0. Introduction – 0.1 Concept

The air / environment (geosphere): Is it a reactor ? It's a matter of reactions <u>and</u> transports and mixing !

mixing times:

• vertically lower few kilometers (boundary layer) 1h-1d, mixing with free troposphere 2-10 days

- around the globe on the same latitude (zonal transport) within a few weeks
- from mid latitudes to the pole (meridional transport) within days to weeks, hemispheric mixing 2-6 months
- Between hemispheres about 1 year
- troposphere-stratosphere 1-3 years

Conceptually / knowledge to understand:

- (chemical) reactions
- (meteorological) transports and mixing

Tools to understand:

- 3D transport models
- model parameters isolated in laboratory experiments
- significant ,ingredients' identified in the ,field'

0.2 Atmospheric pressure and composition

Pressure and temperature profiles in the atmosphere

0.3 Units for quantification of atmospheric trace substances

Ideal gas law: $pV = nRT = mRT/M_g$

Universal gas constant R = 8206 Pa L/(mol K) = 8.314 J/(mol K) = $N_a k_B$ Avogadro's number $N_A = 6.023 \times 10^{23}$ Boltzmann constant $k_B = 1.38 \times 10^{-23}$ J/K Molar mass $M_{g air} \approx 28.8$ g/mol Molar volume at $T_0 = 273$ K and $p_0 = 101325$ Pa: V = 22.414 L/mol Concentration $c_i = m_i/V [\mu g/m^3]$ (for gases: = density)

Mass mixing ratio $\mu_{m i} = c_i/c$ [, %, ppmm, ppbm] Partial pressure $p_i = n_i RT/V_i$ [Pa] Volume mixing ratio $\mu_{V i} = p_i/p = V_i/V$ [, %, ppmV, ppbV] Number density $N_i/V = n_i N_A/V = p_i N_A/RT$ [molec/cm³] Avogadro's number $N_A = 6.022 \times 10^{23}$ molec/mol

More details: Schwartz & Warneck (1995): Units for use in atmospheric chemistry, Pure Appl. Chem. 67, 1377-1406

Chemical Composition of the Atmosphere

		Volume	
Constituent	Chemical Formula (sum)	Mixing Ratio in Dry Air 10 ⁻¹³ _1!	Major Sources and Remarks
Nitrogen	N_2	78.084%	Biological
Oxygen	O_2	20.948%	Biological
Argon	Ar	0.934%	Inert
Carbon dioxide	CO_2	360 ppmv	Combustion, ocean, biosphere
Neon	Ne	18.18 ppmv	Inert
Helium	He	5.24 ppmv	Inert
Methane	CH_4	1.7 ppmv	Biogenic and anthropogenic
Hydrogen	H_2	$0.55 \mathrm{~ppmv}$	Biogenic, anthropogenic, and photochemical
Nitrous oxide	N_2O	0.31 ppmv	Biogenic and anthropogenic
Carbon monoxide	CO	50-200 ppbv	Photochemical and anthropogenic
Ozone (troposphere)	O_3	10-500 ppbv	Photochemical
Ozone (stratosphere)	O_3	0.5-10 ppm	Photochemical
Nonmethane hydrocarbons	3	5-20 ppbv	Biogenic and anthropogenic
Halocarbons (as chlorine)		3.8 ppbv	85% anthropogenic
Nitrogen species	NO_y	10 ppt-1 ppm	Soils, lightning, anthropogenic
Ammonia	NH_3	10 ppt-1 ppb	Biogenic
Particulate nitrate	NO_3^-	1 ppt-10 ppb	Photochemical, anthropogenic
Particulate ammonium	NH_4^+	10 ppt-10 ppb	Photochemical, anthropogenic
Hydroxyl	OH	0.1 ppt-10 ppt	Photochemical
Peroxyl	HO_2	0.1 ppt-10 ppt	Photochemical
Hydrogen peroxide	H_2O_2	0.1 ppb-10ppb	Photochemical
Formaldehyde	CH_2O	0.1-1 ppb	Photochemical
Sulfur dioxide	SO_2	10 ppt-1 ppb	Photochemical, volcanic,

1 Reaction types, kinetics

$\label{eq:linear} \begin{array}{l} \textbf{1.1 Reaction rate coefficient } k \ (\texttt{dt.: Reaktionsgeschwindigkeitskoeffizient}) \\ \textbf{Temperature dependence:} \end{array}$

 $\begin{aligned} -dc_i/dt &= k_T c_i \\ k_T &= A(T) e^{[\Delta E/(RT)]} \\ \text{Universal gas constant } R &= k_B N_A = 1.38 \times 10^{-23} \text{ J/K x } 6.023 \times 10^{23} \text{/mol} \end{aligned}$

Providing the energy is sufficiently large, the temperature dependence of A is unimportant, and k_T follows the Arrhenius expression:

 $k_{T} = A e^{[E_{a}/(RT)]}$

with activation energy E_a Frequently used, too: van t'Hoff expression:

 $k_{\rm T} = B e^{[-E_a/R (1/T - 1/T_{\rm ref})]},$

The two expressions are equal via: $A = B e^{[E_a/(RT_{ref})]}$

Rate coefficient from gas kinetic theory

- = effective reactions per unit of time =
- = collision frequency x likelyhood of reaction per collision
- 1) Molecules need to collide ($\approx 10^9$ /s at 10⁵ Pa). They are close enough to collide during $\approx (10^{-13} - 10^{-12}) \times 10^{9/s}$

Collision frequency

$$Z_{ij} = \left(\frac{8kT}{\pi m_{ij}}\right)^{1/2} \sigma_{ij}^2 N_i N_j \qquad \text{cm}^{-3} \text{s}^{-1}$$

 $\left(\frac{8kT}{\pi m}\right)^{-1}$ root - mean - square relative speed of molecules *i* and *j*

 $m_{ij} = \frac{m_i m_j}{m_i + m_j}$ reduced mass N_i : number density (cm⁻³) $k = 1.381 \cdot 10^{-23} \text{ JK}^{-1}$ Boltzmann constant σ_{ii}^2 : collision cross section

from Maxwell-Boltzmann distribution function of molecular velocities (gas kinetic theory):

 $dN/N = c^{(m < v_i >^2 / 2kT)}$; with $c = (m / 2\pi kT)^{0.5}$

 $\langle v_i \rangle$ = mean absolute velocity of molecules

corresponding mean free path λ with regard to collisions

$$\lambda_i = 1 / [(N_A/V)(\sqrt{2} \pi \sigma_i^2)],$$

N_A/V = 6.022x10²³ / 0.0224 = 2.46 x 10²⁵ molec/m³

N₂ :
$$= 0.51 \text{ m/s} = 1840 \text{ km/h}, \lambda = 65 \text{ nm}$$

CO₂: $= 0.41 \text{ m/s} = 1490 \text{ km/h}, \lambda = 44 \text{ nm}$

2) Extra energy is needed to overcome the transition state

As molecules approach each other they have to overcome an energy barrier because of electronic repulsion. The energy they absorb leads to a loosening of the intramolecular bonds until a transition state is reached, which can then either fall back into the original molecules or proceed to yield the products of the reaction. Reaction enthalpy ΔH_r .

Distance along Reaction Coordinate

Likelyhood: collision cross section, σ_{ii}

In the transition state, usually the energy provided from bond formation is less than the energy consumption from bond breaking.

The collision cross section takes into account that a minimum amount of energy is needed. It is not necessarily provided with every orientation of the molecules during approach (steric factor).

$$\sigma_{ij} = \pi \left(r_i + r_j \right)^2 \left(1 - \frac{E_0}{E} \right) \quad \text{for } E \ge E_0, \text{ 0 elsewhere}$$

Integrated over all total energies from 0 tc ∞ , the frequency of reactive collisions becomes

$$Z_{ij}^{R} = \pi \left(r_{i} + r_{j}\right)^{2} \left(\frac{8kT}{\pi m_{ij}}\right)^{1/2} e^{-E_{0}/kT} N_{i} N_{j}$$

Theoretical maximum
at 1000 hPa, 293 K
(for r_i, r_j = 0.2 nm, E₀ = 0 and no steric
hindrance): k ≈ 2x10⁻¹⁰ cm³/molec/s

1.2 Homogeneous gas-phase reactions

Reactions can be unimolecular, bi- or termolecular.

The rate law of a reaction of the general form

$$aA + bB \rightarrow cC + dD$$

Is defined as

Rate (dt.: Rate) = $-dc_A/dt/a = -dc_B/dt/b = dc_C/dt/c = dc_D/dt/d$ example: $2 NO + O_2 \rightarrow 2 NO_2$ Rate = $-dc_{NO}/dt/2 = -dc_{O2}/dt = dc_{NO2}/dt/2$ Second order Usually: bimolecular $A + B \rightarrow C + D$ $A + B \rightarrow C$; A, B, C, D molecules or radicals example: $O + O_2 \rightarrow O_3$ $NO + O_3 \rightarrow NO_2 + O_2$ $dc_{C}/dt = -dc_{A}/dt = -dc_{B}/dt = k^{(2)} c_{A}^{1} c_{B}^{1}$ Reaction rate: second order (1+1=2)Reaction rate coefficient (denoting the order): $k^{(2)}$

> The reaction order is given by the sum of the exponentials, n+m+..., of the concentration terms in the rate law of the form $-dc_A/dt = k c_A^n c_B^m (n = \text{zero or integer or fraction}^*)$ It is determined empirically.

* ,overall' reactions only

$CH_3CI + OH \rightarrow CH_2CI + H_2O$	$R_{C14} = 2.1 \times 10^{-12} \exp(-1150/T)$
$CH_3CCl_3 + OH \rightarrow CH_2CCl_3 + H_2O$	$R_{\rm C15} = 1.8 \times 10^{-12} \exp(-1550/T)$
$CF_2Cl_2 + O(^1D) \rightarrow CF_2Cl + ClO$	$R_{ m C16} = 1.4 imes 10^{-10}$
$CFCl_3 + O(^{\Gamma}D) \rightarrow CFCl_2 + ClO$	$R_{\rm C17} = 2.3 \times 10^{-10}$
$CCl_4 + O(^1D) \rightarrow CCl_3 + ClO$	$R_{ m C18} = 3.3 imes 10^{-10}$
$ClO + ClO \xrightarrow{M} Cl_2O_2$	$R_{C19} = f(K_0, K_\infty), \ K_0 = 1.9 \times 10^{-32} [M] (300/T)^{3.9}, \ K_\infty = 7.0 \times 10^{-32} [M] (300/T)^{3.9}$
$Cl_2O_2 \xrightarrow{M} ClO + ClO$	$R_{\rm C20} = R_{\rm C19}/(3.0 \times 10^{-27} \exp(8450/T))$
Odd nitrogen	
$N + O_2 \rightarrow NO + O(^{3}P)$	$R_{ m N1} = 1.5 imes 10^{-11} \exp(-3600/T)$
$N + NO \rightarrow N_2 + O(^3P)$	$R_{ m N2} = 3.4 imes 10^{-11}$
$N + OH \rightarrow NO + H$	$R_{ m N3} = 5.3 imes 10^{-11}$
$N + HO_2 \rightarrow NO + OH$	$R_{ m N4} = 2.0 imes 10^{-10}$
$ \begin{array}{c} \mathrm{N} + \mathrm{HO}_2 \xrightarrow{\mathrm{M}} \mathrm{NO} + \mathrm{OH} \\ \mathrm{HO}_2 \mathrm{NO}_2 \xrightarrow{\mathrm{M}} \mathrm{NO}_2 + \mathrm{HO}_2 \end{array} $	$R_{\rm N5} = R_{\rm N16}/(2.1 \times 10^{-27} \exp(10900/T))$
$HO_2NQ_2 + OH \rightarrow NO_2 + H_2O + O_2$	$R_{N0} = \frac{1.2 \times 10^{-12} \exp(380/T)}{1.2 \times 10^{-12} \exp(380/T)}$
$N_2O_5 \rightarrow NO_2 + NO_3$	$R_{\rm N7} = R_{\rm N18/}(4.0 \times 10^{-27} \exp(10920/T))$
$NO + O_3 \rightarrow NO_2 + O_2$	$R_{\rm NR} = 2.0 \times 10^{-12} \exp(-1400/T)$
$NO + ClO \rightarrow NO_2 + Cl$	$R_{\rm N9} = 6.4 \times 10^{-12} \exp(290/T)$
$NO + HO_2 \rightarrow NO_2 + OH$	$R_{\rm MIO} = 3.7 \times 10^{-17} {\rm cxp}(250/T)$
$NO + CH_3O_2 \rightarrow NO_2 + CH_3O$	$R_{\rm N11} = 4.2 \times 10^{-12} \exp(180/T)$

 k_T Example $NO + O_3 \rightarrow NO_2 + O_2$

 $\mathbf{k} = \mathbf{A} \, \mathbf{e}^{[-(\mathbf{E}_{a}/\mathbf{R})\mathbf{T}]}$

Arrhenius expression, preexponential factor A, activation energy E_a k(T⁻¹) \rightarrow slope m = $-E_a/R$, intercept ln A, $E_a/R > 0 \leftrightarrow$ faster at higher T A = 2x10⁻¹² cm³/molec/s E/R = -1400 K

 \rightarrow $k_{298 \text{ K}} = 1.8 \text{ x} 10^{-14} \text{ cm}^3/\text{molec/s}$ $k_{230 \text{ K}} = 0.45 \text{ x} 10^{-14} \text{ cm}^3/\text{molec/s}$

	$Cl + CH_4(+O_2) \rightarrow HCl + CH_3O_2$ $Cl + HO_2 \rightarrow HCl + O_2$ $Cl + HO_2 \rightarrow ClO + OH$ $Cl + CH_2 (+O_2) \rightarrow HCl + CO HO_2$ $ClO + HO_2 \rightarrow HOCl + O_2$	$R_{C6} = 1.1 \times 10^{-11} \exp(-1400/T)$ $R_{C7} = 1.8 \times 10^{-11} \exp(170/T)$ $R_{C8} = 4.1 \times 10^{-11} \exp(-450/T)$ $R_{C9} = 8.1 \times 10^{-11} \exp(-30/T)$ $R_{C10} = 4.8 \times 10^{-13} \exp(700/T)$
2. Exception:	$\begin{split} &\text{HOCl} + O\dot{H} \rightarrow \text{H}_2\text{O} + C\dot{I}O \\ &\text{CH}_3\text{Cl} + O(^1\text{D}) \rightarrow O\text{H} + \text{CH}_2\text{Cl} \\ &\text{CH}_3\text{CCl}_3 + O(^1\text{D}) \rightarrow O\text{H} + \text{CH}_2\text{CCl}_3 \\ &\text{CH}_3\text{Cl} + O\text{H} \rightarrow \text{CH}_2\text{Cl} + \text{H}_2O \\ &\text{CH}_3\text{CCl}_3 + O\text{H} \rightarrow \text{CH}_2\text{CCl}_3 + \text{H}_2O \\ &\text{CH}_3\text{CCl}_3 + O\text{H} \rightarrow \text{CH}_2\text{CCl}_3 + \text{H}_2O \\ &\text{CF}_2\text{Cl}_2 + O(^1\text{D}) \rightarrow \text{CF}_2\text{Cl} + \text{CIO} \end{split}$	$R_{C11} = 3.0 \times 10^{-12} \exp(-500/T)$ $R_{C12} = 4.0 \times 10^{-10}$ $R_{C13} = 4.0 \times 10^{-10}$ $R_{C14} = 2.1 \times 10^{-12} \exp(-1150/T)$ $R_{C15} = 1.8 \times 10^{-12} \exp(-1550/T)$ $R_{C16} = 1.4 \times 10^{-10}$
First order (but not unimolecular):	$\begin{array}{l} \operatorname{CFCl}_3 + \operatorname{O}(^1\mathrm{D}) \operatorname{CFCl}_2 + \operatorname{ClO} \\ \operatorname{CCl}_4 + \operatorname{O}(^1\mathrm{D}) \operatorname{CCl}_3 + \operatorname{ClO} \\ \operatorname{ClO} + \operatorname{ClO} \xrightarrow{\mathrm{M}} \operatorname{Cl}_2\mathrm{O}_2 \end{array}$	$\begin{aligned} R_{\rm C17} &= 2.3 \times 10^{-10} \\ R_{\rm C18} &= 3.3 \times 10^{-10} \\ R_{\rm C19} &= f(K_0, K_\infty), \ K_0 &= 1.9 \times 10^{-32} [M] (300/T)^{3.9}, \ K_0 &= 1.9 \times 10^{-3$
$A + M \rightarrow C + D + M$	$Cl_2O_2 \xrightarrow{M} ClO + ClO$ Odd nitrogen N + O ₂ → NO + O(³ P)	$R_{C20} = R_{C19} / (3.0 \times 10^{-27} \exp(8450/\tilde{T})))$ $R_{N1} = 1.5 \times 10^{-11} \exp(-3600/T)$ $R_{N1} = 1.5 \times 10^{-11} \exp(-3600/T)$
or if $c_B \gg c_A$ A + B + M \rightarrow C + D + M $\boldsymbol{<}$	$\begin{split} \mathbf{N} + \mathbf{NO} &\rightarrow \mathbf{N}_2 + \mathbf{O}(^{3}\mathbf{P}) \\ \mathbf{N} + \mathbf{OH} &\rightarrow \mathbf{NO} + \mathbf{H} \\ \mathbf{M} + \mathbf{HO}_2 &\rightarrow \mathbf{NO} + \mathbf{OH} \\ \mathbf{HO}_2\mathbf{NO}_2 &\rightarrow \mathbf{NO}_2 + \mathbf{HO}_2 \end{split}$	$R_{N2} = 3.4 \times 10^{-11}$ $R_{N3} = 5.3 \times 10^{-11}$ $R_{N4} = 2.0 \times 10^{-10}$ $R_{N5} = R_{N16} / (2.1 \times 10^{-27} \exp(10900/T))$
	$\begin{array}{l} HO_2 NO_2 \rightarrow NO_2 + HO_2 \\ HO_2 NO_2 + OH \rightarrow NO_2 + H_2 O + O_2 \\ N_2 O_5 \rightarrow NO_2 + NO_3 \\ NO + O_3 \rightarrow NO_2 + O_2 \end{array}$	$R_{N6} = 1.3 \times 10^{-12} \exp(380/T)$ $R_{N6} = \frac{P_{N16}}{4.0 \times 10^{-27}} \exp(10930/T))$ $R_{N8} = 2.0 \times 10^{-12} \exp(-1400/T)$
Here, M stands for any molecule or	$NO + CIO \rightarrow NO_2 + CI$ $NO + HO_2 \rightarrow NO_2 + OH$ $NO + CH_3O_2 \rightarrow NO_2 + CH_3O$	$R_{N9} = 6.4 \times 10^{-12} \exp(290/T)$ $R_{N10} = 3.7 \times 10^{-12} \exp(250/T)$ $R_{N11} = 4.2 \times 10^{-12} \exp(180/T)$
atom (i.e. N_2 , O_2 ,), not transformed but required to absorb excess energy,	$NO + NO_3 \rightarrow 2NO_2$ $NO_2 + O(^{3}P) \rightarrow NO + O_2$ $NO_2 + CIO \rightarrow CIONO_2$ $NO_2 + O_2 \rightarrow NO_2 + O_2$	$\begin{split} R_{\rm N12} &= 1.5 \times 10^{-11} \exp(170/T) \\ R_{\rm N13} &= 6.5 \times 10^{-12} \exp(120/T) \\ R_{\rm N14} &= f(K_0, K_\infty), \ K_0 &= 1.8 \times 10^{-31} [M] (300/T)^{3.4}, \ K_0 \\ R_{\rm N15} &= 1.2 \times 10^{-13} \exp(-2450/T) \end{split}$
e.g. of an activated intermediate state:	$\begin{array}{c} NO_2 + O_3 \rightarrow NO_3 + O_2 \\ NO_2 + HO_2 \stackrel{M}{\longrightarrow} HO_2NO_2 \\ NO_2 + OH \stackrel{M}{\rightarrow} HNO_3 \\ NO_2 + NO_3 \stackrel{M}{\rightarrow} N_2O_5 \end{array}$	$\begin{split} & R_{\rm N15} = 1.2 \times 10^{-10} \exp(-24.50/T)^{-31} [M] (300/T)^{-3.2}, \ K_0 = 1.8 \times 10^{-31} [M] (300/T)^{-3.2}, \ K_0 = 1.6 \times 10^{-30} [M] (300/T)^{-3.2}, \ K_0 = 1.6 \times 10^{-30} [M] (300/T)^{-3.2}, \ K_0 = 1.8 \times 10^{-30} [M] (300/T)^{-3.2$
$A + B = AB*_{+M}C + D$	$HNO_3 + OH \rightarrow H_2O + NO_3$ $ClONO_2 + O(^{3}P) \rightarrow ClO + NO_3$	$K_3 = 4.1 \times 10^{-10} \exp(1440/T)$ $R_{N20} = 2.9 \times 10^{-12} \exp(-800/T)$
A + M C + D	$\begin{split} N_2O + O(^1D) &\rightarrow 2NO \\ N_2O + O(^1D) &\rightarrow N_2 + O_2 \\ N + NO_2 &\rightarrow N_2 + O_2 \\ Odd hudro and \end{split}$	$R_{N21} = 6.7 \times 10^{-11}$ $R_{N22} = 4.9 \times 10^{-11}$ $R_{N23} = 3.0 \times 10^{-12}$
<i>Example</i> : thermic dissociation	Odd hydrogen $OH + HO_2 \rightarrow H_2O + O_2$ $HO_2 + HO_2 \rightarrow H_2O_2 + O_2$ $H_2 + O(^1D) \rightarrow H + OH$	$R_{\rm H1} = 4.8 \times 10^{-11} \exp(250/T)$ $R_{\rm H2} = 2.3 \times 10^{-13} \exp(600/T) + 1.7 \times 10^{-33} [M] \exp(10^{-10})$ $R_{\rm H3} = 1.0 \times 10^{-10}$
$HOONO_2 \rightarrow HO_2 + NO_2$	$\begin{array}{l} OH + O(^{3}P) \rightarrow O_{2} + H \\ HOCO \rightarrow CO_{2} + H \\ OH + H_{2} \rightarrow H_{2}O + H \end{array}$	$R_{H4} = 2.2 \times 10^{-11} \exp(120/T)$ $R_{H5} = 1.5 \times 10^{-13} (1 + 0.6p/101400)$ $R_{H6} = 5.5 \times 10^{-12} \exp(-2000/T)$
Reaction rate $da_1/dt = da_2/dt = lr(1)a_1$	$\begin{array}{l} O(^{1}D)+CH_{4}(+O_{2})\rightarrow \ CH_{3}O_{2}+OH\\ O(^{1}D)+H_{2}O\rightarrow 2OH\\ H+O_{3}\rightarrow OH+O_{2} \end{array}$	$R_{\rm H7} = 1.4 \times 10^{-10}$ $R_{\rm H8} = 2.2 \times 10^{-10}$ $R_{\rm H9} = 1.4 \times 10^{-10} \exp(-470/T)$
$dc_C/dt = -dc_A/dt = k^{(1)}c_A^{-1}$ $k^{(1)} = k^{(2)}c_A^{-1} (c_A^{-1} c_A^{-1})$	$ \begin{array}{l} \mathrm{H} + \mathrm{HO}_2 \rightarrow 2\mathrm{OH} \\ \mathrm{HO}_2 + \mathrm{O}({}^{3}\mathrm{P}) \rightarrow \mathrm{OH} + \mathrm{O}_2 \\ \mathrm{HO}_2 + \mathrm{O}_3 \rightarrow \mathrm{OH} + 2\mathrm{O}_2 \\ \mathrm{H} + \mathrm{O}_2 \rightarrow \mathrm{HO}_2 \end{array} $	$ \begin{array}{l} R_{\rm H10}^{\rm -} = 7.1685 \times 10^{-11} \\ R_{\rm H11}^{\rm -} = 3.0 \times 10^{-11} \exp(200/T) \\ R_{\rm H12}^{\rm -} = 1.1 \times 10^{-14} \exp(-590/T) \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{1.5}_{-1.7} \times 16^{12} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{1.5}_{-1.7} \times 16^{12} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_\infty), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_0), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_0), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_0), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_0), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_0), \ K_0^{\rm -} \underbrace{100}_{-1.7} \\ R_{\rm H13}^{\rm -} = f(K_0, K_0), \ K$
$k^{(1)} = k^{(2)}c_M^{-1} (c_M^{-1} \text{ constant})$	$\begin{array}{c} H + O_2 \xrightarrow{\longrightarrow} HO_2 \\ OH + O_3 \xrightarrow{\longrightarrow} HO_2 + O_2 \end{array}$	$R_{\rm H13} = f(K_0, K_\infty), \ K_0 = 3.4 \times 10^{-12} [M] (300/T)^{1.3}, \ K_0 = 1.6 \times 10^{-12} \exp(-940/T)$

 $A + B \rightarrow C + D$ is 2nd order or – in case dc_B/dt ≈ 0 - pseudo-1st order

 $\begin{array}{l} A+B+M \rightarrow C+D+M \\ & \text{is } 2^{nd} \text{ order or} -\text{in case } dc_B/dt \approx 0 \text{ - pseudo-1st order or} \\ & -\text{if } p << 1000 \text{ hPa - between } 2^{nd} \text{ and } 3^{rd} \text{ order} \end{array}$

The unit of a homogeneous gas-phase rate is [molec/cm³/s].

A 1st or pseudo-1st order rate law reads: $-dc_A/dt = dc_C/dt = k^{(1)} c_C$, with $k^{(1)}$ [1/s]. A 2nd order rate law reads: $-dc_A/dt = dc_C/dt = k^{(2)} c_C c_D$, with $k^{(2)}$ [cm³/molec/s]. A 3rd order rate law reads e.g.: $-dc_A/dt = k^{(3)} c_C^2 c_D$, with $k^{(3)}$ [cm⁶/molec²/s]. 3. between 2^{nd} and 3^{rd} order: In the range of pressures and temperatures in the upper troposphere and stratosphere (c_M small) many reactions are in the region between 2^{nd} and 3^{rd} order reactions:

$$k = \frac{k_0 M}{1 + k_0 M/k_{\infty}} F_C^{(1 + \log(k_0 M/k_{\infty})^2)^{-1}} \qquad F_C \approx 0.6$$

$$k_0(T) = k_0^{300K} \left(\frac{T}{300K}\right)^{-n}, \qquad k\infty(T) = k_\infty^{300K} \left(\frac{T}{300K}\right)^{-m}$$

 $k_0, k_{\infty} = low$, high pressure limiting rate constant(Troe, 1979) $F_C =$ broadening factor of falloff curve between 2^{nd} and 3^{rd} order in the range of
NO2 + HO2 + M \rightarrow HO2NO2 + M

1.3 Combinations of thermic reactions-Quasi steady state approximation

Second order Usually: bimolecular $A + B \rightarrow C + D$ $A + B \rightarrow C$ A, B, C, D molecules or radicals example: $O + O_2 \rightarrow O_3$ $NO + O_3 \rightarrow NO_2 + O_2$ Reaction rate: second order (1+1=2) $dc_{\rm C}/dt = -dc_{\rm A}/dt = -dc_{\rm B}/dt = k c_{\rm A}^{-1} c_{\rm B}^{-1}$ Reaction rate coefficient: $k^{(2)}$ $k = A \exp \left[-(E_a/R)T\right]$ Arrhenius expression, preexponential factor A, activation energy E_a $k(T^{-1}) \rightarrow slope - E_a/R$, intercept ln A, $E_a/R > 0 \leftrightarrow faster$ at higher T

1.3 Combinations of thermic reactions-Quasi steady state approximation

Second order Usually: bimolecular

 $A + B \rightarrow C + D$ $A + B \rightarrow C$ A, B, C, D molecules or radical *example:*

 $O + O_2 \rightarrow O_3$ $NO + O_3 \rightarrow NO_2 + O_2$ Reaction rate: second order (1+ $dc_C/dt = -dc_A/dt = -dc_B/dt = k c$

Reaction rate coefficient: $k^{(2)}$ $k = A \exp [-(E_a/R)T]$ Arrhenius expression, preexpone $k(T^{-1}) \rightarrow slope -E_a/R$, intercept ln A,

Very frequent: $A + B \rightarrow C^*$ (1) $(-1) \quad C^* \to A + B$ $C^* + M \rightarrow C$ (2)Intermediate C*: $dc_{C*}/dt = k_1 c_A c_B - k_1 c_{C*} - k_2 c_{C*} c_M$ Lifetime of C* short $\rightarrow dc_{C*}/dt = 0$ Hence: $k_1 c_A c_B = k_{-1} c_{C*} + k_2 c_{C*} c_M$ $c_{C*} = k_1 c_A c_B / (k_{-1} + k_2 c_M)$ Example (1) $O + O_2 = O_3^*$ 2) $O_3^* + M \rightarrow O_3$

Example
(1)
$$O + O_2 = O_3^*$$

(2) $O_3^* + M \to O_3$
 $c_{O3^*} = k_1 c_O c_{O2} / (k_{-1} + k_2 c_M)$
 $dc_{O3} / dt = k_2 c_{O3^*} c_M$
 $dc_{O3} / dt = k_1 k_2 c_O c_{O2} c_M / (k_{-1} + k_2 c_M) = (k_1 k_2 c_M / (k_{-1} + k_2 c_M)] c_O c_{O2}$
K
High pressure limit: $k_{-1} \approx 0 \to k_{\infty} = k_1$

Low pressure limit: $c_M \rightarrow 0 \rightarrow k_0 = k_1 k_2 / k_{-1}$

Reaction rate compilations

Compilations are considered the state-of-the-art description of atmospheric chemistry, because

- complete knowledge is summarized and assessed, and
- laboratory kineticists from around the world are involved

However,

- there is no guarantee for completeness, and
- some rate constants are very uncertain, but uncertainty is quantified

• Chemical kinetics and photochemical data for use in stratospheric modeling Eval. No. 12 (JPL-Publ-97-4; NAS 1.26112606; NASA CR-97-112606), 1997 (updated 2005, http://ntrs.nasa.gov/search.jsp

• Hydrocarbon reactions: Atkinson et al., Atmos. Chem. Phys. 6 (2006) 3625-4055

Chemical kinetics and photochemical data for use in stratospheric modeling Eval. No. 12 (JPL-Publ-97-4; NAS 1.26112606; NASA CR-97-112606), 1997 (updated 2005)

http://ntrs.nasa.gov/search.jsp

TABLE OF CONTENTS		Reaction	Table 1. (Continued A-Factor ^a	$E/R\pm(\Delta E/R)$	k(298 K) ^a	f(298) ^b	Notes
TABLE OF CONTENTS	Arrhenius expression	Reaction	A-Factor*	ERI(AER)	k(298 K) ^a	1(298)0	Notes
NTRODUCTION	l +	$OH + HONO \rightarrow H_2O + NO_2$	1.8x10 ⁻¹¹	$390\pm^{200}_{500}$	4.5x10 ⁻¹²	1.5	C 8
Basis of The Recommendations		2 2	1.0410	390±500	4.5410		
Recent Changes and Current Needs of Laboratory Kinetics .		$OH + HNO_3 \rightarrow H_2O + NO_3$	(See Note)			1.3	C 9
Format of the Evaluation		5 2 5					
Computer Access		$OH + HO_2NO_2 \rightarrow products$	1.3x10 ⁻¹²		4.6x10 ⁻¹²	1.5	C10
Ox Reactions		2 2 .	1.5410	$-(380\pm^{270}_{500})$	4.0410		2014-12/00
Reactions of Singlet Oxygen HO _x Reactions		$OH + NH_3 \rightarrow H_2O + NH_2$	1.7x10 ⁻¹²	710±200	1.6x10 ⁻¹³	1.2	C11
NO _x Reactions		5 2 2	1.7410		1.0410	19(0.37)	92,222
Oxidation of Organic Compounds		$HO_2 + NO \rightarrow NO_2 + OH$	3.5x10 ⁻¹²	-(250±50)	8.1x10 ⁻¹²	1.15	C12
Halogen Reactions		2 2	3.5410		0.1110		1.1.1.1.1.1.1.1
SO _x Reactions		$HO_2 + NO_2 \xrightarrow{M} HO_2NO_2$	(See Table 2)				
Metal Chemistry		$HO_2 + NO_2 \rightarrow HO_2 NO_2$	(oce ruble 2)				
Photochemical Data		NO NO NONO O					
Heterogeneous Chemistry		$HO_2 + NO_2 \rightarrow HONO + O_2$	(See Note)				C13
Gas Phase Enthalpy Data (Appendix 1)					125.10		
Entropy Data (Appendix 2)		$HO_2 + NO_3 \rightarrow products$			3.5x10-12	1.5	C14
Solar Flux and Species Profiles (Appendix 3)							
Data Formats		$HO_2 + NH_2 \rightarrow products$			3.4x10-11	2.0	C15
Bimolecular Reactions							
Termolecular Reactions		$N + O_2 \rightarrow NO + O$	1.5x10 ⁻¹¹	3600±400	8.5x10-17	1.25	C16
Uncertainty Estimates							
Units		$N + O_3 \rightarrow NO + O_2$			<2.0x10 ⁻¹⁶		C17
References for the Introduction					Salon I o		
ATE CONSTANT DATA		$N + NO \rightarrow N_2 + O$	2.1x10 ⁻¹¹	-(100±100)	3.0x10-11	1.3	C18
Table of Data for Second Order Reactions (Table 1)			CITATO		SIGNIO		
Notes to Table 1		$N + NO_2 \rightarrow N_2O + O$	5.8x10-12	-(220±100)	1.2x10-11	1.5	C19
References for Table 1		2 2	5.0410		1.2410		
Table of Data for Association Reactions (Table 2)		$NO + O_3 \rightarrow NO_2 + O_2$	2.0x10 ⁻¹²	1400±200	1.8x10 ⁻¹⁴	1.1	C20
Notes to Table 2		3 2 2	2.0010		1.0110		0.0017
References for Table 2		$NO + NO_3 \rightarrow 2NO_2$	1.5x10 ⁻¹¹	-(170±100)	2.6x10-11	1.3	C21
QUILIBRIUM CONSTANTS			1.5x10	(1102100)	2.0x10		021
Format		$NO_2 + O_3 \rightarrow NO_3 + O_2$	1.2x10 ⁻¹³	2450±150	3.2x10-17	1.15	C22
Definitions		1102 + 03 + 1103 + 02	1.2x10	24502150	3.2x10	1.15	022
Notes to Table 3 References for Table 3		$NO_2 + NO_3 \rightarrow NO + NO_2 + O_2$	(See Note)				C23
PHOTOCHEMICAL DATA		1102 + 1103 - 110 + 1102 + 02	(See Note)				025
Discussion of Format and Error Estimates			(See Table 2)				
$O_2 + hv \rightarrow 0 + 0$		$NO_2 + NO_3 \xrightarrow{M} N_2O_5$	(See Table 2)				
$O_2 + hv \rightarrow 0 + O_2$		1120 AV14 1220 B	523		1973		
$HO_2 + hv \rightarrow OH + H$		$NO_3 + NO_3 \rightarrow 2NO_2 + O_2$	8.5x10 ⁻¹³	2450±500	2.3x10-16	1.5	C24
$HO_2 + hv \rightarrow OH + H$ $H_2O + hv \rightarrow H + OH$							
		$NH_2 + O_2 \rightarrow products$			<6.0x10 ⁻²¹		C25
$H_2O_2 + hv \rightarrow OH + OH$							
$NO_2 + hv \rightarrow NO + O$		$NH_2 + O_3 \rightarrow products$	4.3x10-12	930±500	1.9x10 ⁻¹³	3.0	C26
$NO_3 + hv \rightarrow NO + O_2 (\Phi 1)$							
$NO_3 + hv \rightarrow NO_2 + O(\Phi_2)$		$NH_2 + NO \rightarrow products$	4.0x10-12	-(450±150)	1.8x10-11	1.3	C27
$N_2O + hv \rightarrow N_2 + O(^1D)$		•	TIONIN	64 - ¹ - 1	1.0410		
$N_2O_5 + hv \rightarrow Products$		$NH_2 + NO_2 \rightarrow products$	2.1x10 ⁻¹²	-(650±250)	1.9x10 ⁻¹¹	3.0	C28
$HONO + hv \rightarrow OH + NO$		2 2 .	2.1110	č. 10	1.9410		
$HNO_3 + hv \rightarrow products$		$NH + NO \rightarrow products$	4.9x10 ⁻¹¹	0±300	4.9x10-11	1.5	C29
$HO_2NO_2 + hv \rightarrow Products$			4.9X10		4.9X10		
		$NH + NO_2 \rightarrow products$	3 5 10-13	-(1140±500)	16×10-11	2.0	C30

1.4 Photochemical reactions

Radiation absorption in the atmosphere

Gaseous molecules absorb ultraviolet, visible and infrared light: O_3

Consequences:

- photophysical and photochemical molecular processes
- change of spectrum:

Specific because of vibrational-rotational and electronic transitions:

A series of vibrational-rotational states are populated (temperature dependent, Boltzmann) within electronic states. Vibrational-rotational (P, Q, R branches of change of J) and electronic transitions follow quantum rules (selection rules, ,allowed' or not allowed). These correspond to characteristic spectroscopic patterns. Therefore, emission and absorption spectroscopy allows for unambiguous identification of molecules.

Electronic excitation: $A \rightarrow B + C$

The energy barrier will be smaller and the distance between atoms will be larger for the excited molecule.

Fates of electronically excited molecules:

Photophysical primary processes: emission (fluorescence, phosphorescence), nonradiative energy transition into heat

Photochemical primary processes: dissociation, isomerization, re-arrangement, reaction

Example for photophysical process: $A^* + B \rightarrow A + B^*$: SO₂ (³B₁) + O₂ (³Σ_g) \rightarrow SO₂ (¹A₁) + O₂ (¹Σ_g)

Example for photochemical process: NO₂ (X²A) + hv (290 < λ < 430 nm) \rightarrow NO (X²Π) + O(³P)

Def.:

Efficiency of a primary photochemical process i is given by ist quantum yield ϕ_i := number of excited molecules by process i divided by total number of photons absorbed.

The sum of the ϕ_i of all the photochemical primary processes = 1.

Photodissociations

Unimolecular

$$A + h\nu \rightarrow B + C$$

A, B, C, D molecules or radicals example:

 $O_3 + hv \rightarrow O_2 + O(^3P)$

Reaction rate coefficient j (photolysis rate): $dc_C/dt = -dc_A/dt = j c_A$ Ground state, A /excitation state, A*:

```
A + hv \rightarrow A^*
Example:
O + hv \rightarrow O^*
i.e. O({}^{3}P) + hv \rightarrow O({}^{1}D)
```

Energy ranges, correspondence between energy and wavelength

- $\lambda = c/v$ with frequency v
- $\Delta E = hc/\lambda = hc\omega$ Planck relationship (wavelength λ , wavenumber ω , Planck's constant h = 6.626 x 10⁻³⁴ Js)
- Commonly used energy units:

```
(kJ mol^{-1})
    \times 0.2390 = \text{kcal mol}^{-1}
    \times 0.0104 = eV
    \times 83.59 = \text{cm}^{-1}
(\text{kcal mol}^{-1})
    \times 4.184 = \text{kJ mol}^{-1}
    \times 0.04336 = eV
    \times 349.8 = \text{cm}^{-1}
(cm^{-1})
    \times 1.196 \times 10^{-2} = \text{kJ mol}^{-1}
    \times 2.859 \times 10^{-3} = \text{kcal mol}^{-1}
    \times 1.240 \times 10^{-4} = eV
(eV)
    \times 96.49 = kJ mol<sup>-1</sup>
    \times 23.06 = \text{kcal mol}^{-1}
    \times 8.064 \times 10^3 = \text{cm}^{-1}
```

Energy ranges, correspondence between energy and wavelength

$\lambda = c/\nu$ $\Delta E = hc/\lambda = hc\omega$

Planck relationship (wavelength λ , wavenumber ω , Planck's constant h = 6.626 x 10⁻³⁴ Js)

Name	Typical wavelength or range of wavelengths (nm)	Typical range of frequencies ν (s ⁻¹)	Typical range of wavenumbers ω (cm ⁻¹)	Typical range of energies (kJ einstein ⁻¹) ^a
Radiowave	$\sim 10^8 - 10^{13}$	$\sim 3 \times 10^4 - 3 \times 10^9$	10 ⁻⁶ -0.1	$\sim 10^{-3} - 10^{-8}$
Microwave	$\sim 10^{7} - 10^{8}$	$\sim 3 \times 10^{9} - 3 \times 10^{10}$	0.1-1	$\sim 10^{-2} - 10^{-3}$
Far-infrared	$\sim 10^{5} - 10^{7}$	$\sim 3 \times 10^{10} - 3 \times 10^{12}$	1 - 100	$\sim 10^{-2} - 1$
Near-infrared	$\sim 10^3 - 10^5$	$\sim 3 \times 10^{12} - 3 \times 10^{14}$	$10^{2} - 10^{4}$	$\sim 1 - 10^2$
Visible				
Red	700	$4.3 imes 10^{14}$	1.4×10^{4}	1.7×10^{2}
Orange	620	$4.8 imes 10^{14}$	1.6×10^{4}	1.9×10^{2}
Yellow	580	$5.2 imes 10^{14}$	1.7×10^{4}	2.1×10^{2}
Green	530	5.7×10^{14}	1.9×10^{4}	2.3×10^{2}
Blue	470	$6.4 imes 10^{14}$	2.1×10^{4}	2.5×10^{2}
Violet	420	$7.1 imes 10^{14}$	2.4×10^{4}	$2.8 imes 10^2$
Near-ultraviolet	400-200	$(7.5-15.0) \times 10^{14}$	$(2.5-5) \times 10^4$	$(3.0-6.0) \times 10^2$
Vacuum ultraviolet	~ 200-50	$(1.5-6.0) \times 10^{15}$	$(5-20) \times 10^4$	$\sim (6.0-24) \times 10^2$
X-Ray	~ 50-0.1	$\sim (0.6 - 300) \times 10^{16}$	$(0.2-100) \times 10^{6}$	$\sim 10^3 - 10^6$
γ-Ray	≤ 0.1	$\sim 3 \times 10^{18}$	$\geq 10^8$	$> 10^{6}$

^{*a*} For kcal einstein⁻¹, divide by 4.184 (1 cal = 4.184 J).

The rate of photochemical reactions Absorption

 $ln(I_0/I) = \sigma Nd$ $I/I_0 = e^{(-\sigma Nd)}$

Beer-Lambert law

absorption cross section σ (cm², default: base e) molecule concentration N (cm⁻³), depth of absorptive layer d (cm) optical depth OD = σ Nd

Caution: Most measurements are made to the base 10 $(\log(I_0/I) = \sigma_{10}Nd) \rightarrow x 2.303$ to reach base e

The photolysis rate

The photolysis rate, j (s⁻¹), is given by:

$$j = \int_{\lambda} \phi(\lambda) \sigma(\lambda) L(\lambda) d\lambda$$

- quantum yield $\phi(\lambda)$ ($\),$
- absorption cross section σ (cm²),
- actinic flux, $L(\lambda)$ (cm⁻² s⁻¹)

L is the total intensity of effective light (direct + scattered + reflected, spherically integrated).

The photolysis rate

 $L(\lambda)$ is a function of the solar zenith angle, cloudiness, aerosol concentration, and surface albedo*.

Type of surface	Albedo
Snow	$0.69 \\ 0.93^b \\ 0.9-1.0$
Ocean	0.07^{b} $0.06-0.08^{a}$
Forests	$0.06 - 0.18^b$ 0.02^a 0.17
Fields and meadows	0.03-0.04 ^a
Desert	$0.06 - 0.09^{a}$
Salt flats	$0.57 - 0.65^{a}$

^{*a*} Minimum reflectivities at 370 nm. ^{*b*} Measured with respect to NO₂ ph

$$\frac{dn_A}{dt} = -n_A \int_{\mathcal{A}} \phi(\lambda) \sigma(\lambda) \left(\int_{0}^{2\pi} \int_{0}^{\pi} L(\lambda, \theta, \varphi) \sin \theta \, d\theta \, d\varphi \right) d\lambda$$

$$j_A$$

Typical j-values for midlatitude noontime equinox conditions range from ~1 \cdot 10⁻⁵ s-1 for j_{O(1D)} to ~0.2 s⁻¹ for j_{NO3}. The actinic flux under these conditions is about 2 \cdot 10¹⁴ photons cm⁻² s⁻¹ at 315-320 nm, and 7 \cdot 10¹⁴ photons cm⁻² s⁻¹ at 360-365 nm.

The photolysis rate

L is measured using a (2π) radiometer or by measuring the photolytic decay (so-called chemical actinometry). Its value can be estimated via tabulated values of ϕ and σ for intervals of λ and estimates of L(λ) for given conditions.

Fig. 3 Theoretical diurnal variation of the J[NO₂] and J[O₃] values for midsummer and midwinter at 40° N latitude near sea level. (Calvert, 1985)

Example j_{03} : Quantum yield $\phi_i(\lambda)$ for $i = O_3 + h\nu \rightarrow O(^1D) + O_2(^3\Sigma_g)$

TABLE 4.6 Parameterization of Quantum Yields for $O(^{1}D)$ Production from O_{3} Photolysis in the 306- to

329-nm Region at Various Temperatures^a

^a Using the quantum yield expression recommended by Talukdar *et al.*, 1998: $\phi = 0.06 + Ae^{-B/T}$.

Data src.: Finlayson-Pitts & Pitts, 1998

and the second s

320

330

. Ф К

310

Example j_{O3} : Absorption cross section $\sigma(\lambda, T)$ of O₃

TABLE 4.3 Ozone Absorption Cross Sections (Base e)^a

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		10 ²⁰ σ (cm ² mol	blecule ⁻¹)					_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Wavelength (nm)	T = 226 K T	T = 298 K	Wavelength (nm)	TABLE 4.4 Ozon			Temperature Averaged
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		62.59						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	187.0	59.33	59.41	264.0	Wavelength		Parameters	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	189.0	54.63	54.24	266.0	0		h	C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	191.0	48.42	48.80	268.0	Tunge (IIII)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	193.0	43.12 40.88	43.36	270.0 271.0	277.778-281.690	4.0293×10^{2}	$+4.3819 \times 10^{-2}$	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				272.0 273.0	281,690-285,714	2.7776×10^{2}		0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	197.0	34.63	35.00	274.0				2.1026×10^{-4}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	199.0	32.13	32.09	276.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	201.0	31.26	31.15	278.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	203.0	32.55	32.51	280.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	205.0	36.23	35.85	282.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		38.87 42.39	38.55 42.00					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	208.0	46.84	46.40	285.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	210.0	58.06	57.16	287.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	212.0	73.12	71.94	289.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	214.0	92.55	90.96	291.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	216.0	116.9	114.6	293.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	218.0	131.4 146.4	128.7 143.9	294.0 295.0				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	219.0	163.8	160.1	296.0				
225.0 296.3 294.3 302.0 $and and a function (0, T) = a + b(T - 230) + C(T - 230)^2$. T is in K: $\sigma(0, T)$ is in units of 10^{-20} cm ²	221.0	200.0	198.2	298.0	342.5-347.5	7.5780×10^{-2}	-5.7359×10^{-4}	1.6055×10^{-6}
225.0 296.3 294.3 302.0 $acc{\sigma(0, T)}{\sigma(0, T)} = a + b(T - 230) + C(T - 230)^{2*} T$ is in K: $\sigma(0, t)$ is in units of 10^{-20} cm ²	222.0	244.3	242.9	300.0				
	225.0	296.3	294.3	302.0	$a \sigma(O_3, T) = a + b$	$b(T - 230) + C(T - 230)^2$: T is in K: $\sigma(O_3)$ is in u	units of 10^{-20} cm ² mole-
$225.0 354.2 351.3 304.0 \text{ cule}^{-1}$ (base e)	226.0 227.0	323.9 354.2	322.6 351.3		cule ^{-1} (base <i>e</i>).		, , , _ (_ 3,)	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	228.0					1 Molina (1986)		
230.0 450.6 447.6 307.0 231.0 485.9 481.4 308.0	230.0	450.6	447.6	307.0	i ioni monna and	Mollina (1900).		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	232.0	523.0	518.1	309.0	10.04			
$\frac{233.0}{234.0} \qquad \qquad$	233.0	T	1					
²³⁵⁰ ₂₃₆₀ Example:	235.0 236.0	Exan	nple:					
	237.0 238.0		-	^				
Example: $\sigma_{O3}(310-320 \text{ nm}) \approx 60 \text{ x } 10^{-20} \text{ cm}^2/\text{molecule for } \text{T} = 298 \text{ K}$	239.0 240.0	$\sigma_{o}(3)$	310-320	$()$ nm $) \approx 6$	60 x 10 ⁻²⁰ c	2/molecul	le for $T = 20$)8 K
$\begin{array}{c} 241.0 \\ 242.0 \\ 243.0 \\$	242.0	-03(-						

Example: $\sigma_{O3}(310-320 \text{ nm}) \approx 60 \text{ x } 10^{-20} \text{ cm}^2/\text{molecule for } \text{T} = 298 \text{ K}$

1	939.6	933.3	320.0	2.859	3.243	
	975.2	971.7	321.0	1.368	2.041	
	1007	993.2	322.0	2.117	2.435	
	1042	1033	323.0	1.529	1.983	
	1058	1047	324.0	0.7852	1.250	
	1079	1071	325.0	1.486	1.727	
	1124	1112	326.0	0.7276	1.105	
	1134	1124	328.0	1.158	1.300	
	1123	1114	330.0	0.2854	0.4923	
	1165	1155	332.0	0.2415	0.4347	
	1149	1140	334.0	0.3788	0.5343	

243.0 244.0 245.0 246.0 247.0 248.0249.0 250.0

251.0 252.0 252.0 Data src.: Finlayson-Pitts & Pitts, 1998

Radiation absorption in the atmosphere

Actinic flux $L(\lambda)$ - Example:

For z = 15 km and solar zenith angle of 40° :

 $L(310-320 \text{ nm}) = (1.69+2.08+2.35+2.88+2.95) \times 10^{14v} \text{ cm}^{-2} \text{ s}^{-1}$

Order of magnitude estimate of $j_{O3\rightarrow O(1_D)}$ for a selected wavelength interval:

