prescribed Methane Volume Mixing Ratios, and Global Anthropogenic Emissions of CO, NMVOC, NO_x, SO₂, and NH₃^a

simulation	meteorology	description	CH4 [ppb]	CO	NMVOC	NO _x (NO ₂)	SO ₂	\mathbf{NH}_3
S1-B2000	CTM 2000 GCM SSTs 1990s	baseline	1760	977.0	147.1	124.8	111.1	64.8
S2-CLE/CLEc	CTM 2000 GCM SSTs 1990s	IIASA CLE 2030, current legislation scenario	2088	904.1	145.5	141.1	117.6	84.8
S3-MFR	CTM 2000 GCM SSTs 1990s	IIASA MFR 2030, maximum feasible reduction scenario	1760	728.7	104.4	76.0	35.8	84.8
S4-A2	CTM 2000 GCM SSTs 1990s	SRES A2 2030, the most 'pessimistic' IPCC SRES scenario	2163	1268.2	206.7	206.7	202.3	89.2

Impacts of atmospheric acidity: acidification of soils

Deposition of nitrogen and sulphur compounds and their corresponding production of acidity in a nitrogen unsaturated plant-soil-system

REGIONAL AIR POLLUTION INFORMATION AND SIMULATION MODEL

Deposition of acid: Effects in soils

Critical loads concept to protect ecosystems

- Mapping of critical loads "....below which harmful effects in ecosystem structure and function do not occur according to present knowledge"
- which loads of pollutants and combinations thereof will not cause adverse effects, do not exceed ecosystem resilience (*PNEC*) ?
- + Protection of vulnerable areas is possible (protection of 95% of the area is common)
- + Accounts for dynamics (\rightarrow *Sustainability*), mostly however based on steady state-assumption and therefore neglecting the very slow dynamics of the soils
- - Scale problems when matching exposure (deposition model output) and vulnerabilities (mapped ecosystems)
- - normative steps are not transparent

•Integrated Assessment Modelling (IAM) under the auspices of the Convention on Long-range Transboundary Air Pollution (CLRTAP): Study various scenarios comprising emissions and related abatement costs + depositions and related exceedances of thresholds (Alcamo et al., 1987, besides others)