2 Stratospheric ozone chemistry2.1 Chapman's reactions

Chapman 1930

• Localized ozone layer too high in agreement with wrong measurements based, in turn, on wrong optical properties: ozone formation < 200 nm ignored

• Failed to recognize all sinks

2.2 Homogeneous catalysis of the ozone sink reaction

The sink reaction $O + O_3 \rightarrow 2 O_2$ can be catalyzed: $X + O_3 \rightarrow XO + O_2$ $XO + O \rightarrow X + O_2$ Sum: $O_3 + O \rightarrow 2 O_2$ X = Cl, Br (anthropogenic),X = OH, NO (natural) *

- This results in an other steady-state concentration and vertical profile
- vertical distribution of sinks (1D model results):

* NO, like NO_2 , because not really short-lived is usually not called a radical, although the electron shell contains an unpaired electron

2.2.1 Homogeneous catalysis of the ozone sink reaction: OH

Catalyzed sink reaction

$$O + O_3 \rightarrow 2 O_2$$

example X=OH
 $OH + O_3 \rightarrow HO_2 + O_2$
 $HO_2 + O \rightarrow OH + O_2$
Sum:
 $O_3 + O \rightarrow 2 O_2$

OH source reactions:
(3a)
$$N_2O + h\nu \rightarrow N_2 + O(^1D)$$

 $O(^1D) + H_2O \rightarrow 2 OH$
(5) $H_2O_2 + h\nu \rightarrow 2 OH$

2.2.2 Homogeneous catalysis of the ozone sink reaction: Cl, Br

Catalyzed sink reaction

$$O + O_3 \rightarrow 2 O_2$$

example X=Cl:
 $Cl + O_3 \rightarrow ClO + O_2$
 $ClO + O \rightarrow Cl + O_2$
 $example X=Br$:
 $Br + O_3 \rightarrow BrO + O_2$
 $BrO + O \rightarrow Br + O_2$

Deactivation reactions (sinks of effective radicals)

Formation of temporary reservoir substances

X=Cl:
Cl + CH₄
$$\rightarrow$$
 HCl + CH₃ (fast)
CH₃ + O₂ \rightarrow CH₃OOFate of X reservoirsClO + NO₂ + M \rightarrow ClONO₂ + M (major)
 $c_{ClO} \sim c_{NO2}^{-1}$ HCl + OH \rightarrow Cl + H₂O (slow)
ClONO₂ + hv \rightarrow ClO + NO₂X=Br:
Br + CH₄ \rightarrow HBr + CH₃ (slow
Br + HO₂ \rightarrow HBr + O₂HBr + hv \rightarrow Br + H (faster)
BrONO₂ + hv \rightarrow BrO + NO₂ (faster)BrO + NO₂ + M \rightarrow BrONO₂ + M ($c_{Br}/c_{Br-Res} > c_{Cl}/c_{Cl-Res}$
 $\tau_{Br} > \tau_{Cl}$

Further deactivation reaction ?

Formation of temporary reservoir substances

Some rates and quantum yields involved are unknown \rightarrow not totally clear **Uncertainties remain**

Fate of ClO (2): Reaction with itself The Cl catalyzed sink reaction in the absence of O atoms (i.e. efficient ozone destruction) is even accelerated: (1) $Cl + O_3 \rightarrow ClO + O_2$

(2) $ClO + O \not\rightarrow Cl + O_2$ (3) $2 ClO + M \rightarrow ClOOCl + M$

chlorine peroxide (or ,ClO dimer')

```
(4a) ClOOCl + hv \rightarrow Cl + ClOO
(5) ClOO + M \rightarrow Cl + O_2 + M
2 (1) Cl + O_3 \rightarrow ClO + O_2
Sum (4a+5+2*1):
2 O_3 \rightarrow 3 O_2
```


450 nm because of excitatic

Figure 10. Partial photolysis rates of ClOOC1 in the atmosphere calculated for different cross sections. Conditions: altitude 20 km; solar zenith angle 86°; O₃ concentrations and temperature values measured in the polar vortex for March 2000.46 Cross sections: Burkholder et al. (red);⁶ JPL 2006 (black);¹⁸ Huder and DeMore (green);⁷ present values (blue).

Cross section $\sigma_{(4) > 310 \text{ nm}}$ had been overestimated, ClOOCl is longer lived - and ozone sinks are incomplete (Pope et al., 2007)

Measurements of reactive chlorine from space

November 1994 (35° – 49°N)

Ozone chemistry for X = Cl (catalyst, source, reservoir) including coupling reactions ClO_x/HO_x and ClO_x/NO_x :

Total flux between X and XO is proportional to $-dc_{O3}/dt$

Temporary reservoir HCl

Direct photolysis of RCl's insignificant for $-dc_{O3}/dt$ e.g.: CFCl₃ + hv \rightarrow CFCl₂ + Cl

Primary Sources of Chlorine and Bromine for the Stratosphere in 2004

Src: WMO: Scientific Assessment of Ozone Depletion 2006, Geneva 2007

Nomenclature for halogenated hydrocarbons:

Chlorofluorocarbons (CFCs) Freons (F, trade name) Primary Sources of Chlorine and E

,F-xyz' or ,CFC-xyz' or ,HCFC-xyz' with:

x = number of C atoms -1

```
y = number of H atoms +1
```

z = number of F atoms general: $C_{x-1}H_{y+1}Cl_nF_z$ **dt.:** *Chlorfluorkohlenwasserstoffe* commonly:

FCKW for Fluorchlorkohlenwasserstoffe

Halogenated hydrocarbons in general:

```
Halons

,Halon-wxyz' for C_wH_nF_xCl_yBr_z

e.g.

CF_3Br = Halon-1301

CF_2ClBr = Halon-1211; CH_3Br would be Halon-1001
```


2.2.3 Homogeneous catalysis of the ozone sink reaction: NO

Catalyzed sink reaction $O + O_3 \rightarrow 2 O_2$ example X=NO (Crutzen, 197	 (2a) vs.(2b) competition decides upon NO effect on O₃: (2a) destroys O which otherwise would recycle O₃ and recycles O₃-destroying NO 				
$(1a) \text{ NO} + \text{O}_3 \rightarrow \text{NO}_2 + \text{O}_2$ $(2a) \text{ NO}_2 + \text{O} \rightarrow \text{NO} + \text{O}_2$ Sum: $(1a+2a) \text{ O}_3 + \text{O} \rightarrow 2 \text{ O}_2$ $(2b) \text{ NO}_2 + \text{hv} \rightarrow \text{NO} + \text{O}$ $(3) \text{ O} + \text{O}_2 \rightarrow \text{O}_2$	Deactivation by formation of reservoir compound: (1b) NO + HO ₂ \rightarrow HNO ₃ Yield \approx 15% at 298 K but \approx 50% at 223 K (Butkovskaya et al., 2005). \rightarrow additional HO _x sink \rightarrow lower NO _x /HNO ₂				
NO source reactions: (3a) $N_2O + hv \rightarrow N_2 + O(^1D)$ (3b) $\rightarrow NO + N(^4S)$ (4a) $N_2O + O(^1D) \rightarrow N_2 + O_2$ (4b) $\rightarrow 2 NO$	1% (1967: ,,≈ 20%") 60% k=67x10 ⁻¹² cm ³ /molec/s (1990)				

Catalyzed sink reaction $O + O_3 \rightarrow 2 O_2$ example X=NO (Crutzen,	1970)
(1a) NO + O ₃ \rightarrow NO ₂ + O ₂ (2a) NO ₂ + O \rightarrow NO + O ₂ Sum: (1a+2a) O ₃ + O \rightarrow 2 O ₂	
(2b) $NO_2 + hv \rightarrow NO + O$ (3) $O + O_2 \rightarrow O_2$	
Sum: $(1a+2b+3)$ -	The catalyzing radicals are coupled: $ClO + NO_2 + M \rightarrow ClONO_2 + M$
	$ClO + HO_2 \rightarrow HOCl + O_2$ $Cl + HO_2 \rightarrow HCl + O_2$ $NO + HO_2 \rightarrow OH + NO_2$

History of the ozone hole over Antarctica:

Farman et al. 1985: (Dobson-Instrument) Halley Ba Chubachi, 1985: Syowa 1984 Solomon et al.: PSC can activate Cl (1986) Molina & Molina: ClO recycled via ClOOCl (1987)

Figure 1 Satellite maps of total ozone over Antarctica on 24 September, when the ozone hole is near its annual peak, in 1980, 1981, 2000, 2001, 2002 and 2003. The colour scale shows the amount of ozone in Dobson units, indicating the depth of the hole. The images are based on multiple satellite records and analyses and are available from many sources, including the World Ozone and Ultraviolet Radiation Data Centre in Toronto, Canada, http://woudc.ec.gc.ca/cgi-bin/selectMap.

US Natl. Ozone Expedition, NOAA 1986

averages over Antarctica show a rapid decline during the austral spring and lesser decline during the summer.

(Source: The Changing Ozone Layer by R.D. Bojkov © World Meteorological Organization, 1995)

Src: WMO: Scientific Assessment of Ozone Depletion 2006, Geneva 2007

Temporal dynamics of ozone loss over Antarctica: 2006, 71°S

Losses mostly in 12-25 km altitude 1994/97 vs. 1979: -50% spring 60°S_90°S

2.3 Heterogeneous reactions in polar stratospheric clouds

Satellite (Calipso, NASA) based lidar data, 22.6.06: 1 = Antarctica, 2 = Antarctic Peninsula, 3 = cirrus, 4 = $H_2O(1)$ PSCs, 5 = H_2SO_4 -HNO₃- $H_2O(1)$ or HNO₃*3 $H_2O(s)$ (NAT) PSCs, 6 = lee wave clouds, 7 = position of polar vortex

2.3 Heterogeneous reactions in polar stratospheric clouds Overview

Activation through recycling reactions:
HCl_{in Ice} + n H₂O
$$\rightarrow$$
 H₃O⁺(H₂O)_{n-1}Cl⁻
Cl + CH₄ \rightarrow HCl + CH₃
Cl + HO₂ \rightarrow HCl + O₂
Slov
Cl + H₂ \rightarrow HCl + H
ClO + NO₂ \rightarrow ClONO₂Activation through recycling reactions:
HCl_{in Ice} + n H₂O \rightarrow H₃O⁺(H₂O)_{n-1}Cl⁻
Cl⁺ + ClONO₂ \rightarrow Cl₂ + NO₃⁻
sum:
HCl_{in Ice} + ClONO₂ \rightarrow Cl₂ + HNO₃(s)
H₂O(s) + ClONO₂ \rightarrow HOCl + HNO₃(s)
HOCl + HCl \rightarrow Cl₂ + H₂O
Denitrification: Sedimentation of HNO₃-containing
ice particles of the PSCs
H₂O(s) + N₂O₅ \rightarrow 2 HNO₃(s)
HCl + N₂O₅ \rightarrow ClNO₂ + HNO₃(s)Deactivation by NO, compounds:
HNO₃ + hv $\not\rightarrow$ NO₂ + O₂
NO₂ + ClO + M \rightarrow ClONO₂ + MGas-phase activation reactions:
CFCl₃ + hv \rightarrow CFCl₂ + Cl
N₂O + hv \rightarrow N₂ + O(¹D)
O(¹D) + N₂O \rightarrow 2 NO
O(¹D) + H₂O \rightarrow 2 OH Slow

1.5 Heterogeneous reactions

-
$$dc_{i(g)} / dt = k^{het (1)} c_{i(g)}$$

 $k^{het (1)} = \gamma_i (S/V) \beta_i < v_i > / 4$

$$\beta_i = (1 + Kn_i) / (1 + 1.71 Kn_i + 1.33 Kn_i^2)$$

 $< v_i > = (8 \text{ RT} / \pi M_i)^{0.5}$

with: $c_{i(g)} = concentration of trace gas i far from the interface,$ $k^{het} = loss rate to condensed phase,$ $<math>\gamma_i = surface reaction propability, can be T dependent$ S/V = total (aerosol + ground) surface concentration $<math>\langle v_i \rangle = mean \ velocity \ of gas \ molecules,$ $R = molar \ gas \ constant, T = absolute \ temperature, M_i = molar \ mass,$ $\beta_i = correction \ for \ non-continuum \ effects \ (for \ r < 0.05 \mu m; \ Fuchs \ \& \ Sutugin, 1971)$ With: $Kn_i = \lambda_i / r = Knudson \ number, \ r = particle \ radius$ $\lambda_i = (\sqrt{2} \ \pi \sigma_i^2 \ N_i / V)^{-1} = mean \ free \ path \ of \ gas \ molecules,$ $\pi \sigma_i^2 = collision \ cross-section \ of \ gas \ molecules \ in \ air,$ $N_i/V = molecule \ number \ concentration.$

Kinetic description of heterogeneous reactions

γ_i = reaction probabilites

,1 ,	Ice	NAT	SAT
$CIONO_2 + HCl \rightarrow$	0.2	0.1	0.001_0.1
$N_2O_5 + HCl \rightarrow$	0.3	0.003	-
$HOC1 + HC1 \rightarrow$	0.3	0.1	-
$CIONO_2 + H_2O \rightarrow$	> 0.1	0.0001_0.01	0.001_0.01
$N_2O_5 + H_2O \rightarrow$	0.02	0.0003	0.01
		$+ O_3$	$+ O_3 + NO_2$
		$NO \rightarrow N$	$O_2 \rightarrow NO_2 = N_2O_5$

Example: Loss of N₂O₅ on particle surfaces: N₂O₅ + 2 H₂O (1) \rightarrow 2 NO₃⁻ + 2 H₃O⁺ with: $\beta_i \approx 1$ $\langle v_i \rangle = (8 \text{ RT} / \pi M_i)^{0.5} \approx 5 \text{ x } 10^4 \text{ cm/s}$ $\gamma_i = \text{reaction probability} \approx 0.0003-0.02$ $S/V \approx (0.01-1) \text{ x } 10^{-6} \text{ cm}^{-1}$ for stratospheric aerosol $k^{\text{het}} = \text{loss rate to condensed phase} = \gamma_i (S/V) \beta_i \langle v_i \rangle / 4$:

 $\begin{aligned} k^{het} &\approx (0.0003\text{-}0.02) \; x \; (0.01\text{-}1) \; x \; 10^{\text{-}6} \; x \; 5 \; x \; 10^4 \; / 4 \; \text{s}^{\text{-}1} &\approx (0.04\text{-}250) \; x \; 10^{\text{-}6} \; \text{s}^{\text{-}1} \, , \\ \tau_{het.loss} \; &\approx 1 \; h - 300 \; d \end{aligned}$

Kinetic description of heterogeneous reactions

γ_i = reaction probabilites

Concept: Resistance model

The larger γ the lower the resistance, the higher the conductivity Γ . In analogy to electrical circuits: serial and parallel processes dealt as resistances.

Individual processes in series:

$$\Gamma = \gamma^{-1} = \sum_{i} \Gamma_{I} = \sum_{i} (\gamma^{-1})_{i}$$

Parallel individual processes:

$$\Gamma = \gamma^{-1} = (\sum_{i} \gamma_{i})^{-1}$$
$$\gamma = \sum_{i} \gamma_{i}$$

Kinetic description of heterogeneous reactions: solid surface

Heterogeneous reaction	Multiphase reaction	Processes:	Condensed phase: Solid
Solid	Liquid	Transport in the gas phase Initial interaction	Γ _g
No diffusion Diffusion Reaction Reaction on solids Surface area limited Surface area limited? Surface area limited?	Reversible sorption	Accommodation ('sticking') coefficient α	
	Reaction on surface	Reactive uptake coefficient γ_r	
		Overall process Γ	Total experimental uptake/reaction probability, coefficient γ_{tot}

- Def.: α : = fraction of gas-surface collisions taken up by surface (reversible) γ_r : = fraction of gas-surface collisions leading to irreversible uptake, tabulated *
- $\gamma_{tot}^{-1} \approx \gamma_r$ if surface and/or bulk reaction dominate the overall process kinetics = = reaction is slow while gas-phase diffusion and reversible sorption are fast

Kinetic description of heterogeneous reactions: solid surface

Heterogeneous Multiphase reaction reaction		Р	rocesses:		Conde	ensed pl	hase: S	olid	
Solid Liquid	Tra Ini	ansport in t itial interac	the gas phase tion	Γ _g					
No diffusion	Diffusion Reaction Reaction in liquids	Re	eversible so	orption	Accomm coefficie	nodation $nt \alpha$	n ('stick	king')	
Surface area limited Volume limited? Surface area limited?	Reaction on surface		Reactive	Reactive uptake coefficient γ_r					
		0	v erall proc	ess Γ	Total exp uptake/re Table 64. Continued	perimen eaction	tal probab	ilitv.	
Def.: α:	= fraction of ga	s-su	Gaseous	Surface	Surface		I	ncertainty	
γ.:	= fraction of ga	s-st	Species	Type	Composition	T(K)	γ	Factor	Notes
•1 •1 -1 -1 -1 -1	if aurface and/or	h1	$N_{2}O_{5} + H_{2}O \rightarrow$ $N_{2}O_{5}$	Water Ice	H ₂ O(s)	195-200	0.01	3	14
$\gamma_{\rm tot} \simeq \gamma_{\rm r}$	II surface and/or	oui		Liquid Water Nitric Acid Ice	$H_2O(I)$	260-295	0.05*	2	15
	= reaction is slo	WV		Sulfuric Acid	$H_2SO_4 \cdot nH_2O(l)$	200 195-300	3 x 10 ⁻⁴ ≈0.1	3 See Note	16 17
				Sulfuric Acid Monohydrate	H2SO4 • H2O(s)	200-300	See Note	3	18
				Sulfuric Acid Tetrahydrate	$H_2SO_4 \cdot 4H_2O(s)$	195-207	0.006	2	19
				Ternary Acid	H2SO4 • nHNO3 • nH2O(1)	195-218	See Note		17

1.5.1 Heterogeneous reactions on solids

$$\gamma_{\text{tot}} = (1/\alpha + 1/\gamma_{\text{r}})^{-1} \approx \alpha \qquad \text{if } \alpha << \gamma_{\text{r}} \\ \approx \gamma_{\text{r}} \qquad \text{if } \gamma_{\text{r}} << \alpha$$

Reversible sorption and irreversible reaction can take place in parallel rather than in series, too. Then:

$$\gamma = \gamma_r + \alpha$$

with $\gamma_r \ge \alpha$, eventually $\gamma_r \approx \alpha$.

Laboratory experiments often do not allow to unambiguously differentiate between γ and α . In these cases γ are tabulated * as ' α ' – subject to change if more definitive data become available.

* Chemical kinetics and photochemical data for use in stratospheric modeling Eval. No. 12 (JPL-Publ-97-4; NAS 1.26112606; NASA CR-97-112606), 1997 (updated 2005), http://ntrs.nasa.gov/search.jsp

1.2.3 Heterogeneous reactions in polar stratospheric clouds PSC properties

Solid or liquid, < 200 K growth of sulfuric acid particles, < 188 K partly solid wide range of particle/droplet sizes $S/V = (0.01-1)x10^{-6} \text{ cm}^{-1}$ $V/V = (1-100)x10^{-12}$

Changing chemistry at sunrise:

- Advection: vortex opens and zonal transport of ozone rich air is possible again
- Temperature increase: ice crystals melt, release NO_2 , $CIONO_2$ is formed again, binding Cl
- Photochemistry: O₂ photolysis supplies fresh O₃

2.4 Long-term trends

Src: WMO: Scientific Assessment of Ozone Depletion 2006, Geneva 2007

Stratospheric ozone chemistry

T < 190 K Arctic stratosphere?

- 300-320 Dobson Units (Pre-1980 Levels : About 450)

Less than 210 Dobson Units (Pre-1980 Levels: About 320)

Arctic spring (March) and Antarctic Spring (September) Frequency of PSCs, temperature trends:

(WMO, 1999)

Emission reduction efficiency? **Basis for comparison of different substances = ?**

 \rightarrow Ozone depletion potentials ODP: = (global ozone loss due to unit mass emission of i and Ozone Depletion Potentials of halogen source gases.^a (global ozone loss due to unit mass emission of CFC-11)

-assuming steady-state conditions (time dependent calculations are possible, but not common) - assuming constant emissions (for compounds that are

removed by linear processes, this is equivalent to assumin an emission pulse and integrating over the entire decay of the compound)

- not dependent on time

Table Q7-1. Atmospheric lifetimes, emissions,

Halogen Source Gas	Atmospheric Lifetime (years)	Global Emissions in 2003 ^b	Ozone Depletion Potential (ODP) ^d	
Chlorine				
CFC-12	100	101-144	1	
CFC-113	85	1-15	1	
CFC-11	45	60-126	1	
Carbon tetrachlo	oride			
(CCl_4)	26	58-131	0.73	
HCFCs	1-26	312-403	0.02-0.12	
Methyl chlorofo	rm			
(CH ₃ CCl ₃)	5	~20	0.12	
Methyl chloride	1.0	1700-13600	0.02	
Bromine				
Halon-1301	65	~3	16	
Halon-1211	16	7-10	7.1	
Methyl bromide				
(CH ₃ Br)	0.7	160-200	0.51	
Very short-lived	gases			
(e.g., CHBr ₃)	< 0.5	с	с	

Emission in gigagrams per year (1 gigagram = 10^9 grams = 1000 metric tons).

Estimates are uncertain for most species.

Values are calculated for emissions of equal mass for each gas.

Src: WMO: Scientific Assessment of Ozone Depletion 2006, Geneva 2007

Total atmospheric lifetime (or residence time):

 $\tau_{i} = \text{burden/(total loss rate)} = b_{i} / \tau_{i}^{-1} = b_{i} / [\Sigma_{i} (\tau_{i}^{-1})]^{-1}$ $\tau_{i}^{-1} = \tau_{i \text{ strat}}^{-1} + \tau_{i \text{ trop}}^{-1} + \tau_{i \text{ dep}}^{-1} = \Sigma_{j} \tau_{ij}^{-1}$

> j: tropospheric reactions stratospheric reactions deposition

For CFCs:

$$\tau_{\text{trop}} \approx \infty$$

$$\sigma_{> 260 \text{ nm}} < 10^{-21} \text{ cm}^2 \longrightarrow \tau_{j \text{ strat}} \approx \infty$$

$$\tau_{\text{CFC}} \approx \tau_{\text{strat}}$$

For most organic substances, however:

$$\tau_{i \text{ trop}} \approx \tau_{i \text{ OH}} \tau_{i} \approx \tau_{i \text{ trop}}$$

For most organic substances:

$$-dc_i/dt = k_{OH}^{(2)} c_{OH} c_i; \tau_{OH} = (k_{OH}^{(2)} c_{OH}^{(2)})^{-1}$$

$$\tau = (\Sigma \ k \ c)^{-1}$$

$$\tau_{photochem} = (\overline{k_{OH}} * c_{OH})^{-1} \neq (k_{OH} * \overline{c_{OH}})^{-1}$$

diurnal means: differ by orders of magnitude

according to averaging time annual mean 44°N: 740 h (2 weeks resolution) vs. 310 h annual mean 12°N: 173 h vs. 168 h

Src: WMO: Scientific Assessment of Ozone Depletion 2006, Geneva 2007

CFC lifetimes - uncertainties

CFC-11 in the atmosphere. The curves represent predicted abundance of CFC-11 for different atmospheric lifetimes. Actual data for Northern (circles) and Southern (triangles) Hemispheres show that CFC-11's atmospheric lifetime is about 50 years.

Solomon, 2004

CFC trends

Stabilization, reduction: $db/dt = F_e - b/\tau \le 0!$ $db/dt/b = F_e/b - 1/\tau$ $F_e = db/dt + b/\tau$

 τ db/dt/b(2003-04)CCl₄26 a-(1.1±0.1) %/aCH₃CCl₃5 a-(18 ± 1) %/a

Even with $F_e = 0$ the CCl_4 levels could not have been reduced < -4 %/a

Reported lifetimes assume uniform mixing in the global atmosphere – the more uncertain the shorter τ is!

Src: WMO: Scientific Assessment of Ozone Depletion 2006, Geneva 2007

Stratospheric Cl trends

Cl trends

Total chlorine evolution in the midlatitude stratosphere

Src: WMO: Scientific Assessment of Ozone Depletion 2006, Geneva 2007

Cl trends

Protocols of the Vienna Convention (1985)

Atmospheric chemistry - Climate

(Lammel, 1997)