3 Tropospheric chemistry

3.1 Tropospheric ozone and hydrocarbon chemistry Ozone in the Atmosphere

Src: WMO: Scientific Assessment of Ozone Depletion 2006, Geneva 2007

- radiation (visible and UV), O₃, CH₄, CO
- aerosol composition, black carbon
- meteorological parameters.

Ozone climatologies at 9-12 km altitude (Thouret et al., 2006)

Autumn

Winter

Trends of ozone - stratospheric and tropospheric

(WMO, 1998, after Logan & Megretskaia)

http://ozone.unep.org/

Tropospheric ozone trends

Mountain stations

Mace Head, IRL (Derwent, 2004)

Tropospheric ozone: Formation retarded upon precursor emissions Distribution close and far from emissions

(Saxonia state environmental agency, LfUG, 1999)

3.1.2 Ozone formation: Photosmog chemistry

Photosmog chemistry: urban atmosphere

vehicle emissions + $h\nu \rightarrow partly oxygenated HC_x + NO_2$ (CO + NO + HC_x) (carbonyls, ...)

CO does not accumulate - ? no ozone - ?

Tropospheric O₃: Significance

Climate:

• absorption in the atmospheric ,window' region near $\lambda = 9.6$ $\mu m \rightarrow +0.35\pm0.15$ W m⁻² since 1850 Ecotoxicology:

• toxic to plants (uptake through stomatae prevails, radical formation); sensitive crops (potato, wheat, rye, barley) and trees (larch, pine)

• for same dosis damage is highest under peak concentrations, synergistic effects with NO_2 and SO_2

Toxicology:

• concentrations > $120-150\mu g/m^3$ are relevant, at least for sensitive persons. No epidemiological evidences.

• Significant loss of physical performance at higher concentrations, i.e. ca. 400 μ g/m³.

Example critical levels for natural and agroecosystems

Losses of harvested wheat > 5%, if accumulated dose exceeding 40 ppbv > 3000 ppbv h; similar: SOMO35 [ppbv d] – in 2000:

OW OE 30E longitude (deg)

30W

60E

90E

120E

150E

180F

(c)

in 2030 under MFI (Dentener et al., 2006)

TABLE 1. Overview of Simulations, Prescribed Metha NO_x, SO₂, and NH₃^a

simulation	meteorology	
S1-B2000 S2-CLE/CLEc S3-MFR	CTM 2000 GCM SSTs 1990s CTM 2000 GCM SSTs 1990s CTM 2000 GCM SSTs 1990s	baseline IIASA C IIASA N reduc
S4-A2	CTM 2000 GCM SSTs 1990s	SRES A

180W

150W

120W

Ozone formation in synthetic atmosphere

 $NO_x + HC_x + Light \rightarrow partly oxygenated HC_x + O_3$

3.1.2.1 Ozone formation in CO oxidation

Ozone formation in the troposphere (1) Why is CO not accumulating in urban air? →,discovery' of the OH radical

CO volume mixing ratio in the lower troposphere: 100-200 ppbv

(1) $CO + OH \rightarrow CO_2 + H$ Chemical fate of OH globally: 2/3 reacts with CO (2) $H + O_2 \rightarrow HO_2$ Sum (1_2): $CO + O_2 + OH \rightarrow HO_2 + CO_2$

(3) $HO_2 + NO \rightarrow OH + NO_2$ (4) $NO_2 + hv (< 420 \text{ nm}) \rightarrow NO + O$ (5) $O + O_2 + M \rightarrow O_3 + M$ Sum (1-5): $CO + 2 O_2 \rightarrow CO_2 + O_3$

k = 220×10^{-12} cm³/molec/s j $\approx 5 \times 10^{-3}$ /s k⁽¹⁾ $\approx 10^{5}$ /s

(6) $O_3 + NO \rightarrow O_2 + NO_2$ Sum (1-6): $CO + O_2 + NO \rightarrow CO_2 + NO_2$ $k^{(1)} \approx 10^{-2/s}$ Ozone formation in the troposphere Leighton relationship

(4) NO_2 + hv (< 420 nm) \rightarrow NO + O $j_4 \approx 5 \times 10^{-3}/\text{s}$ (5) $\operatorname{O} + \operatorname{O}_2 + \operatorname{M} \rightarrow \operatorname{O}_3 + \operatorname{M}$ $k_5^{(1)} \approx 10^{5}/\text{s}$ (6) $\operatorname{O}_3 + \operatorname{NO} \rightarrow \operatorname{O}_2 + \operatorname{NO}_2$ $k_6^{(2)} \approx 1 \times 10^{-14} \text{ cm}^3/\text{molec/s}$ ozone, titration' by NOx

 $dc_{O3}/dt = 0 = k_2 c_O c_{O2} c_M - k_3 c_{NO} c_{O3}$ hence: $c_{O3} = k_2 c_O c_{O2} c_M / (k_3 c_{NO})$

equilibrium within 2 min quasi-constant ozone level (f(j_{NO2})

 c_{O} available from: $dc_{O}/dt = 0 = j_{1} c_{NO2} - k_{2} c_{O} c_{O2} c_{M}$ (hence: $c_{O} = j_{1} c_{NO2} / (k_{2} c_{O2} c_{M}))$

combined: $c_{O3} = k_2 c_{NO2}^{/(k_3} c_{NO})$ or: $(c_{O3} c_{NO}^{-})/c_{NO2}^{-} = \text{constant}$ holds as long as there are no other O₃ loss reactions than (6)

Ozone formation in the troposphere

Ozone depends on the background level, on NO_x and on the ratio NO_2/NO upon emission:

(4) $NO_2 + hv \rightarrow NO + O$ (5) $O + O_2 + M \rightarrow O_3 + M$

Ozone background at Mace Head, IRL (Derwent, 2004)

[•] Ozone Baseline monthly means • 12-month moving average

3.1.2.2 Ozone formation in aliphatic hydrocarbons oxidation

VOC = volatile organic carbon ($p_{sat} > 10^{-2}$ Pa) (dt: flüchtige Kohlenwasserstoffe) SOC = semivolatile organic carbon ($p_{sat} = 10^{-6}-10^{-2}$ Pa) (dt: mittelflüchtige Kohlenwasserstoffe) NOC = non-volatile organic carbon ($p_{sat} < 10^{-6}$ Pa) (dt: nichtflüchtige Kohlenwasserstoffe) NMVOC = non-methane volatile organic carbon

2 main pathways: CO or VOC oxidation

Ozone formation from *hydrocarbons*, HC_x , and NO_x

(1a) $\operatorname{RCH}_3 + \operatorname{OH} \rightarrow \operatorname{RCH}_2 + \operatorname{H}_2 O$ (1b) $\operatorname{RCH}_2 + O_2 + M \rightarrow \operatorname{RCH}_2 OO + M$ (2) $\operatorname{RCH}_2 OO + NO \rightarrow \operatorname{RCH}_2 O + NO_2$ (3) $\operatorname{RCH}_2 O + O_2 \rightarrow \operatorname{RCHO} + HO_2$

(4) $NO_2 + hv (< 430 \text{ nm}) \rightarrow NO + O$ (source: NO_x) (5) $O + O_2 + M \rightarrow O_3 + M$ Sum (1-5): $RCH_3 + OH + 3 O_2 \rightarrow RCHO + H_2O + HO_2 + O_3$ = catalyzed by NO and light Sum (4-5): $NO_2 + O_2 + hv \rightarrow NO + O_3$

(6) $HO_2 + NO \rightarrow OH + NO_2 = OH recycled$

HC_x: alkanes, example methane

• Although slow, CH_4 is a major chemical sink for OH (globally one third of OH reacts with CH_4)

- The so formed ozone is the major contribution to the background ozone.
- It increases with increasing methane emissions.

Tropospheric ozone formation from CO, CH₄: other products HCHO, H₂O₂, HNO₃ (radical sink reactions)

HC_x: alkanes, example n-butane

 $\begin{array}{ll} (1a) \ \mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{OH} & \rightarrow \mathrm{CH}_3\mathrm{CH}\cdot\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{H}_2\mathrm{O} & \mathrm{yd}=85\% \\ & \mathrm{CH}_3\mathrm{CH}\cdot\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{O}_2 + \mathrm{M} \rightarrow \mathrm{CH}_3\mathrm{CH}(\mathrm{OO}\cdot)\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{M} \\ (2a) \ \mathrm{CH}_3\mathrm{CH}(\mathrm{OO}\cdot)\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{NO} \rightarrow \mathrm{CH}_3\mathrm{CH}(\mathrm{O}\cdot)\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{NO}_2 \\ & (3aa) \ \mathrm{CH}_3\mathrm{CH}(\mathrm{O}\cdot)\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{O}_2 \rightarrow \mathrm{CH}_3\mathrm{C}(\mathrm{O})\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{HO}_2\mathrm{yd}=60\% \\ & (3ab) \ \mathrm{decomposition}: & \rightarrow \mathrm{CH}_3\mathrm{CO} + \cdot\mathrm{CH}_2\mathrm{CH}_3 & \mathrm{yd}=40\% \end{array}$

 $\cdot \mathrm{CH}_{2}\mathrm{CH}_{3} + \mathrm{O}_{2} \rightarrow \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{OO}$

- (4ab) $CH_3CH_2OO + NO \rightarrow CH_3CH_2O + NO_2$
- (5ab) $CH_3CH_2O + O_2 \rightarrow CH_3CHO + HO_2$

Sum: $CH_3CH_2CH_2CH_3 + OH + 2.8 O_2 \rightarrow$

 $0.6 \text{ CH}_3\text{C}(\text{O})\text{CH}_2\text{CH}_3 + 0.8 \text{ CH}_3\text{CHO} + \text{H}_2\text{O} + \text{HO}_2 + 1.4 \text{ NO}_2$

HC_x: alkanes, example n-butane

 $\begin{array}{ll} (1a) \ \mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{OH} & \rightarrow \mathrm{CH}_3\mathrm{CH}\cdot\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{H}_2\mathrm{O} & \mathrm{yd}=85\% \\ & \mathrm{CH}_3\mathrm{CH}\cdot\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{O}_2 + \mathrm{M} \rightarrow \mathrm{CH}_3\mathrm{CH}(\mathrm{OO}\cdot)\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{M} \\ (2a) \ \mathrm{CH}_3\mathrm{CH}(\mathrm{OO}\cdot)\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{NO} \rightarrow \mathrm{CH}_3\mathrm{CH}(\mathrm{O}\cdot)\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{NO}_2 \\ & (3aa) \ \mathrm{CH}_3\mathrm{CH}(\mathrm{O}\cdot)\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{O}_2 \rightarrow \mathrm{CH}_3\mathrm{C}(\mathrm{O})\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{HO}_2\mathrm{yd}=60\% \\ & (3ab) \ \mathrm{decomposition}: & \rightarrow \mathrm{CH}_3\mathrm{CO} + \cdot\mathrm{CH}_2\mathrm{CH}_3 & \mathrm{yd}=40\% \end{array}$

 $\cdot \mathrm{CH}_2\mathrm{CH}_3 + \mathrm{O}_2 \to \mathrm{CH}_3\mathrm{CH}_2\mathrm{OO}$

 $(4ab) CH_{2}CH_{2}OO + NO \rightarrow CH_{2}CH_{2}O + NO_{2}$

 $\begin{array}{ll} (1b) \ \mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{OH} & \rightarrow \mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_3 + \mathrm{H}_2\mathrm{O} \quad \mathrm{yd=15\%} \\ & \quad \mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2 + \mathrm{O}_2 + \mathrm{M} \rightarrow \mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{OO} + \mathrm{M} \\ (2b) \ \mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{OO} + \mathrm{NO} \rightarrow \mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{O} + \mathrm{NO}_2 \\ & \quad (3ba) \ \mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{OO} + \mathrm{O}_2 \rightarrow \mathrm{CH}_3\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_0 + \mathrm{HO}_2 \\ & \quad \mathrm{yd=?} \\ & \quad \mathrm{(3bb) \ isomerization:} \qquad \rightarrow \mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{CH}_2\mathrm{H} + \mathrm{HO} \qquad \mathrm{yd=?} \\ \end{array}$

 $\begin{array}{l} \cdot \mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{O}_{2} \rightarrow \cdot \mathrm{OOCH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH} \\ (4bb) \cdot \mathrm{OOCH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{NO} \rightarrow \cdot \mathrm{OCH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{NO}_{2} \\ (5bb) \cdot \mathrm{OCH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH} + \mathrm{O}_{2} \rightarrow \mathrm{CH}(\mathrm{O})\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{OH} + \overset{\bullet}{\mathrm{HO}}_{2} \\ \mathrm{Sum:} \ \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{3} + \mathrm{OH} + 2.8 \ \mathrm{O}_{2} \rightarrow \\ 0.6 \ \mathrm{CH}_{3}\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{0} + 0.8 \ \mathrm{CH}_{2}(\mathrm{OH})\mathrm{CH}_{2}\mathrm{CH}_{2}\mathrm{CH}_{0} + \mathrm{HO}_{2} + 1.4 \ \mathrm{NO}_{2} \end{array}$

Alkoxy radicals: reactivity overview

	$k^{(1)} (10^3 \text{ s}^{-1})$		
RO•	decomposition	H-abstraction	isomerization
		by O ₂	
CH ₃ CH ₂ CH ₂ CH ₂ O [•]	0.6	200	pprox 0
CH ₃ CH ₂ CH ₂ CHO·CH ₃	17	40	200
CH ₃ CH ₂ CHO [•] (CH ₂) ₂ CH ₃	34	40	200
CH ₃ CHO [•] (CH ₂) ₃ CH ₃	28	40	2000
$CH_3C(CH_3)_2CH_2O$	9.8	24	≈ 80

Nomenclature:

Saturated and unsaturated C chains: alkanes (*dt: Alkane*), alkenes and alkynes (*dt: Alkene, Alkine*) Partly oxygenated hydrocarbons: ROH alcohols (*dt: Alkohole*), carbonyls: RCHO aldehydes (*dt: Aldehyde*) and R_2CO ketones (*dt: Ketone*), RCOOH and R(COOH)₂ monoand dicarboxylic acids (*dt: Mono- und Dicarbonsäuren*) Multifunctional partly oxygenated hydrocarbons: RCHOHCHO α -hydroxyaldehydes, RCHOHCOOH α hydroxyacids, ...

HC_x: alkene OH reaction, example propene

Alkenes are more reactive toward OH than alkanes: $k \le 10^{-10}$ cm³ molec⁻¹ s⁻¹ The higher substituted radical is more stable, hence, formed preferentially: (1a) CH₃CH=CH₂ + OH \rightarrow CH₃CH·CH₂OH addition, yd=66% CH₃CH·CH₂OH + O₂ + M \rightarrow CH₃CH(OO·)CH₂OH + M (2a) CH₃CH(OO·)CH₂OH + NO \rightarrow CH₃CH(O·)CH₂OH + NO₂ (3aa) CH₃CH(O·)CH₂OH + O₂ \rightarrow CH₃C(O)CH₂OH + HO₂ yd=3% (3ab) decomposition: \rightarrow CH₃C·O + ·CH₂OH yd=97% (4ab) ·CH₂OH + O₂ \rightarrow HCHO + HO₂

 $\begin{array}{ll} (1b) \ \mathrm{CH}_3\mathrm{CH}=\mathrm{CH}_2 + \mathrm{OH} & \rightarrow \mathrm{CH}_3\mathrm{CH}(\mathrm{OH})\mathrm{CH}_2 \cdot \ \mathrm{addition, \ yd}=34\% \\ & \mathrm{CH}_3\mathrm{CH}(\mathrm{OH})\mathrm{CH}_2 \cdot + \mathrm{O}_2 + \mathrm{M} \rightarrow \mathrm{CH}_3\mathrm{CH}(\mathrm{OH})\mathrm{CH}_2(\mathrm{OO} \cdot) + \mathrm{M} \\ (2b) \ \mathrm{CH}_3\mathrm{CH}(\mathrm{OH})\mathrm{CH}_2(\mathrm{OO} \cdot) + \mathrm{NO} \rightarrow \mathrm{CH}_3\mathrm{CH}(\mathrm{OH})\mathrm{CH}_2\mathrm{O} \cdot + \mathrm{NO}_2 \\ & (3ba) \ \mathrm{CH}_3\mathrm{CH}(\mathrm{OH})\mathrm{CH}_2\mathrm{O} \cdot + \mathrm{O}_2 \rightarrow \mathrm{CH}_3\mathrm{CH}(\mathrm{OH})\mathrm{CHO} + \mathrm{HO}_2 \ \mathrm{yd}=90\% \\ & (3bb) \ \mathrm{decomposition}: & \rightarrow \mathrm{CH}_3\mathrm{CH}(\mathrm{OH}) \cdot + \mathrm{HCHO} \quad \mathrm{yd}=10\% \\ & (4bb) \ \mathrm{CH}_3\mathrm{CH}(\mathrm{OH}) \cdot + \mathrm{O}_2 & \rightarrow \mathrm{CH}_3\mathrm{CHO} + \mathrm{HO}_2 \end{array}$

Sum: $CH_3CH=CH_2 + OH + 2.8 O_2 \rightarrow 0.02 CH_3C(O)CH_2OH + 0.65 HCHO + 0.3 CH_3CH(OH)CHO + 0.03 CH_3CHO + H_2O + HO_2 + NO_2$

HC_x: alkene OH reaction

• Most alkenes react with OH <u>addition</u> to the double bond (positive p dependence of k_{OH}); only for the small alkenes the addition complex does not react further.

- H <u>abstraction</u> is more likely for large and branched alkenes.
- After the O₂ addition step (\rightarrow ROO·), decomposition is the most probable path for \leq C₄ while isomerization dominates for > C₄

(yields 0.04 for C_4 but 0.6 for C_8 ; Kwok et al., 1996)

HC_x: alkene OH reaction

```
Example isoprene (= 2-methylbutadiene):
                                                                                                    66%
                                                 1 or 2 addition
(1a) CH_2 = C(CH_3)CH = CH_2 + OH \rightarrow HOCH_2C(CH_3)CH = CH_2
                                                             \cdot CH_2C(OH)(CH_3)C=CH_2
                                                   \rightarrow
                                                   + O_{2} + NO
                                                    \rightarrow \rightarrow \rightarrow
                                                    \rightarrow HCHO + CH<sub>3</sub>COCH=CH<sub>2</sub> yd \approx 30%
(4aa) decomposition:
                                                                          methyl vinyl ketone
                                                    \rightarrow HC(O)C(CH<sub>3</sub>)CH=CHOH yd \approx 5%
(4ab) isomerization:
                                                        γ-hydroxy-(2-methyl)butenal
                                                 3 or 4 addition
                                                                                                    34 %
(1b) CH_2 = C(CH_3)CH = CH_2 + OH
                                                   \rightarrow CH<sub>2</sub>=C(CH<sub>3</sub>)CH·CH<sub>2</sub>OH
                                                                                                      H_3C
                                                                                                                    OH
                                                   \rightarrow CH<sub>2</sub>=C(CH<sub>3</sub>)CHOHCH<sub>2</sub>·
                                                   + O_{2} + NO
                                                                                                      H<sub>2</sub>Ć
                                                    \rightarrow \rightarrow \rightarrow
                                                    \rightarrow HCHO + CH<sub>2</sub>=C(CH<sub>3</sub>)CHO yd \approx 20\%
(4ba) decomposition:
                                                                            methacrolein
                                                                                                   yd < 5\%
(4bb) 5-ring closure:
                                                    \rightarrow (C<sub>4</sub>H<sub>3</sub>O)(CH<sub>3</sub>)
                                                        3-methylfuran
```

HC_x: OH reactivity, products overview

HC _x	k _{OH}	oxygenated	No. of	NO conv	verted
	10^{-12}cm^3	intermediates	initial	from	total
	molec ⁻¹ s ⁻¹	formed		carbon	yls
	(298 K)				
Alkanes:					
CH ₄	0.006	НСНО	1	≈0.8	≈1.8
CH ₃ CH ₃	0.25	CH ₃ CHO	2	4	6
CH ₃ CH ₂ CH ₃	1.1	HCHO, CH ₃ CHO, CH ₃ COCH ₃	3	5	8
CH ₃ CH ₂ CH ₂ CH ₃	2.4	2 CH ₃ CHO	3	8	11
CH ₃ CH(CH ₃)CH	3 2.2	HCHO, CH ₃ COCH ₃	3	5	8
$CH_3(CH_2)_3CH_3$	4.0	HCHO, CH ₃ CHO, CH ₃ CH ₂ CHO,			
		CH ₃ (CH ₂) ₂ CHO	3	11	14
Alkenes:					
CH ₂ =CH ₂	8.5	2 HCHO	2	2	4
CH ₂ =CHCH ₃	26	HCHO, CH ₃ CHO	2	5	7
CH ₂ =CHCH ₂ CH ₃	3 31	HCHO, CH ₃ CH ₂ CHO	2	8	10
cis-CH ₃ CHCHCH	I ₃ 56	2 CH ₃ CHO	2	8	10
trans-CH ₃ CHCHC	CH ₃ 64	2 CH ₃ CHO	2	8	10
CH ₂ =C(CH ₃)CH ₃	₃ 51	HCHO, CH ₃ COCH ₃	2	5	7

Alkanes, alkenes (pptv) at the ground, monitoring and campaign data

	C_2H_4	C_3H_6	$\mathrm{C}_{2}\mathrm{H}_{6}$	$\mathrm{C}_{3}\mathrm{H}_{8}$	$\mathrm{C_4H_{10}}$	$\mathrm{C}_{5}\mathrm{H}_{12}$	$C_4 + C_5$	C_6	Ref.
			Averages	for JJA. Sur	face Station	5		2	0.4.000
Kejimkujik ^a	160-190	70.90	1080	243	153	170	323	200	1
Lac la Flammeª	120 - 210	50-60	1030	140	60	73	133	150	1
Egbert ^a	170-300	50-70	1130	300	233	217	450	200	1
Saturna ^a	220-260	60	970	310	273	233	406	170	1
Fraserdale ^a	ND	ND	820	78	22	8		ND	2
Rorvik, Sweden	213	34	817	215	381	243	624	ND	3
Harvard Forest ^b	485/179	119/55	1537/959	663/265	419/116	533/153	952/269	107/40	4
			Average	es for JJA, A	ircraft Data				
ABLE-3A	\overline{ND}	ND	820	49	8 (n-C4)		2		5
ABLE-3B ^c	78/51	21/10	853/703	92/79			49/35	LOD/LOD	6
PEM-A ^d	64/89	17/21	1021/1601	153/540	88	33	124/487	7(n-C6)	7
PEM-A ^e	29/30	14/8	632/1019	57/154	20	13	34/101	LOD	7
			Selected for	Northern M	dlatitudes, .	IJA			
	160	60	1000	250			300	40	
			Averages	for DJF, Sui	face Station	1.5			
Kejimkujik ^a	300-530	60 - 170	2230	1350	1040	523	1560	340	1
Lac la Flamme ^a	300	30-60	2370	1310	930	450	1380	280	1
Egbertª	460 - 1230	60160	3130	2080	1790	840	2630	370	1
Saturna ^a	1000	60 - 210	2130	1160	1730	790	2520	42	Ł
Fraserdale ^a	ND	ND	2450	1140	930	490		ND	2
Rorvik, Sweden	995	172	2620	1316	1360	942	2310	ND	3
Harvard Forest ^b	1112/402	181/45	3420/2290	1980/1170	1510/734	849/405	2358/1139	192/95	4
Atlantic			2200	850	600	320	920	100	8
								(nC6+C7)	
$PEM-B^{f}$	86/90	.1	7/7	2258/2283	877/900	34	553/580	37/40	9
	2022		Selected for	Northern M	dlatitudes, .	DJF			
	400	45	2200	1150	1150	100			

Table 2. Data for Alkenes and Alkanes at Northern Midlatitudes

For PEM-West A and B, the first number shows the median of all measurements below 1 km for the selected region, and the second number shows the median for $C_2 > 750$ pptv (PEM-A) and for $C_2H_6 > 1000$ pptv (PEM-B). ND, no data. LOD, below detection limit. JJA, June, July, August; DJF, December, January, February. References are 1, Bottenheim and Shepherd [1995]; 2, Jobson et al. [1994]; 3, Lindskog and Moldanova, [1994]; 4, Goldstein et al. [1995b]; 5, Blake et al. [1992]; 6, Blake et al. [1994]; 7, Blake et al. [1996b]; 8, Penkett et al. [1993]; 9, Blake et al. [1997]. Concentrations of hydrocarbons are in pptv.

(Spivakovsky et al., 2000)

Further chemical fate of HC_x: aldehydes degradation, example CH₃CHO

Aldehydes are more reactive towards OH than alkanes (1) $CH_3CHO + OH \rightarrow CH_3CO + H_2O = 16x10^{-12} cm^3molec^{-1}s^{-1}$ $CH_3CO + O_2 + M \rightarrow CH_3C(O)OO + M$ (2) $CH_3C(O)OO + NO \rightarrow [CH_3C(O)O + M]$ (3) $CH_3 + O_2 \rightarrow CH_3OO + O_2$ (4) $CH_3OO + NO \rightarrow CH_3OO + NO_2$ (5) $CH_3O + O_2 = [\alpha-hydroxyl radical \cdot CH_2OH?] \rightarrow HCHO + HO_2$ (6) $HO_2 + NO \rightarrow OH + NO_2$

Sum: $CH_3CHO + 3 NO + 3 O_2 \rightarrow HCHO + 3 NO_2 + CO_2 + H_2O$ OH is regenerated

 $3 O_3$ are formed

General (5) $\text{RCH}_2\text{O} + \text{O}_2 \rightarrow \text{RCHO} + \text{HO}_2$

Time scale: 1 sunny day is not long enough for all aldehydes to react \rightarrow Most of the ozone is formed the following day Further oxygenation lowers the partial pressure such that condensable products are formed \rightarrow reduced ozone yield

Photolysis of aldehydes and ketones

Aldehydes and ketones may undergo photolysis

 $CH_3CHO + hv (\leq 340 \text{ nm}) \rightarrow CH_3 + HCO$

 $CH_3C(O)CH_3 + hv (\leq 330 \text{ nm}) \rightarrow CH_3 + CH_3CO$

(Martinez et al., 1992)

OH reactions of other oxygenated HC_x

Alcohols, example ethanol (3 options, 1a-c): The alkyl hydrogen is predominantly abstracted: (1a) $CH_3CH_2OH + OH$ $\rightarrow CH_3CH \cdot OH + H_2O$ 90% (1b) $\rightarrow CH_3CH_2O \cdot + H_2O$ 5% (1c) $\rightarrow \cdot CH_2CH_2OH + H_2O$ 5% $k=3.2x10^{-12} \text{ cm}^3\text{molec}^{-1}\text{s}^{-1}$

Chain termination (and propagation)

Fate of ROO[•] (5 options, 3a-e) (3a) ROO[•] + HO₂ \rightarrow ROOH + O₂ (3b) \rightarrow ROH + O₃ (3c) \rightarrow RO[•] + OH + O₂ (3d) \rightarrow R[•]CHO + H₂O + O₂ (3e) + ROO[•] \rightarrow various classes of compounds Radicals can be recycled via (3c). This channel is significant for R[•]s containing a carbonyl group in α or β position. This OH source may be significant for low NO_x conditions or aged air masses (high carbonyl fractions).

Branching yields (%) ROO [•]	3a	3b	3c	3d	
CH ₃ CH ₂ OO•	> 0.93	0	0	0	
$CH_{3}C(O)OO$	0.4	0.2	0.4	0	\rightarrow high OH yield
$CH_3C(O)CH_2OO$	0.33	0	0.67	0	\rightarrow high OH yield

(Hasson et al., 2004)

 HC_x , oxygenated, halogenated HC_x , and hetero atom organics OH reactivity overview

$$-\frac{dc_{x}}{dt} = k_{OH} c_{OH} c_{X} = \frac{c_{X}}{\tau}$$

Chemical residence time of organic substances in the atmosphere

3.1.2.3 Ozone formation in aromatic hydrocarbons oxidation

HC_x: Aromatics OH initiated chemistry

- Aromatic hydrocarbons have anthropogenic sources
- they contribute 20-30% to total NMVOC in urban air
- degradation: \rightarrow oxygenated C₄ (e.g. *cis/trans*-HOOCCH=CHCOOH) and C₂ products (e.g. HOOCCOOH)
- high ozone formation potential incompletely understood

Nomenclature: Aromatic hydrocarbons (dt: aromatische Kohlenwasserstoffe): benzene $C_6H_6 = \phi H (dt.: Benzol)$ Substituted: toluene ϕCH_3 (*dt.: Toluol*), *o-, m-, p-*xylene (*dt.: Xylol*) ϕ (CH₃)₂, phenol ϕ OH (*dt.: Phenol*), ... Hetero atom aromatic hydrocarbons: furan C₄H₄O, pyridin $C_5H_5N...$ Polycyclic aromatic hydrocarbons (PAH) (dt: mehrkernige oder polyzyklische aromatische Kohlenwasserstoffe): naphthalene (dt.: Naphthalin), ...

HC_x: Aromatics OH initiated chemistry, example toluene

Compilations of organic species' chemical kinetics: Atkinson et al., J. Phys. Chem. Ref. Data 28 (1999) 191-393 ,Master chemical mechanism' Jenkin et al., Atmos. Chem. Phys. 3 (2003) 161-193

6

 H_3C_{5}

(FZJ-ICG3, 1998; Brune et al., 2000)

Characterisation of VOCs according to their POCP photochemical ozone creation potential: POCP : = $\Delta m_{O3} / \Delta F_{VOCi}$ under defined conditions (ozone formation during several days, NO_x poor) (Carter, 1994; EK, 1994)

	POCP
C_2H_4	100
CH ₄	0.7
C_6H_6	18.9
CH ₃ OH	12.3
HCHO	42.1

Radical distributions – spatial: OH

Fig. 1. Annual mean OH concentrations near the earth's surface, calculated with a chemistry-transport model (Lelieveld et al., 2002). The units are 10^6 radicals/cm³. These results refer to OH in the

Common acronyms for hydrogen compounds:

l et al., 2003)

where mean OH con-

 $HO_x = HO + HO_2 + H \cdot + CH_3O \cdot + CH_3OO \cdot + HOCH_2OO \cdot$

 $Odd-H = HO_x + 2 H_2O_2 + 2 CH_3OOH + HNO_2 + HNO_4$

Radical distributions - temporal

Berlin, Germany, 20.-21.7.98

(Barnes et al., 2007)

Measuring c_{HCx} decay: Indirect determination of c_{OH}

Geroldsta

Oberried

NNS.					
thore Ra	Species	Detect. limit	Time resol.	Schauinsland	Mobile laboratory
100 Nor	C ₂ –C ₆ NMHC C ₅ –C ₈ No NO $_x$ NO $_y$	4-30 ppt 4 ppt <50 ppt <70 ppt <50 ppt	3 h 30 min 1 min	GC/FID; cryo sampling GC/FID; absorption tubes CL PLC/CL AuC/CL	not measured GC/FID; absorption tubes CL PLC/CL AuC/CL
100	O3	2 ppb	1 min	UV-absorption	UV-absorption
2	CO	5 ppb	10 min	GC/HgO	Not measured
1 fe	Peroxides	50 ppt	1 min	ECF	Not measured
Inte	PAN	50 ppt	10 min	GC/LM3	Not measured
Kin	HCHO		1 min	ECF ^a	Not measured
amuhk	HO2 and RO2	5 ppt	30 min	MIESR	Not measured
2.5	$J_{\rm NO_2}$	10^{-4} s^{-1}	1 min	4π sr filterradiometer	4π sr filterradiometer
	TT, TD, ff, dd		1 min	Standard equipment	Standard equipment
And the second s					

GC: Gas chromatography; FID: Flame ionization detector; CL: Chemiluminescence; PLC: Photolytic converter; AuC: Gold converter; ECF: Enzyme catalysed fluorescence; LM3: CL with luminol; MIESR: Matrix Isolation ESR-Spectroscopy (only during selected periods). area * Frauhofer Inst. f. Atmosph. Umweltforschung, Garmisch-Parentkirchen (Slemr et al., 1996).

$$-\frac{\mathrm{d}[\mathrm{RH}_i]}{\mathrm{d}t} = [\mathrm{RH}_i] \cdot [\mathrm{OH}] \cdot k_i$$
$$\mathrm{n}\left(\frac{[\mathrm{RH}_i]_{t_2}}{[\mathrm{RH}_i]_{t_1}}\right) = -k_i[\overline{\mathrm{OH}}]\Delta t$$

Figure 3. Diurnal variation of hydrocarbons, NO_x , O_3 , O_x , wind direction and J_{NO_2} on 17 Sept. 1992. *Left:* Kappel; *Right:* Schauinsland.

without reaction: $[\mathbf{RH}_i]_{t2} = [\mathbf{RH}_i]_{t1} e^{-k} D^t$ $\mathbf{ln}([\mathbf{RH}_i]_{t1}/[\mathbf{RH}_i]_{t2}) = \mathbf{k}_D t$

After integration over the travel time between the two measurement sites, $\Delta t = t_1 - t_2$, and with the averages $[O\overline{H}] = \int_{\Delta t} [OH] dt / \Delta t$ and $\overline{k}_D = \int_{\Delta t} k_D dt / \Delta t$, we obtain with the above assumptions

$$\ln([\mathbf{RH}_i]_{t1}/[\mathbf{RH}_i]_{t2}) = [\mathbf{O}\overline{\mathbf{H}}]k_i\Delta t \neq \overline{k}_D\Delta t$$

(Kramp & Volz-Thomas, 1995)

REIBURG

ITTENWEILER

KAPPEL

Mobile Lab

TOR-11

Radical distributions – spatial, temporal trend: OH

• Because of increased short-wave light intensity (actinic flux): Mid latitudes NH: +1.5%/a at 300 nm, +0.8%/a at 305 nm (1997 vs. 1989, observations at ground), stronger effects in the SH (observations from satellite only) at 40° some 20%, at 60° some 100% higher.

• 1994 vs. 1979 2D model results (Granier, 2003):

Fig. 3. Model calculated annual OH formation rates (Tmol/year) through the main chemical pathways, based on present-day and pre-industrial emissions of natural and anthropogenic origin.

(Lelieveld et al., 2002)

(4) $RCH_2OOH + O_2 + h\nu \rightarrow OH + HO_2 + RCHO$

(Instead of: $RCH_2OO + NO \rightarrow RCH_2O + NO_2$)

(1-2) $\operatorname{RCH}_3 \rightarrow \operatorname{RCH}_2\operatorname{OO}^{\cdot}$ (3) $\operatorname{RCH}_2\operatorname{OO}^{\cdot} + \operatorname{HO}_2^{\cdot} \rightarrow \operatorname{RCH}_2\operatorname{OOH}^{\cdot} + \operatorname{O}_2$

(Vaghjiani & Ravishankara, 1989)

(1) $H_2O_2 + h\nu \rightarrow 2 OH^{-1}$

3.1.3.2 Radical source peroxides

HC_x: Peroxides formation and reactions between peroxides

(1a) RCI	$H_2CH_2CH_3 + OH \rightarrow RCH_2CH \cdot CH_2CH_3 + H_2O$
RCH	$H_2CH \cdot CH_2CH_3 + O_2 + M \rightarrow RCH_2CH(OO \cdot)CH_2CH_3 + M$
(2aa) <mark>RC</mark>	$CH_2CH(OO)CH_2CH_3 + NO \rightarrow RCH_2CH(O)CH_2CH_3 + NO_2$
(2ab)	$+ \text{NO} \rightarrow \text{RCH}_2\text{CH}(\text{ONO}_2)\text{CH}_2\text{CH}_3$
(2ba)	$+ HO_2 \rightarrow RCH_2CH(OOH)C_H_3H_2CH_3 + O_2$ major
(2bb)	$+ HO_2 \rightarrow R + H_2O + O_2$
(2c)	$+ \operatorname{R'O}_2 \rightarrow [\operatorname{RCH}_2\operatorname{CH}^{\circ}(\operatorname{OOOR}^{\circ})\operatorname{CH}_2\operatorname{CH}_3] \rightarrow$
(3ca)	\rightarrow RCH ₂ CH(O·)CH ₂ CH ₃ + R·O· + O ₂ $\rightarrow \rightarrow \rightarrow$
(3cb)	\rightarrow RCH ₂ CH(OH)CH ₂ CH ₃ + R'CHO +O ₂
(3cc)	\rightarrow RCH ₂ CH(OOR')CH ₂ CH ₃ +O ₂
D	1

K	K _{3c}	$K_{3ca}/(K_{3ca}+K_{3cb}+K_{3cc})$	$K_{3cb}/(K_{3ca}+K_{3cb}+K_{3cc})$	$K_{3cc} / (K_{3ca} + K_{3cb} + K_{3cc})$
	10^{-12}cm^3	molec ⁻¹ s ⁻¹ (T = 298 K		
CH ₃	0.37	0.33	0.67	≈0.0
CH ₂ CH ₃	0.06	0.63	0.32	≈0.05
$CH_2(CH_3)_2$	0.001	0.56	0.44	≈0.0

3.1.3.3 Radical source aldehydes

TABLE 4.25	Recommended Quantum	Yields
for	Photolysis of HCHO ^a	

(1a)	$HCHO + hy (\lambda < 360 nm) \rightarrow CO + H_{\star}$	Wavelength (nm)	H + HCO	H ₂ + CO
$(1\mathbf{a})$	110110 + 110 (7.25001111) 7.00 + 112		0.07	0.40
(1h)	\perp by \wedge CU(1 + 1) \times 200/	240	0.27	0.49
(10)	$+ \Pi V \rightarrow C\Pi O + \Pi yd(\Pi O + \Pi C) \approx 80\%$	250	0.29	0.49
		200	0.30	0.49
	$H^{\bullet} + ()_{2} + M \rightarrow H()_{2}^{\bullet} + M$	270	0.57	0.43
		200	0.73	0.52
$(1 \circ)$	$U \cap U \cap \bot \cap U$, $\setminus \cap U \cap \bot U$.	300	0.78	0.24
(10)	$\Pi \cup \Pi \cup \top \cup \Pi \rightarrow \cup \Pi \cup \top \neg \Pi$	301.25	0.749	0.251
		303.75	0.753	0.247
(2c)	$H(C() + ()_{2} \rightarrow H()_{2} + C()$	306.25	0.753	0.247
$(-\mathbf{v})$		308.75	0.748	0.252
		311.25	0.739	0.261
	10	313.75	0.724	0.276
		316.25	0.684	0.316
	(i)	318.75	0.623	0.368
	g 8 -	321.25	0.559	0.423
		323.75	0.492	0.480
		326.25	0.420	0.550
		328.75	0.343	0.634
		331.25	0.259	0.697
	ë la	333.75	0.168	0.739
		336.25	0.093	0.728
		338.75	0.033	0.667
	<u>e</u>	341.25	0.003	0.602
		343.75	0.001	0.535
		346.25	0	0.469
		348.75	0	0.405
		351.25	0	0.337
		353.75	0	0.265
	²⁴⁰ 260 280 300 320 340 360 (Rogers, 1990)	356.25	0	0.197
	λ (nm)	^a IUPAC recor	nmendations from	240 to 300

^a IUPAC recommendations from 240 to 300 nm (Atkinson *et al.*, 1997a) and NASA recommendations from 301 to 356 nm (DeMore *et al.*, 1997), where the latter are for 2.5 nm intervals centered on the indicated wavelength based on Horowitz and Calvert, *Int. J. Chem. Kinet.*, 10, 805 (1978); Moortgat and Warneck, *J. Chem. Phys.*, 70, 3639 (1979); and Moortgat *et al.*, *ibid.*, 78, 1185 (1983).

3.1.3.4 Radical source NO₂

(1)
$$NO_2 + h\nu (\lambda > 420nm) \rightarrow NO_2^*$$

(2a) $NO_2^* + M \rightarrow NO_2 + M$
(2b) $NO_2^* + H_2O \rightarrow HNO_2 + OH^*$
nitrous acid $k_{2b}/k_{2a} \approx 10^{-4}$
 $k_{2b}=0.17 \times 10^{-12} \text{ cm}^3/\text{molec/s}$ (Li et al., 2008)

However:

• Leads to overestimates of ozone production in urban areas

(Wennberg & Dabdub, 2008)

• Is k_{2b} a factor of 10 lower ?

(Crowley & Carl, 1997)

3.1.3.5 Radical source nitrous acid

 $HNO_2 + h\nu \rightarrow OH + NO \rightarrow 2.2$

3.1.4 Sinks of tropospheric ozone 3.1.4.1 Hydrocarbon and CO chemistry in the absence of NO_x

Degradation of RH in NO-poor areas

```
(1) \operatorname{RCH}_3 + \operatorname{OH} \rightarrow \operatorname{RCH}_2 + \operatorname{H}_2 O

(2) \operatorname{RCH}_2 + O_2 + M \rightarrow \operatorname{RCH}_2 OO + M

(3a) \operatorname{NO}_2 + \operatorname{hv} \rightarrow \operatorname{NO} + O

(4a) O + O_2 + M \rightarrow O_3 + M

(3b) \operatorname{RCH}_2 OO + \operatorname{NO} + O_3 \rightarrow \operatorname{RCH}_2 O + 2 O_2

(4b) \operatorname{RCH}_2 O + O_2 \rightarrow \operatorname{RCHO} + \operatorname{HO}_2
```

Sum (1-4): $RCH_3 + OH + O_3 \rightarrow RCHO + H_2O + HO_2$.

 \rightarrow Ozone loss. The threshold NO level for formation vs. loss is 5-10 pptv near the ground and ≈ 20 pptv near the tropopause

Degradation of methane in NO-poor areas

(1) $CH_4 + OH \cdot \rightarrow CH_3 \cdot + H_2O$ (2) $CH_3 + O_2 + M \rightarrow CH_3OO + M$ (3) $CH_3OO + HO_2 \rightarrow CH_3OOH + O_2$ (4a) $CH_3OOH + hv (< 330nm) \rightarrow CH_3O + OH$ (5) $CH_3O + O_2 \rightarrow HCHO + HO_2$ Sum (1-5): $CH_4 + O_2 \rightarrow HCHO + H_2O$ (4b) $CH_3OOH + OH \rightarrow HCHO + H_2O + OH \rightarrow HCHO + HCHO + HCHO + HCHO + HCHO + HCHO + OH \rightarrow HCHO + HCHO + HCHO + OH \rightarrow HCHO + HCHO +$ Sum (1-4b): $CH_4 + OH + HO_2 \rightarrow HCHO + 2 H_2O$ \rightarrow neutral with regard to ozone

Much of the CH_3OOH is washed out ($\tau \approx week$) \rightarrow no oxidation to HCHO and CO, radical sink: Sum (1-3): $CH_4 + OH + HO_2 \rightarrow CH_3OOH + H_2O$

Degradation of CO in NO-poor areas

(1) CO + OH· (2) $H + O_2 + M$ (3a) $HO_2 + O_3$ Sum (1-3a): $CO + O_3 \rightarrow CO_2 + O_2$

(3b) $HO_2 + HO_2 \rightarrow H_2O_2 + O_2$ Sum (1-3b): $CO + OH + HO_2 \rightarrow CO_2 + H_2O_2$

Tropospheric Ozone, HO_x, NO_x

Ozone depletion!

Distributions of NO_x (pptv) @ 510 and 970 hPa, monthly mean

(Model results MOZART2; Horowitz et al., 2003)

NO_x distribution: NO_x-poor ?

(Ridley, 1991)

 \rightarrow Most regions of the planetary boundary layer are above the NO_x threshold.

Global sources for N oxides, NO_x

Sum

3.1.4.2 Ozone as o	xidizer				
3.1.4.2.1 Alkene of	zonations	exam	ple pro	opene	
Alkenes react readily with	a ozone: $k \le 1$	0^{-10} cm^3	³ molec	⁻¹ s ⁻¹	
(1) $CH_3CH=CH_2+O_3$	\rightarrow [primary	ozonide	e]		
(2a) [primary ozonide]	\rightarrow CH ₃ CH(OO·)CH	2 <mark>0</mark> ∙	55%	Ч ₃ С О О
(3a) decomposition:	\rightarrow CH ₃ CHC	OO + HO	CHO		
(4a) 3-ring closure:	\rightarrow [CH ₃ (CH	IOO)]			
(5a) decomposition:	\rightarrow H ₃ CC·O	+ OH·		major	
(6a) $H_3CC \cdot O + O_2$	\rightarrow H ₃ CC(O))OO·			0~
(7a) H ₃ CC(O)OO· + NO	\rightarrow H ₃ C·+ C	$O_2 + NC$	\mathbf{D}_2		
$CH_3 + O_2 + M$	$\rightarrow CH_3OO^{\cdot}$	+ M			
(8a) $CH_3OO + NO$	\rightarrow CH ₃ O·+	NO ₂			
(2b) [primary ozonide]	$\rightarrow CH_3CH_3$	I(O·)CH	200·	45%	
(3b) decomposition:	$\rightarrow CH_3CH$	$O + \cdot CH$	H ₂ COO		
(4b) 3-ring closure:	\rightarrow [(CH ₂ C	O)]			
(5ba) decomposition:	\rightarrow H ₂ + C	O_2			
(5bb) decomposition:	\rightarrow H ₂ O +	CO			
(5bc) decomposition:	$\rightarrow OH + I$	HC·O	major		
(6bc) HC·O + O_2	\rightarrow CO + H	IO ₂ ·			
Sum: $CH_3CH=CH_2 + O_3$	$_{3} + O_{2} \rightarrow CH_{3}$	CHO +	$\mathrm{CO} + \mathrm{O}$	$OH \cdot + HC$	D_2 ·
				so far	$1 O_3$ consumed

3.1.4.2.2 Halogen oxidation

over a Br-rich area, the Dead Sea, June 1997 (Luria et al., 1998; Hebestreit et al., 1999)

Sum:

Chemistry of ground-level ozone in polar regions

• Ozone depletion events, 1-7 days, occur coinciding with elevated levels of filterable Br (Oltmans et al., 1981; Barrie et al., 1988)

- Obviously, O_3 is catalytically destroyed. Elevated BrO during months in the boundary layer of the winter polar regions are regularly observed (from satellite; van Rozendael et al., 1999)
- Parallelly: Hg(g) disappears, although its lifetime should be 6-24 months (,Hg depletion events'; Schroeder et al., 1998)

Stratosphere: The sink reaction $O + O_3 \rightarrow 2 O_2$ can be catalyzed:

 $X + O_3 \rightarrow XO + O_2$ $XO + O \rightarrow X + O_2$ Sum: $O_3 + O \rightarrow 2 O_2$ X = Cl, Br (anthropogenic),X = OH, NO (natural) *

Chemistry of ground-level ozone in polar regions (2)

```
(1a) HOBr + Br<sup>-</sup> + H<sup>+</sup> \rightarrow Br<sub>2</sub> + H<sub>2</sub>O
(2) Br_2 + hv \rightarrow 2 Br
(3) Br· + O_3 \rightarrow BrO· + O_2
(4a) BrO· + HO<sub>2</sub>· \rightarrow HOBr + O<sub>2</sub>
Sum:
(1-4) H<sup>+</sup> + Br<sup>-</sup> + HO<sub>2</sub>· + O<sub>3</sub> \rightarrow Br· + H<sub>2</sub>O + 2 O<sub>2</sub>
(1ba) HOBr + Cl<sup>-</sup> + H<sup>+</sup> \rightarrow H<sub>2</sub>O + BrCl
(1bb) BrCl + Br \rightarrow Br_2Cl^2
(1bc) Br_2Cl^2 \rightarrow Br_2 + Cl^2
Sum:
(1b = 1a) HOBr + Br + H^+ \rightarrow Br_2 + H_2O
(4ba) 2 BrO· \rightarrow 2 Br· + O<sub>2</sub>
(4bb) \longrightarrow Br_2 + O_2
(4c) BrO· + XO· \rightarrow XBr + O<sub>2</sub>
```

• Exponential growth of BrO (,Br explosion')

• source of Br⁻ is seasalt, solid or aqueous (brine)

Chemistry of ground-level ozone in polar regions (3)

Br \cdot formed upon photolysis reactions: (1) BrO \cdot + hv \rightarrow Br \cdot + O (2) Br₂ + hv \rightarrow 2 Br \cdot (3) BrI + hv \rightarrow Br \cdot + I \cdot

- XO (X=Cl,Br,I) cross reactions (4c) are faster than (4a) $BrO+HO_2$, but much less significant. IO was recently observed, however.
- It is not clear how sea salt ions reach the snow surfaces (sea spray, upward migration from sea ice, or from frost flowers)

Destruction of ozone on surfaces

 \rightarrow 4. *Budgets/4.3.2 Dry deposition*