0. Introduction - 0.1 Concept

The air / environment (geosphere): Is it a reactor? It's a matter of reactions and transports and mixing ! mixing times:

- vertically lower few kilometers (boundary layer) 1h-1d, mixing with free troposphere 2-10 days
- around the globe on the same latitude (zonal transport) within a few weeks
- from mid latitudes to the pole (meridional transport) within days to weeks, hemispheric mixing 2-6 months
- Between hemispheres about 1 year
- troposphere-stratosphere 1-3 years

Conceptually / knowledge to understand:

- (chemical) reactions
- (meteorological) transports and mixing

Tools to understand:
-3D transport models

- model parameters isolated in laboratory experiments
- significant ,ingredients‘ identified in the ,field‘

0.2 Atmospheric pressure and composition

Pressure and temperature profiles in the atmosphere

Pressure declin Ionosphere (Aurora) $\Delta \mathbf{p}=-\mathbf{g} \rho \Delta \mathrm{z}$ $\rho=1.225 \mathrm{mg} / \mathrm{cm}$, $\rightarrow \Delta z / \Delta p=8 \mathbf{m} / \mathbf{h P}$ $16 \mathrm{~m} / \mathrm{hPa}$ in 6 k ,barometric st

Mesosphere
$p(h)=p_{0} e^{-h g / R T}$
, Standard km T ${ }^{\circ}$
0
15
25

Earth
$28.964 \quad 1.76 \times 10^{19}$
$10-49.9265$
28.964
6.67×10^{18}
$20-56.5 \quad 55$
$30-46.6 \quad 12$
$100-63$
.00021
28.964

1. 38×10^{18}
28.964
0.30×10^{18}
28.5
5.29×10^{12}

0.3 Units for quantification of atmospheric trace substances

Ideal gas law: $\mathrm{pV}=\mathrm{nRT}=\mathrm{mRT} / \mathrm{M}_{\mathrm{g}}$
Universal gas constant $\mathrm{R}=8206 \mathrm{~Pa} \mathrm{~L} /(\mathrm{mol} \mathrm{K})=8.314 \mathrm{~J} /(\mathrm{mol} \mathrm{K})=\mathrm{N}_{\mathrm{a}} \mathrm{k}_{\mathrm{B}}$
Avogadro's number $\mathrm{N}_{\mathrm{A}}=6.023 \times 10^{23}$
Boltzmann constant $\mathrm{k}_{\mathrm{B}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$
Molar mass $\mathrm{M}_{\mathrm{g} \text { air }} \approx 28.8 \mathrm{~g} / \mathrm{mol}$
Molar volume at $\mathrm{T}_{0}=273 \mathrm{~K}$ and $\mathrm{p}_{0}=101325 \mathrm{~Pa}: \mathrm{V}=22.414 \mathrm{~L} / \mathrm{mol}$
Concentration $\mathrm{c}_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}} / \mathrm{V}\left[\mu \mathrm{g} / \mathrm{m}^{3}\right]$ (for gases: $=$ density)
Mass mixing ratio $\mu_{\mathrm{m}}=\mathrm{c}_{\mathrm{i}} / \mathrm{c}[, \%$, ppmm, ppbm $]$
Partial pressure $\mathrm{p}_{\mathrm{i}}=\mathrm{n}_{\mathrm{i}} \mathrm{RT} / \mathrm{V}_{\mathrm{i}}[\mathrm{Pa}]$
Volume mixing ratio $\mu_{\mathrm{Vi}_{\mathrm{i}}}=\mathrm{p}_{\mathrm{i}} / \mathrm{p}=\mathrm{V}_{\mathrm{i}} / \mathrm{V}[, \%, \mathrm{ppmV}, \mathrm{ppbV}]$
Number density $\mathrm{N}_{\mathrm{i}} / \mathrm{V}=\mathrm{n}_{\mathrm{i}} \mathrm{N}_{\mathrm{A}} / \mathrm{V}=\mathrm{p}_{\mathrm{i}} \mathrm{N}_{\mathrm{A}} / \mathrm{RT}\left[\mathrm{molec} / \mathrm{cm}^{3}\right]$
Avogadro's number $\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{molec} / \mathrm{mol}$
More details: Schwartz \& Warneck (1995): Units for use in atmospheric chemistry, Pure Appl. Chem. 67, 1377-1406

Chemical Composition of the Atmosphere

Constituent	Chemical Formula (sum)	Volume Mixing Ratio $\operatorname{in}_{10^{-13}}{ }^{13} r_{1!}$ Air	Major Sources and Remarks
Nitrogen	N_{2}	78.084\%	Biological
Oxygen	O_{2}	20.948\%	Biological
Argon	Ar	0.934\%	Inert
Carbon dioxide	CO_{2}	360 ppmv	Combustion, ocean, biosphere
Neon	Ne	18.18 ppmv	Inert
Helium	He	5.24 ppmv	Inert
Methane	CH_{4}	1.7 ppmv	Biogenic and anthropogenic
Hydrogen	H_{2}	0.55 ppmv	Biogenic, anthropogenic, and photochemical
Nitrous oxide	$\mathrm{N}_{2} \mathrm{O}$	0.31 ppmv	Biogenic and anthropogenic
Carbon monoxide	CO	$50-200 \mathrm{ppbv}$	Photochemical and anthropogenic
Ozone (troposphere)	O_{3}	10-500 ppbv	Photochemical
Ozone (stratosphere)	O_{3}	0.5-10 ppm	Photochemical
Nonmethane hydrocarbons		5-20 ppbv	Biogenic and anthropogenic
Halocarbons (as chlorine)		3.8 ppbv	85\% anthropogenic
Nitrogen species	NO_{y}	10 ppt-1 ppm	Soils, lightning, anthropogenic
Ammonia	NH_{3}	$10 \mathrm{ppt}-1 \mathrm{ppb}$	Biogenic
Particulate nitrate	NO_{3}^{-}	1 ppt -10 ppb	Photochemical, anthropogenic
Particulate ammonium	NH_{4}^{+}	$10 \mathrm{ppt}-10 \mathrm{ppb}$	Photochemical, anthropogenic
Hydroxyl	OH	0.1 ppt-10 ppt	Photochemical
Peroxyl	HO_{2}	0.1 ppt-10 ppt	Photochemical
Hydrogen peroxide	$\mathrm{H}_{2} \mathrm{O}_{2}$	0.1 ppb-10ppb	Photochemical
Formaldehyde	$\mathrm{CH}_{2} \mathrm{O}$	$0.1-1 \mathrm{ppb}$	Photochemical
Sulfur dioxide	SO_{2}	$10 \mathrm{ppt}-1 \mathrm{ppb}$	Photochemical, volcan

1 Reaction types, kinetics

1.1 Reaction rate coefficient k (dt.: Reaktionsgeschwindigkeitskoeffizient)
temperature dependence:
$-\mathrm{dc}_{\mathrm{i}} / \mathrm{dt}=\mathrm{k}_{\mathrm{T}} \mathrm{c}_{\mathrm{i}}$
$\mathrm{k}_{\mathrm{T}}=\mathrm{A}(\mathrm{T}) \mathrm{e}^{[\Delta \mathrm{E} /(\mathrm{RT})]}$
Universal gas constant $\mathrm{R}=\mathrm{k}_{\mathrm{B}} \mathrm{N}_{\mathrm{A}}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K} \times 6.023 \times 10^{23} / \mathrm{mol}$
Providing the energy is sufficiently large, the temperature dependence of A
is unimportant, and k_{T} follows the Arrhenius expression:
$\mathrm{k}_{\mathrm{T}}=\mathrm{A} \mathrm{e}^{\left[\mathrm{E}_{\mathrm{a}} /(\mathrm{RT})\right]}$
with activation energy E_{a}
Frequently used, too: van t'Hoff expression:
$\mathrm{k}_{\mathrm{T}}=\mathrm{B} \mathrm{e}^{\left[-\mathrm{E}_{\mathrm{a}} / \mathrm{R}\left(1 / \mathrm{T}-1 / \mathrm{T}_{\mathrm{ref}}\right)\right]}$,
The two expressions are equal via: $\mathrm{A}=\mathrm{Be}^{\left[\mathrm{E}_{\mathrm{a}} /\left(\mathrm{RT}_{\text {ref }}\right)\right]}$

Rate coefficient from gas kinetic theory
$=$ effective reactions per unit of time $=$
$=$ collision frequency x likelyhood of reaction per collision

1) Molecules need to collide ($\approx 10^{9} / \mathrm{s}$ at $10^{5} \mathrm{~Pa}$).

They are close enough to collide during $\approx\left(10^{-13}-10^{-12}\right) \times 10^{9} / \mathrm{s}$
Collision frequency $\quad Z_{i j}=\left(\frac{8 k T}{\pi m_{i j}}\right)^{1 / 2} \sigma_{i j}^{2} N_{i} N_{j} \quad \mathrm{~cm}^{-3} \mathrm{~s}^{-1}$

$$
\begin{gathered}
\left(\frac{8 k T}{\pi m_{i j}}\right)^{1 / 2} \text { root-mean-square rel } \\
m_{i j}=\frac{m_{i} m_{j}}{m_{i}+m_{j}} \quad \text { reduced mass }
\end{gathered}
$$

$N_{i}:$ number density $\left(\mathrm{cm}^{-3}\right)$
$k=1.381 \cdot 10^{-23} \mathrm{JK}^{-1} \quad$ Boltzmann constant
$\sigma_{\mathrm{ij}}^{2}:$ collision cross section

Speed, collisions in absolute terms:

from Maxwell-Boltzmann distribution function of molecular velocities (gas kinetic theory):
$\mathrm{dN} / \mathrm{N}=\mathrm{c}^{\left(\mathrm{m}\left\langle\mathrm{v}_{\mathrm{i}}\right\rangle^{2} / 2 \mathrm{kT}\right)} ;$ with $\mathrm{c}=(\mathrm{m} / 2 \pi \mathrm{kT})^{0.5}$
$\left.<\mathrm{v}_{\mathrm{i}}\right\rangle=$ mean absolute velocity of molecules
corresponding mean free path λ with regard to collisions

$$
\begin{aligned}
& \lambda_{\mathrm{i}}=1 /\left[\left(\mathrm{N}_{\mathrm{A}} / \mathrm{V}\right)\left(\sqrt{ } 2 \pi \sigma_{\mathrm{i}}^{2}\right)\right], \\
& \mathrm{N}_{\mathrm{A}} / \mathrm{V}=6.022 \times 10^{23} / 0.0224=2.46 \times 10^{25} \mathrm{molec} / \mathrm{m}^{3}
\end{aligned}
$$

$\left.\mathrm{N}_{2}:<\mathrm{v}\right\rangle=0.51 \mathrm{~m} / \mathrm{s}=1840 \mathrm{~km} / \mathrm{h}, \lambda=65 \mathrm{~nm}$
$\left.\mathrm{CO}_{2}:<\mathrm{v}\right\rangle=0.41 \mathrm{~m} / \mathrm{s}=1490 \mathrm{~km} / \mathrm{h}, \lambda=44 \mathrm{~nm}$

2) Extra energy is needed to overcome the transition state

As molecules approach each other they have to overcome an energy barrier because of electronic repulsion. The energy they absorb leads to a loosening of the intramolecular bonds until a transition state is reached, which can then either fall back into the original molecules or proceed to yield the products of the reaction. Reaction enthalpy $\Delta \mathrm{H}_{\mathrm{r}}$.

Likelyhood: collision cross section, $\sigma_{i j}$

In the transition state, usually the energy provided from bond formation is less than the energy consumption from bond breaking.
The collision cross section takes into account that a minimum amount of energy is needed. It is not necessarily provided with every orientation of the molecules during approach (steric factor).

$$
\sigma_{i j}=\pi\left(r_{i}+r_{j}\right)^{2}\left(1-\frac{E_{0}}{E}\right) \quad \text { for } E \geq E_{0}, 0 \text { elsewhere }
$$

Integrated over all total energies from 0 to ∞, the frequency of reactive collisions becomes

$$
Z_{i j}^{R}=\underbrace{\pi\left(r_{i}+r_{j}\right)^{2}\left(\frac{8 k T}{\pi m_{i j}}\right)^{1 / 2}}_{k} \quad \begin{aligned}
& \begin{array}{l}
\text { Theoretical maximum } \\
\begin{array}{l}
\text { at } 1000 \mathrm{hPa}, 293 \mathrm{~K} \\
\text { (for } \mathrm{r}_{\mathrm{i}}, \mathrm{r}_{\mathrm{j}}=0.2 \mathrm{~nm}, \mathrm{E}_{0}=0 \text { and no steric } \\
\text { hindrance }): \mathrm{k} \approx 2 \mathrm{k} 10^{-10} \mathrm{~cm}^{3} / \mathrm{molec} / \mathrm{s} \\
\mathrm{~s}
\end{array}
\end{array}
\end{aligned}
$$

1.2 Homogeneous gas-phase reactions

Reactions can be unimolecular, bi- or termolecular.

The rate law of a reaction of the general form

$$
\mathrm{aA}+\mathrm{bB} \rightarrow \mathrm{cC}+\mathrm{dD}
$$

Is defined as

Rate $(\mathrm{dt}:$: Rate $)=-\mathrm{dc}_{\mathrm{A}} / \mathrm{dt} / \mathrm{a}=-\mathrm{dc}_{\mathrm{B}} / \mathrm{dt} / \mathrm{b}=\mathrm{dc}_{\mathrm{C}} / \mathrm{dt} / \mathrm{c}=\mathrm{dc}_{\mathrm{D}} / \mathrm{dt} / \mathrm{d}$ example:

$$
2 \mathrm{NO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}
$$

Rate $=-\mathrm{dc}_{\mathrm{NO}} / \mathrm{dt} / 2=-\mathrm{dc}_{\mathrm{O} 2} / \mathrm{dt}=\mathrm{dc}_{\mathrm{NO} 2} / \mathrm{dt} / 2$

Second order
Usually: bimolecular

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D} \\
& \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}
\end{aligned}
$$

; A, B, C, D molecules or radicals
example:
$\mathrm{O}+\mathrm{O}_{2} \rightarrow \mathrm{O}_{3}$
$\mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$
$\mathrm{dc}_{\mathrm{C}} / \mathrm{dt}=-\mathrm{dc}_{\mathrm{A}} / \mathrm{dt}=-\mathrm{dc}_{\mathrm{B}} / \mathrm{dt}=\mathrm{k}^{(2)} \mathrm{c}_{\mathrm{A}}{ }^{1} \mathrm{c}_{\mathrm{B}}{ }^{1}$
Reaction rate: second order ($1+1=2$)
Reaction rate coefficient (denoting the order): $\mathrm{k}^{(2)}$
The reaction order is given by the sum of the exponentials, $\mathrm{n}+\mathrm{m}+\ldots$, of the concentration terms in the rate law of the form $-\mathrm{dc}_{\mathrm{A}} / \mathrm{dt}=\mathrm{kc}_{\mathrm{A}}{ }^{\mathrm{n}} \mathrm{c}_{\mathrm{B}}{ }^{\mathrm{m}}(\mathrm{n}=$ zero or integer or fraction*)
It is determined empirically.

Here, M stands for any molecule or atom (i.e. $\mathrm{N}_{2}, \mathrm{O}_{2}, \ldots$), not transformed but required to absorb excess energy, e.g. of an activated intermediate state:

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B}=\mathrm{AB} *+\mathrm{C}+\mathrm{D} \\
& \mathrm{~A}+\mathrm{C}+\mathrm{D}
\end{aligned}
$$

Example: thermic dissociation $\mathrm{HOONO}_{2} \rightarrow \mathrm{HO}_{2}+\mathrm{NO}_{2}$ Reaction rate $\mathrm{dc}_{\mathrm{C}} / \mathrm{dt}=-\mathrm{dc}_{\mathrm{A}} / \mathrm{dt}=\mathrm{k}^{(1)} \mathrm{c}_{\mathrm{A}}{ }^{1}$ $\mathrm{k}^{(1)}=\mathrm{k}^{(2)} \mathrm{c}_{\mathrm{M}}{ }^{1}\left(\mathrm{c}_{\mathrm{M}}{ }^{1}\right.$ constant $)$
$\mathrm{Cl}+\mathrm{HO}_{2} \rightarrow \mathrm{HCl}+\mathrm{O}_{2}$
$\mathrm{Cl}+\mathrm{HO}_{2} \rightarrow \mathrm{ClO}+\mathrm{OH}$
$\mathrm{Cl}+\mathrm{CH}_{2}\left(+\mathrm{O}_{2}\right) \rightarrow \mathrm{HCl}+\mathrm{CO} \mathrm{HO} 2$
$\mathrm{ClO}+\mathrm{HO}_{2} \rightarrow \mathrm{HOCl}+\mathrm{O}_{2}$
$\mathrm{HOCl}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{ClO}$
$\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{O}\left({ }^{1} \mathrm{D}\right) \rightarrow \mathrm{OH}+\mathrm{CH}_{2} \mathrm{Cl}$
$\mathrm{CH}_{3} \mathrm{CCl}_{3}+\mathrm{O}\left({ }^{1} \mathrm{D}\right) \rightarrow \mathrm{OH}+\mathrm{CH}_{2} \mathrm{CCl}_{3}$
$\mathrm{CH}_{3} \mathrm{Cl}+\mathrm{OH} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CH}_{3} \mathrm{CCl}_{3}+\mathrm{OH} \rightarrow \mathrm{CH}_{2} \mathrm{CCl}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CF}_{2} \mathrm{Cl}_{2}+\mathrm{O}\left({ }^{1} \mathrm{D}\right) \rightarrow \mathrm{CF}_{2} \mathrm{Cl}+\mathrm{ClO}$
$\mathrm{CFCl}_{3}+\mathrm{O}\left({ }^{1} \mathrm{D}\right) \rightarrow \mathrm{CFCl}_{2}+\mathrm{ClO}$
$\mathrm{CCl}_{4}+\mathrm{O}\left({ }^{1} \mathrm{D}\right) \rightarrow \mathrm{CCl}_{3}+\mathrm{ClO}$
$\mathrm{ClO}+\mathrm{ClO} \xrightarrow{\mathrm{M}} \mathrm{Cl}_{2} \mathrm{O}_{2}$
$\mathrm{Cl}_{2} \mathrm{O}_{2} \xrightarrow{\mathrm{M}} \mathrm{ClO}+\mathrm{ClO}$
Odd nitrogen
$\mathrm{N}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{O}\left({ }_{3}^{3} \mathrm{P}\right)$
$\mathrm{N}+\mathrm{NO} \rightarrow \mathrm{N}_{2}+\mathrm{O}\left({ }^{3} \mathrm{P}\right)$
$\mathrm{N}+\mathrm{OH} \rightarrow \mathrm{NO}$
$\begin{array}{ll}\mathrm{HO}_{2} \mathrm{NO}_{2} \xrightarrow{\mathrm{M}} & \mathrm{NO}+\mathrm{OH} \\ \mathrm{NO}_{2}+\mathrm{HO}_{2}\end{array}$
$\mathrm{HO}_{2} \mathrm{NO}_{2}+\mathrm{OH} \rightarrow \mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
$\mathrm{N}_{2} \mathrm{O}_{5} \rightarrow \mathrm{NO}_{2}$
$\mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$
$R_{\mathrm{C} 7}=1.8 \times 10^{-11} \exp (170 / T)$
$R_{\mathrm{C} 8}=4.1 \times 10^{-11} \exp (-450 / T)$
$R_{\mathrm{C} 9}=8.1 \times 10^{-11} \exp (-30 / T)$
$R_{\mathrm{C} 10}=4.8 \times 10^{-13} \exp (700 / T)$
$R_{\mathrm{C} 11}=3.0 \times 10^{-12} \exp (-500 / T)$
$R_{\mathrm{C} 12}=4.0 \times 10^{-10}$
$R_{\mathrm{C} 13}=4.0 \times 10^{-10}$
$R_{\mathrm{C} 14}=2.1 \times 10^{-12} \exp (-1150 / T)$
$R_{\mathrm{C} 15}=1.8 \times 10^{-12} \exp (-1550 / T)$
$R_{\mathrm{C} 16}=1.4 \times 10^{-10}$
$R_{\mathrm{C} 17}=2.3 \times 10^{-10}$
$R_{\mathrm{C} 18}=3.3 \times 10^{-10}$
$R_{\mathrm{C} 19}=f\left(K_{0}, K_{\infty}\right), K_{0}=1.9 \times 10^{-32}[M](300 / T)^{3.9}, K_{\circ}$
$R_{\mathrm{C} 20}=R_{\mathrm{C} 19} /\left(3.0 \times 10^{-27} \exp (8450 / T)\right)$
$R_{\mathrm{N} 1}=1.5 \times 10^{-11} \exp (-3600 / T)$
$R_{\mathrm{N} 2}=3.4 \times 10^{-11}$
$R_{\mathrm{N} 4}=2.0 \times 10^{-10}$
$R_{\mathrm{N} 5}=R_{\mathrm{N} 16} /\left(2.1 \times 10^{-27} \exp (10900 / T)\right.$
$R_{\mathrm{N} 6}=1.3 \times 10^{-12} \exp (380 / T)$
$R_{\mathrm{N} 8}=2.0 \times 10^{-12} \exp (-1400 / T)$
$\mathrm{NO}+\mathrm{ClO} \rightarrow \mathrm{NO}_{2}+\mathrm{Cl}$
$\mathrm{NO}+\mathrm{HO}_{2} \rightarrow \mathrm{NO}_{2}+\mathrm{OH}$
$\mathrm{NO}+\mathrm{CH}_{3} \mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}+\mathrm{CH}_{3} \mathrm{O}$
$\mathrm{NO}+\mathrm{NO}_{3} \rightarrow 2 \mathrm{NO}_{2}$
$\mathrm{NO}_{2}+\mathrm{O}\left({ }^{3} \mathrm{P}_{\mathrm{M}} \rightarrow \mathrm{NO}+\mathrm{O}_{2}\right.$
$\mathrm{NO}_{2}+\mathrm{ClO} \xrightarrow{\mathrm{M}} \mathrm{ClONO}_{2}$
$\mathrm{NO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{3}+\mathrm{O}_{2}$
$\mathrm{NO}_{2}+\mathrm{HO}_{2} \xrightarrow{M} \mathrm{HO}_{2} \mathrm{NO}_{2}$
$\mathrm{NO}_{2}+\mathrm{OH} \xrightarrow{M} \mathrm{HNO}_{3}$
$\mathrm{NO}_{2}+\mathrm{NO}_{3} \xrightarrow{\mathrm{M}} \mathrm{N}_{2} \mathrm{O}_{5}$
$\mathrm{HNO}_{3}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{3}$
$\mathrm{ClONO}_{2}+\mathrm{O}\left({ }^{3} \mathrm{P}\right) \rightarrow \mathrm{ClO}+\mathrm{NO}_{3}$
$\mathrm{N}_{2} \mathrm{O}+\mathrm{O}\left({ }^{1} \mathrm{D}\right) \rightarrow 2 \mathrm{NO}$
$\mathrm{N}_{2} \mathrm{O}+\mathrm{O}\left({ }^{1} \mathrm{D}\right) \rightarrow \mathrm{N}_{2}+\mathrm{O}_{2}$
$\mathrm{N}+\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{O}_{2}$
Odd hydrogen
$\mathrm{OH}+\mathrm{HO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}$
$\mathrm{HO}_{2}+\mathrm{HO}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{O}_{2}$
$\mathrm{H}_{2}+\mathrm{O}\left({ }^{1} \mathrm{D}\right) \rightarrow \mathrm{H}+\mathrm{OH}$
$R_{\text {N9 }}=6.4 \times 10^{-12} \exp (290 / T)$
$R_{\text {N } 10}=3.7 \times 10^{-12} \exp (250 / T)$
$R_{\text {N } 11}=4.2 \times 10^{-12} \exp (180 / T)$
$R_{\mathrm{N} 12}=1.5 \times 10^{-11} \exp (170 / T)$
$R_{\mathrm{N} 13}=6.5 \times 10^{-12} \exp (120 / T)$
$R_{\text {N14 }}=f\left(K_{0}, K_{\infty}\right), K_{0}=1.8 \times 10^{-31}[M](300 / T)^{3.4}, K_{C}$ $R_{\mathrm{N} 15}=1.2 \times 10^{-13} \exp (-2450 / T)$
$R_{\text {N16 }}=f\left(K_{0}, K_{\infty}\right), K_{0}=1.8 \times 10^{-31}[M](300 / T)^{3.2}$,
$R_{\text {N } 17}=f\left(K_{0}, K_{\infty}\right), K_{0}=2.6 \times 10^{-30}[M](300 / T)^{3.2}$,
$R_{\mathrm{N} 18}=f\left(K_{0}, K_{\infty}\right), K_{0}=2.2 \times 10^{-30}[M](300 / T)^{3.9}, K_{0}$
$R_{\mathrm{N} 19}=K_{1}+K_{2} /\left(1+K_{2} / K_{3}\right), K_{1}=7.2 \times 10^{-15} \exp (76$
$K_{3}=4.1 \times 10^{-16} \exp (1440 / T)$
$R_{\mathrm{N} 20}=2.9 \times 10^{-12} \exp (-800 / T)$
$R_{\mathrm{N} 21}=6.7 \times 10^{-11}$
$R_{\mathrm{N} 22}=4.9 \times 10^{-11}$
$R_{\mathrm{N} 23}=3.0 \times 10^{-12}$
$R_{\mathrm{H} 1}=4.8 \times 10^{-11} \exp (250 / T)$
$R_{\mathrm{H} 2}=2.3 \times 10^{-13} \exp (600 / T)+1.7 \times 10^{-33}[M] \exp (1$ $R_{\mathrm{H} 3}=1.0 \times 10^{-10}$
$\mathrm{OH}+\mathrm{O}\left({ }^{3} \mathrm{P}\right) \rightarrow \mathrm{O}_{2}+\mathrm{H}$
$\mathrm{HOCO} \rightarrow \mathrm{CO}_{2}+\mathrm{H}$
$\mathrm{OH}+\mathrm{H}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{H}$
$\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{CH}_{4}\left(+\mathrm{O}_{2}\right) \rightarrow \mathrm{CH}_{3} \mathrm{O}_{2}+\mathrm{OH}$
$\mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{OH}$
$\mathrm{H}+\mathrm{O}_{3} \rightarrow \mathrm{OH}+\mathrm{O}_{2}$
$\mathrm{H}+\mathrm{HO}_{2} \rightarrow 2 \mathrm{OH}$
$\left.\mathrm{HO}_{2}+\mathrm{O}^{3} \mathrm{P}\right) \rightarrow \mathrm{OH}+\mathrm{O}_{2}$
$\mathrm{HO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{OH}+2 \mathrm{O}_{2}$
$\mathrm{H}+\mathrm{O}_{2} \xrightarrow{\mathrm{M}} \mathrm{HO}_{2}$
$\mathrm{OH}+\mathrm{O}_{3} \rightarrow \mathrm{HO}_{2}+\mathrm{O}_{2}$
$R_{\mathrm{H} 4}=2.2 \times 10^{-11} \exp (120 / T)$
$R_{\mathrm{H} 5}=1.5 \times 10^{-13}(1+0.6 p / 101400)$
$R_{\mathrm{H} 6}=5.5 \times 10^{-12} \exp (-2000 / T)$
$R_{\mathrm{H} 7}=1.4 \times 10^{-10}$
$R_{\mathrm{H} 8}=2.2 \times 10^{-10}$
$R_{\mathrm{H} 9}=1.4 \times 10^{-10} \exp (-470 / T)$
$R_{\mathrm{H} 10}=7.1685 \times 10^{-11}$
$R_{\mathrm{H} 11}=3.0 \times 10^{-11} \exp (200 / T)$

$R_{\mathrm{H} 14}=1.6 \times 10^{-12} \exp (-940 / T)$

Reaction orders

$\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D}$
is $2^{\text {nd }}$ order or - in case $\mathrm{dc}_{\mathrm{B}} / \mathrm{dt} \approx 0-$ pseudo- $1^{\text {st }}$ order
$\mathrm{A}+\mathrm{B}+\mathrm{M} \rightarrow \mathrm{C}+\mathrm{D}+\mathrm{M}$
is $2^{\text {nd }}$ order or - in case $\mathrm{dc}_{\mathrm{B}} / \mathrm{dt} \approx 0-$ pseudo- 1 st order or

- if $\mathrm{p} \ll 1000 \mathrm{hPa}$ - between $2^{\text {nd }}$ and $3^{\text {rd }}$ order

The unit of a homogeneous gas-phase rate is $\left[\mathrm{molec} / \mathrm{cm}^{3} / \mathrm{s}\right]$.

A $1^{\text {st }}$ or pseudo- $1^{\text {st }}$ order rate law reads:

$$
-\mathrm{dc}_{\mathrm{A}} / \mathrm{dt}=\mathrm{dc}_{\mathrm{C}} / \mathrm{dt}=\mathrm{k}^{(1)} \mathrm{c}_{\mathrm{C}} \text {, with } \mathrm{k}^{(1)}[1 / \mathrm{s}]
$$

A $2^{\text {nd }}$ order rate law reads:
$-\mathrm{dc}_{\mathrm{A}} / \mathrm{dt}=\mathrm{dc}_{\mathrm{C}} / \mathrm{dt}=\mathrm{k}^{(2)} \mathrm{c}_{\mathrm{C}} \mathrm{c}_{\mathrm{D}}$, with $\mathrm{k}^{(2)}\left[\mathrm{cm}^{3} / \mathrm{molec} / \mathrm{s}\right]$.
A $3^{\text {rd }}$ order rate law reads e.g.:
$-\mathrm{dc}_{\mathrm{A}} / \mathrm{dt}=\mathrm{k}^{(3)} \mathrm{c}_{\mathrm{C}}{ }^{2} \mathrm{c}_{\mathrm{D}}$, with $\mathrm{k}^{(3)}\left[\mathrm{cm}^{6} / \mathrm{molec}^{2} / \mathrm{s}\right]$.
3. between $2^{\text {nd }}$ and $3^{\text {rd }}$ order: In the range of pressures and temperatures in the upper troposphere and stratosphere (c_{M} small) many reactions are in the region between $2^{\text {nd }}$ and $3^{\text {rd }}$ order reactions:

$$
k=\frac{k_{0} \mathrm{M}}{1+k_{0} \mathrm{M} / k_{\infty}} F_{C}^{\left(1+\log \left(k_{0} M / k_{\infty}\right)^{2}\right)^{-1}} \quad \mathrm{~F}_{\mathrm{C}} \approx 0.6
$$

$$
k_{0}(T)=k_{0}^{300 K}\left(\frac{T}{300 K}\right)^{-n}, \quad k \infty(T)=k_{\infty}^{300 K}\left(\frac{T}{300 K}\right)^{-m}
$$

$\mathrm{k}_{0}, \mathrm{k}_{\infty}=$ low, high pressure limiting rate constant
(Iroe, 1979)
$\mathrm{F}_{\mathrm{C}}=$ broadening factor of falloff curve between $2^{\text {nd }}$ and $3^{\text {rd }}$ order in the range of atmospheric pressures

$$
\mathrm{NO}_{2}+\mathrm{HO}_{2}+\mathrm{M} \rightarrow \mathrm{HO}_{2} \mathrm{NO}_{2}+\mathrm{M}
$$

$$
\mathrm{K}_{0}=\mathrm{k}_{0}(\mathrm{~T}) \mathrm{c}_{\mathrm{M}}, \mathrm{n}=3.2
$$

$$
\mathrm{K}_{\infty}=\mathrm{k}_{\infty}(\mathrm{T}), \mathrm{m}=1.4
$$

$$
\mathrm{k}_{288 \mathrm{~K} / 000 \mathrm{hPa}}=1.9 \times 10^{-12} \mathrm{~cm}^{3} / \mathrm{molec} / \mathrm{s}
$$

$$
\mathrm{k}_{288 \mathrm{~K} / 500 \mathrm{hPa}}=1.5 \times 10^{-12} \mathrm{~cm}^{3} / \mathrm{molec} / \mathrm{s}
$$

$$
\mathrm{k}_{230 \mathrm{~K} / 500 \mathrm{hPa}}=2.3 \times 10^{-12} \mathrm{~cm}^{3} / \mathrm{molec} / \mathrm{s}
$$

$$
\mathrm{k}_{230 \mathrm{~K} / 1000 \mathrm{hPa}}=3.0 \times 10^{-12} \mathrm{~cm}^{3} / \mathrm{molec} / \mathrm{s}
$$

$$
\begin{aligned}
& \mathrm{NO}+\mathrm{HO}_{2} \rightarrow \mathrm{NO}_{2}+\mathrm{OH} \\
& \mathrm{NO}+\mathrm{CH}_{3} \mathrm{O}_{2} \rightarrow \mathrm{NO}_{2}+\mathrm{CH}_{3} \mathrm{O} \\
& \mathrm{NO}+\mathrm{NO}_{3} \rightarrow 2 \mathrm{NO}_{2} \\
& \mathrm{NO}_{2}+\mathrm{O}\left({ }^{3} \mathrm{P} \mathrm{~h}_{\mathrm{M}} \rightarrow \mathrm{NO}+\mathrm{O}_{2}\right. \\
& \mathrm{NO}_{2}+\mathrm{ClO} \xrightarrow{\text { }} \mathrm{ClONO}_{2} \\
& \mathrm{NO}_{2}+\mathrm{HO}_{2} \xrightarrow[\mathrm{M}]{\mathrm{M}} \mathrm{HO}_{2} \mathrm{NO}_{2} \\
& \begin{array}{l}
\mathrm{NO}_{2}+\mathrm{OH}_{3} \xrightarrow{M} \mathrm{HNO}_{2} \\
\mathrm{NO}_{2}+\mathrm{NO}_{2} \mathrm{O}_{5}
\end{array} \\
& \mathrm{HNO}_{2}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}
\end{aligned}
$$

1.3 Combinations of thermic reactionsQuasi steady state approximation

Second order
Usually: bimolecular

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D} \\
& \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}
\end{aligned}
$$

A, B, C, D molecules or radicals
example:

$$
\begin{aligned}
& \mathrm{O}+\mathrm{O}_{2} \rightarrow \mathrm{O}_{3} \\
& \mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}
\end{aligned}
$$

Reaction rate: second order $(1+1=2)$
$\mathrm{dc}_{\mathrm{C}} / \mathrm{dt}=-\mathrm{dc}_{\mathrm{A}} / \mathrm{dt}=-\mathrm{dc}_{\mathrm{B}} / \mathrm{dt}=\mathrm{kc}_{\mathrm{A}}{ }^{1} \mathrm{c}_{\mathrm{B}}{ }^{1}$
Reaction rate coefficient: $\mathrm{k}^{(2)}$
$\mathrm{k}=\mathrm{A} \exp \left[-\left(\mathrm{E}_{\mathrm{a}} / \mathrm{R}\right) \mathrm{T}\right]$
Arrhenius expression, preexponential factor A, activation energy E_{a} $\mathrm{k}\left(\mathrm{T}^{-1}\right) \rightarrow$ slope $-\mathrm{E}_{\mathrm{a}} / \mathrm{R}$, intercept $\ln \mathrm{A}, \mathrm{E}_{\mathrm{a}} / \mathrm{R}>0 \leftrightarrow$ faster at higher T

1.3 Combinations of thermic reactionsQuasi steady state approximation

Second order
Usually: bimolecular

$$
\begin{aligned}
& \mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}+\mathrm{D} \\
& \mathrm{~A}+\mathrm{B} \rightarrow \mathrm{C}
\end{aligned}
$$

A, B, C, D molecules or radica example:

$$
\begin{aligned}
& \mathrm{O}+\mathrm{O}_{2} \rightarrow \mathrm{O}_{3} \\
& \mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}
\end{aligned}
$$

Reaction rate: second order (1+ $\mathrm{dc}_{\mathrm{C}} / \mathrm{dt}=-\mathrm{dc}_{\mathrm{A}} / \mathrm{dt}=-\mathrm{dc}_{\mathrm{B}} / \mathrm{dt}=\mathrm{kc}$

Very frequent:
(1) $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{C}^{*}$
(-1) $\quad \mathrm{C}^{*} \rightarrow \mathrm{~A}+\mathrm{B}$
(2) $\mathrm{C}^{*}+\mathrm{M} \rightarrow \mathrm{C}$

Intermediate C^{*} :
$\mathrm{dc}_{\mathrm{C}^{*}} / \mathrm{dt}=\mathrm{k}_{1} \mathrm{c}_{\mathrm{A}} \mathrm{c}_{\mathrm{B}}-\mathrm{k}_{-1} \mathrm{c}_{\mathrm{C}^{*}}-\mathrm{k}_{2} \mathrm{c}_{\mathrm{C}^{*}} \mathrm{c}_{\mathrm{M}}$
Lifetime of C^{*} short $\rightarrow \mathrm{dc}_{\mathrm{C}^{*}} / \mathrm{dt}=0$ Hence:
$\mathrm{k}_{1} \mathrm{c}_{\mathrm{A}} \mathrm{c}_{\mathrm{B}}=\mathrm{k}_{-1} \mathrm{c}_{\mathrm{C}^{*}}+\mathrm{k}_{2} \mathrm{c}_{\mathrm{C}^{*}} \mathrm{c}_{\mathrm{M}}$
$\mathrm{k}_{1} \mathrm{c}_{\mathrm{A}} \mathrm{c}_{\mathrm{B}}=\mathrm{c}_{\mathrm{C}^{*}}\left(\mathrm{k}_{-1}+\mathrm{k}_{2} \mathrm{c}_{\mathrm{M}}\right)$
$\mathrm{c}_{\mathrm{C}^{*}}=\mathrm{k}_{1} \mathrm{c}_{\mathrm{A}} \mathrm{c}_{\mathrm{B}} /\left(\mathrm{k}_{-1}+\mathrm{k}_{2} \mathrm{c}_{\mathrm{M}}\right)$
Reaction rate coefficient: $\mathrm{k}^{(2)}$
$\mathrm{k}=\mathrm{A} \exp \left[-\left(\mathrm{E}_{\mathrm{a}} / \mathrm{R}\right) \mathrm{T}\right]$
Arrhenius expression, preexpose $\mathrm{k}\left(\mathrm{T}^{-1}\right) \rightarrow$ slope $-\mathrm{E}_{\mathrm{a}} / \mathrm{R}$, intercept $\ln \mathrm{A}$,

Example

$\begin{array}{ll}\text { (1) } & O+O_{2}=O_{3}{ }^{*} \\ \text { (2) } & O_{3} *+M \rightarrow O_{3}\end{array}$
(1) $O+O_{2}=O_{3}^{*}$
(2) $O_{3}{ }^{*}+M \rightarrow O_{3}$
$\mathrm{c}_{\mathrm{O} 3^{*}}=\mathrm{k}_{1} \mathrm{c}_{\mathrm{O}} \mathrm{c}_{\mathrm{O} 2} /\left(\mathrm{k}_{-1}+\mathrm{k}_{2} \mathrm{c}_{\mathrm{M}}\right)$
$\mathrm{dc}_{\mathrm{O} 3} / \mathrm{dt}=\mathrm{k}_{2} \mathrm{c}_{\mathrm{O} 3} \mathrm{c}_{\mathrm{M}}$
$\left.\mathrm{dc}_{\mathrm{O} 3} / \mathrm{dt}=\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{c}_{\mathrm{O}} \mathrm{c}_{\mathrm{O} 2} \mathrm{c}_{\mathrm{M}} /\left(\mathrm{k}_{-1}+\mathrm{k}_{2} \mathrm{c}_{\mathrm{M}}\right)=\mathrm{k}_{1} \mathrm{k}_{2} \mathrm{c}_{\mathrm{M}} /\left(\mathrm{k}_{-1}+\mathrm{k}_{2} \mathrm{c}_{\mathrm{M}}\right)\right] \mathrm{c}_{\mathrm{O}} \mathrm{c}_{\mathrm{O} 2}$.
High pressure limit: $\quad \mathrm{k}_{-1} \approx 0 \rightarrow \mathrm{k}_{\infty}=\mathrm{k}_{1}$

Low pressure limit: $\quad \mathrm{c}_{\mathrm{M}} \rightarrow 0 \quad \rightarrow \mathrm{k}_{0}=\mathrm{k}_{1} \mathrm{k}_{2} / \mathrm{k}_{-1}$

Reaction rate compilations

Compilations are considered the state-of-the-art description of atmospheric chemistry, because

- complete knowledge is summarized and assessed, and
- laboratory kineticists from around the world are involved

However,

- there is no guarantee for completeness, and
- some rate constants are very uncertain, but uncertainty is quantified
- Chemical kinetics and photochemical data for use in stratospheric modeling Eval. No. 12 (JPL-Publ-97-4; NAS 1.26112606; NASA CR-97-112606), 1997 (updated 2005, http://ntrs.nasa.gov/search.jsp
- Hydrocarbon reactions: Atkinson et al., Atmos. Chem. Phys. 6 (2006) 3625-4055

Chemical kinetics and photochemical data for use in stratospheric modeling Eval. No. 12 (JPL-Publ-97-4; NAS 1.26112606; NASA CR-97-112606), 1997 (updated 2005)
 http://ntrs.nasa.gov/search.jsp

TABLE OF CONTENTS $\quad k=A$ exp	Table 1. (Continued)					
	Reaction	A-Factor ${ }^{\text {a }}$	$\mathrm{E} / \mathrm{R} \pm(\mathrm{SE} / \mathrm{R})$	k(298 K) ${ }^{\text {a }}$	$f(298)^{\text {b }}$	Notes
INTRODUCTION \qquad Basis of The Recommendations \qquad	$\mathrm{OH}+\mathrm{HONO} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{2}$	1.8×10^{-11}	390 ± 500	4.5×10^{-12}	1.5	C 8
Recent Changes and Current Needs of Laboratory Kinetics \qquad Format of the Evaluation \qquad	$\mathrm{OH}+\mathrm{HNO}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NO}_{3}$	(See Note)			1.3	C 9
Computer Access ...						
	$\mathrm{OH}+\mathrm{HO}_{2} \mathrm{NO}_{2} \rightarrow$ products	1.3×10^{-12}	$-\left(380 \pm{ }_{500}^{270}\right)$	4.6×10^{-12}	1.5	C10
Reactions of Singlet Oxygen ... 4	$\mathrm{OH}+\mathrm{NH}_{3} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{2}$	1.7×10^{-12}	710 ± 200	1.6×10^{-13}	1.2	C11
NO_{x} Reactions ... 4						
Oxidation of Organic Compounds \qquad 4 Halogen Reactions \qquad	$\mathrm{HO}_{2}+\mathrm{NO} \rightarrow \mathrm{NO}_{2}+\mathrm{OH}$	3.5×10^{-12}	- 250 ± 50)	8.1×10^{-12}	1.15	C 12
SO_{x} Reactions ... 5	$\mathrm{HO}_{2}+\mathrm{NO}_{2} \xrightarrow{\mathrm{M}} \mathrm{HO}_{2} \mathrm{NO}_{2}$	(See Table				
Metal Chemistry ... 5						
Photochemical Data \qquad .5	$\mathrm{HO}_{2}+\mathrm{NO}_{2} \rightarrow \mathrm{HONO}+\mathrm{O}_{2}$	(See Note)				C13
Gas Phase Enthalpy Data (Appendix 1) ... 7	$\mathrm{HO}_{2}+\mathrm{NO}_{3} \rightarrow$ products					
Entropy Data (Appendix 2)... 7	$\mathrm{HO}_{2}+\mathrm{NO}_{3} \rightarrow$ products			3.5×10^{-12}	1.5	C14
Solar Flux and Species Profiles (Appendix 3) Data Formats.	$\mathrm{HO}_{2}+\mathrm{NH}_{2} \rightarrow$ products			3.4×10^{-11}	2.0	C15
Bimolecular Reactions ... 7						
Termolecular Reactions ... 8	$\mathrm{N}+\mathrm{O}_{2} \rightarrow \mathrm{NO}+\mathrm{O}$	1.5×10^{-11}	3600 ± 400	8.5×10^{-17}	1.25	C16
Uncertainty Estimates ... $10 . .$.						
Units .. 11	$\mathrm{N}+\mathrm{O}_{3} \rightarrow \mathrm{NO}+\mathrm{O}_{2}$			$<2.0 \times 10^{-16}$		C17
References for the Introduction.. 13						
RATE CONSTANT DATA ... 14	$\mathrm{N}+\mathrm{NO} \rightarrow \mathrm{N}_{2}+\mathrm{O}$	2.1×10^{-11}	$-(100 \pm 100)$	3.0×10^{-11}	1.3	C18
Table of Data for Second Order Reactions (Table 1).. 14						
Notes to Table References for Table 1 \qquad 101	$\mathrm{N}+\mathrm{NO}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{O}$	5.8×10^{-12}	$-(220 \pm 100)$	1.2×10^{-11}	1.5	C19
	$\mathrm{NO}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{2}+\mathrm{O}_{2}$	2.0×10^{-12}	1400 ± 200	1.8×10^{-14}	1.1	C20
EQUILIBRIUM CONSTANTS ..	$\mathrm{NO}+\mathrm{NO}_{3} \rightarrow 2 \mathrm{NO}_{2}$	1.5×10^{-11}	$-(170 \pm 100)$	2.6×10^{-11}	1.3	C21
Format .. 141						
Definitions .. 141	$\mathrm{NO}_{2}+\mathrm{O}_{3} \rightarrow \mathrm{NO}_{3}+\mathrm{O}_{2}$	1.2×10^{-13}	2450 ± 150	3.2×10^{-17}	1.15	C22
Notes to Table 3 .. 143						
References for Table 3 ... 144	$\mathrm{NO}_{2}+\mathrm{NO}_{3} \rightarrow \mathrm{NO}+\mathrm{NO}_{2}+\mathrm{O}_{2}$	(See Note)				C23
PHOTOCHEMICAL DATA .. 146						
Discussion of Format and Error Estimates .. 14.	$\mathrm{NO}_{2}+\mathrm{NO}_{3} \xrightarrow{\mathrm{M}} \mathrm{N}_{2} \mathrm{O}_{5}$	(See Table				
	$\mathrm{NO}_{3}+\mathrm{NO}_{3} \rightarrow 2 \mathrm{NO}_{2}+\mathrm{O}_{2}$	8.5×10^{-13}	2450 ± 500	2.3×10^{-16}	1.5	C24
	$\mathrm{NH}_{2}+\mathrm{O}_{2} \rightarrow$ products			$<6.0 \times 10^{-21}$		C25
				<6.0x10 ${ }^{-21}$		
	$\mathrm{NH}_{2}+\mathrm{O}_{3} \rightarrow$ products	4.3×10^{-12}	930 ± 500	1.9×10^{-13}	3.0	C26
	$\mathrm{NH}_{2}+\mathrm{NO} \rightarrow$ products	4.0×10^{-12}	-(450 $\pm 150)$	1.8×10^{-11}	1.3	C27
	$\mathrm{NH}_{2}+\mathrm{NO}_{2} \rightarrow$ products	2.1×10^{-12}	$-(650 \pm 250)$	1.9×10^{-11}	3.0	C28
HONO + hu \rightarrow OH + NO.. 163						
	$\mathrm{NH}+\mathrm{NO} \rightarrow$ products	4.9×10^{-11}	0 ± 300	4.9×10^{-11}	1.5	C29
	$\mathrm{NH}+\mathrm{NO}_{2} \rightarrow$ products	35×10^{-13}	$-(1140 \pm 500)$	16×10^{-11}	2.0	C30

1.4 Photochemical reactions

Radiation absorption in the atmosphere

Gaseous molecules absorb ultraviolet, visible and infrared light: O_{3}

Consequences:

- photophysical and photochemical molecular processes
- change of spectrum:

Specific because of vibrational-rotational and electronic transitions:

A series of vibrational-rotational states are populated (temperature dependent, Boltzmann) within electronic states. Vibrational-rotational (P, Q, R branches of change of J) and electronic transitions follow quantum rules (selection rules, , allowed‘ or not allowed). These correspond to characteristic spectroscopic patterns. Therefore, emissior and absorption spectroscopy allows for unambiguous identification of molecules.

Electronic excitation:

$\mathrm{A} \rightarrow \mathrm{B}+\mathrm{C}$

The energy barrier will be smaller and the distance between atoms will be larger for the excited molecule.

Fates of electronically excited molecules:

Photophysical primary processes: emission (fluorescence, phosphorescence), nonradiative energy transition into heat

Photochemical primary processes: dissociation, isomerization, re-arrangement, reaction

Example for photophysical process: $\mathrm{A}^{*}+\mathrm{B} \rightarrow \mathrm{A}+\mathrm{B}^{*}$:
$\mathrm{SO}_{2}\left({ }^{3} \mathrm{~B}_{1}\right)+\mathrm{O}_{2}\left({ }^{3} \Sigma_{\mathrm{g}}\right) \rightarrow \mathrm{SO}_{2}\left({ }^{1} \mathrm{~A}_{1}\right)+\mathrm{O}_{2}\left({ }^{1} \Sigma_{\mathrm{g}}\right)$
Example for photochemical process:
$\mathrm{NO}_{2}\left(\mathrm{X}^{2} \mathrm{~A}\right)+\mathrm{h} \nu(290<\lambda<430 \mathrm{~nm}) \rightarrow \mathrm{NO}\left(\mathrm{X}^{2} \Pi\right)+\mathrm{O}\left({ }^{3} \mathrm{P}\right)$
Def.:
Efficiency of a primary photochemical process i is given by ist quantum yield $\phi_{i}:=$ number of excited molecules by process i divided by total number of photons absorbed.
The sum of the ϕ_{i} of all the photochemical primary processes $=1$.

Photodissociations

Unimolecular

$$
\mathrm{A}+\mathrm{h} v \rightarrow \mathrm{~B}+\mathrm{C}
$$

$\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ molecules or radicals example:

$$
\mathrm{O}_{3}+\mathrm{h} v \rightarrow \mathrm{O}_{2}+\mathrm{O}\left({ }^{3} \mathrm{P}\right)
$$

Reaction rate coefficient j (photolysis rate):

$$
\mathrm{dc}_{\mathrm{C}} / \mathrm{dt}=-\mathrm{dc}_{\mathrm{A}} / \mathrm{dt}=\mathrm{jc}_{\mathrm{A}}
$$

Ground state, A
/excitation state, A*:
$\mathrm{A}+\mathrm{h} \nu \rightarrow \mathrm{A}^{*}$
Example:
$O+h \nu \rightarrow O^{*}$
i.e. $O\left({ }^{3} P\right)+h v \rightarrow O\left({ }^{(} D\right)$

Energy ranges, correspondence between energy and wavelength

$$
\begin{aligned}
& \lambda=\mathrm{c} / v \\
& \Delta \mathrm{E}=\mathrm{hc} / \lambda=\mathrm{hc} \omega
\end{aligned}
$$

with frequency v
Planck relationship (wavelength λ, wavenumber ω, Planck's constant h $=6.626 \times 10^{-34} \mathrm{Js}$)

Commonly used energy units:

$$
\begin{aligned}
& \left(\mathrm{kJ} \mathrm{~mol}^{-1}\right) \\
& \quad \times 0.2390=\mathrm{kcal} \mathrm{~mol}^{-1} \\
& \times 0.0104=\mathrm{eV} \\
& \times 83.59=\mathrm{cm}^{-1} \\
& \left(\mathrm{kcal} \mathrm{~mol}^{-1}\right) \\
& \quad \times 4.184=\mathrm{kJ} \mathrm{~mol}^{-1} \\
& \times 0.04336=\mathrm{eV} \\
& \times 349.8=\mathrm{cm}^{-1} \\
& \left(\mathrm{~cm}^{-1}\right) \\
& \times 1.196 \times 10^{-2}=\mathrm{kJ} \mathrm{~mol}^{-1} \\
& \times 2.859 \times 10^{-3}=\mathrm{kcal} \mathrm{~mol}^{-1} \\
& \times 1.240 \times 10^{-4}=\mathrm{eV} \\
& (\mathrm{eV}) \\
& \times 96.49=\mathrm{kJ} \mathrm{~mol}^{-1} \\
& \times 23.06=\mathrm{kcal} \mathrm{~mol}^{-1} \\
& \times 8.064 \times 10^{3}=\mathrm{cm}^{-1}
\end{aligned}
$$

Energy ranges, correspondence between energy and wavelength

$\lambda=c / v$
$\Delta \mathrm{E}=\mathrm{hc} / \lambda=\mathrm{hc} \omega$

Planck relationship (wavelength λ, wavenumber ω, Planck's constant h $=6.626 \times 10^{-34} \mathrm{Js}$)

Name	Typical wavelength or range of wavelengths (nm)	Typical range of frequencies $\boldsymbol{v}\left(\mathrm{s}^{-1}\right)$	Typical range of wavenumbers ω (cm^{-1})	Typical range of energies $\left(\mathbf{k J} \text { einstein }{ }^{-1}\right)^{a}$
Radiowave	$\sim 10^{8}-10^{13}$	$\sim 3 \times 10^{4}-3 \times 10^{9}$	$10^{-6}-0.1$	$\sim 10^{-3}-10^{-8}$
Microwave	$\sim 10^{7}-10^{8}$	$\sim 3 \times 10^{9}-3 \times 10^{10}$	0.1-1	$\sim 10^{-2}-10^{-3}$
Far-infrared	$\sim 10^{5}-10^{7}$	$\sim 3 \times 10^{10}-3 \times 10^{12}$	1-100	$\sim 10^{-2}-1$
Near-infrared	$\sim 10^{3}-10^{5}$	$\sim 3 \times 10^{12}-3 \times 10^{14}$	$10^{2}-10^{4}$	$\sim 1-10^{2}$
Visible				
Red	700	4.3×10^{14}	1.4×10^{4}	1.7×10^{2}
Orange	620	4.8×10^{14}	1.6×10^{4}	1.9×10^{2}
Yellow	580	5.2×10^{14}	1.7×10^{4}	2.1×10^{2}
Green	530	5.7×10^{14}	1.9×10^{4}	2.3×10^{2}
Blue	470	6.4×10^{14}	2.1×10^{4}	2.5×10^{2}
Violet	420	7.1×10^{14}	2.4×10^{4}	2.8×10^{2}
Near-ultraviolet	400-200	$(7.5-15.0) \times 10^{14}$	$(2.5-5) \times 10^{4}$	$(3.0-6.0) \times 10^{2}$
Vacuum ultraviolet	$\sim 200-50$	$(1.5-6.0) \times 10^{15}$	$(5-20) \times 10^{4}$	$\sim(6.0-24) \times 10^{2}$
X-Ray	$\sim 50-0.1$	$\sim(0.6-300) \times 10^{16}$	$(0.2-100) \times 10^{6}$	$\sim 10^{3}-10^{6}$
γ-Ray	≤ 0.1	$\sim 3 \times 10^{18}$	$\geq 10^{8}$	$>10^{6}$

[^0]
The rate of photochemical reactions Absorption

$\ln \left(\mathrm{I}_{0} / \mathrm{I}\right)=\sigma \mathrm{Nd} \quad$ Beer-Lambert law
$\mathrm{I} / \mathrm{I}_{0}=\mathrm{e}^{(-\sigma \mathrm{Nd})}$
absorption cross section $\sigma\left(\mathrm{cm}^{2}\right.$, default: base e) molecule concentration $\mathrm{N}\left(\mathrm{cm}^{-3}\right)$, depth of absorptive layer $\mathrm{d}(\mathrm{cm})$ optical depth $\mathrm{OD}=\sigma \mathrm{Nd}$

Caution: Most measurements are made to the base $10\left(\log \left(\mathrm{I}_{0} / \mathrm{I}\right)=\sigma_{10} \mathrm{Nd}\right) \rightarrow \mathrm{x} 2.303$ to reach base e

The photolysis rate

The photolysis rate, $\mathrm{j}\left(\mathrm{s}^{-1}\right)$, is given by:

$$
\mathrm{j}=\int_{\lambda} \phi(\lambda) \sigma(\lambda) \mathrm{L}(\lambda) \mathrm{d} \lambda
$$

- quantum yield $\phi(\lambda)$ (),
- absorption cross section $\sigma\left(\mathrm{cm}^{2}\right)$,
- actinic flux, $\mathrm{L}(\lambda)\left(\mathrm{cm}^{-2} \mathrm{~s}^{-1}\right)$

L is the total intensity of effective light (direct + scattered + reflected, spherically integrated).

The photolysis rate

*ype of surface	Albedo
Snow	0.69
	0.93^{b}
	$0.9-1.0$
Ocean	0.07^{b}
	$0.06-0.08^{a}$
Forests	$0.06-0.18^{b}$
	0.02^{a}
	0.17
Fields and meadows	$0.03-0.04^{a}$
Desert	$0.06-0.09^{a}$
Salt flats	$0.57-0.65^{a}$

$L(\lambda)$ is a function of the solar zenith angle, cloudiness, aerosol concentration, and surface albedo*. Foress

Fields and meadows
${ }^{a}$ Minimum reflectivities at 370 nm .
${ }^{b}$ Measured with respect to NO_{2} ph

$$
\frac{d n_{A}}{d t}=-n_{A} \underbrace{\int_{\lambda} \phi(\lambda) \sigma(\lambda)\left(\int_{0}^{2 \pi} \int_{0}^{\pi} L(\lambda, \theta, \varphi) \sin \theta d \theta d \varphi\right) d \lambda}_{\mathrm{j}_{\mathrm{A}}}
$$

Typical j-values for midlatitude noontime equinox conditions range from $\sim 1 \cdot 10^{-5} \mathrm{~s}-1$ for $\mathrm{j}_{\text {O(1D) }}$ to $\sim 0.2 \mathrm{~s}^{-1}$ for j_{NO}. The actinic flux under these conditions is about $2 \cdot 10^{14}$ photons $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ at $315-320 \mathrm{~nm}$, and $7 \cdot 10^{14}$ photons $\mathrm{cm}^{-2} \mathrm{~s}^{-1}$ at $360-365 \mathrm{~nm}$.

The photolysis rate

L is measured using a (2π) radiometer or by measuring the photolytic decay (so-called chemical actinometry).
Its value can be estimated via tabulated values of ϕ and σ for intervals of λ and estimates of $L(\lambda)$ for given conditions.

Fig. 3 Theoretical diurnal variation of the $J\left[\mathrm{NO}_{2}\right]$ and $J\left[\mathrm{O}_{3}\right]$ values for midsummer and midwinter at $40^{\circ} \mathrm{N}$ latitude near sea level.
(Calvert, 1985)

Example $j_{o 3}$: Quantum yield $\phi_{i}(\lambda)$ for $\mathrm{i}=\mathrm{O}_{3}+\mathrm{h} \nu \rightarrow \mathrm{O}\left({ }^{1} \mathrm{D}\right)+\mathrm{O}_{2}\left({ }^{3} \Sigma_{\mathrm{g}}{ }^{-}\right)$

TABLE 4.6 Parameterization of Quantum Yields for $\mathrm{O}\left({ }^{1} \mathrm{D}\right)$ Production from O_{3} Photolysis in the 306- to $329-\mathrm{nm}$ Region at Various Temperatures ${ }^{a}$

Wavelength (nm)	\boldsymbol{A}	\boldsymbol{B}
306	0.80	9.84
307	0.78	1.44
308	0.87	53.1
309	0.76	73.9
310	1.31	305.5
311	2.37	600
312	5.8	925.9
313	11.4	1191
314	20.1	1423
315	26.4	1514
316	26.8	1512
317	26.8	1542
318	28.33	1604
319	30.6	1604
320	44.4	1866
321	50.2	1931
322	27.8	1882
323	74.1	2329
324	868	3085
325	0.37	689
326	0.24	619
327	0.068	258
328	26.16	2131
329	0.15	470

$\phi_{03 \rightarrow \mathrm{O}\left({ }^{1} \mathrm{D}\right)}(310-320 \mathrm{~nm}) \approx 0.2$

[^1]Data src.: Finlayson-Pitts \& Pitts, 1998

Example $j_{o 3}:$ Absorption cross section $\sigma(\lambda, \mathrm{T})$ of O_{3}

TABLE 4.3 Ozone Absorption Cross Sections (Base e) ${ }^{\text {a }}$

Wavelength (mm)	$10^{20} \mathrm{\sigma}\left(\mathrm{~cm}^{2}\right.$ molecule $\left.{ }^{-1}\right)$		Wavelength (nm)	TABLE 4.4	Ozone Absorption Cross Sections ${ }^{a, b}$ as a Function of Temperature Averaged over the Spectral Intervals Shown		
	$T=226 \mathrm{~K}$	$T=298 \mathrm{~K}$					
185.0	64.37	65.37	262.0 263.0				
186.0 187.0	62.59 59.33	61.87 59.41	$\begin{aligned} & 263.0 \\ & 264.0 \\ & 265.0 \\ & 266.0 \end{aligned}$	Wavelength range (nm)	Parameters		
1188.0	55.55	$\begin{aligned} & 59.41 \\ & 56.59 \\ & 54.24 \end{aligned}$					
189.0 190.0	54.63 51.63	$\begin{aligned} & 54.24 \\ & 51.14 \end{aligned}$			a	b	c
191.0	48.42	48.80	268.0		a		
192.0 193.0	45.95 43.12	46.06 43.36	269.0 270.0				
194.0	40.88 38.27	4.36 40.66 38.64	271.0 2770	277.778-281.690	4.0293×10^{2}	$+4.3819 \times 10^{-2}$	0
195.0 196.0	38.27 36.42	38.64 36.73	272.0 273.0	281.690-285.714	2.7776×10^{2}	$+6.3125 \times 10^{-2}$	0
197.0 198.0	34.63 33.33	35.00 33.49	274.0 275.0	285.714-289.855	1.8417×10^{2}	-9.6665×10^{-2}	2.1026×10^{-4}
199.0 200.0	32.13 31.45	32.09 31.54	276.0 277.0	289.855-294.118	1.1300×10^{2}	-1.0700×10^{-1}	3.2697×10^{-4}
20.0 202.0	31.26 31.56 3.25	31.15 31.79	278.0 279.0	294.118-298.507	6.5087×10	-8.0018×10^{-2}	2.2679×10^{-4}
203.0	31.55 32.55	31.79 32.51	280.0 280	298.507-303.030	3.6161×10	-6.7156×10^{-2}	3.3314×10^{-4}
${ }_{205.0}^{204.0}$	34.00 36.23	33.65 35.85	281.0 282.0	298.507-303.030	3.6161×10	-6.7156×10^{-2}	3.3314×10^{-4}
206.0	38.87	38.55	283.0	303.030-307.692	1.9615×10	-4.4193×10^{-2}	2.0338×10^{-4}
207.0 208.0	42.39 46.84	42.00 46.40	284.0 285.0	307.692-312.5	1.0459×10	-2.8831×10^{-2}	1.3909×10^{-4}
209.0 210.0	51.88 58.06	51.18 57.16	288.0 287.0	312.5-317.5	5.4715	-2.0092×10^{-2}	9.8870×10^{-5}
211.0 2120	${ }_{6}^{65.28}$	${ }_{71.94}^{64.02}$	288.0 280.0	317.5-322.5	2.7569	-1.0067×10^{-2}	2.9515×10^{-5}
212.0 213.0	73.12 8.58 2.58	71.94 81.04	289.0 290.0	$322.5-327.5$	1.3527	-5.7513×10^{-3}	1.1088×10^{-5}
214.0 215.0	${ }_{1} 92.55$	${ }_{102.96}{ }^{90.96}$	291.0 292.0	$327.5-332.5$	6.9373×10^{-1}	-2.9792×10^{-3}	3.1038×10^{-6}
211.0 217.0	111.9 131.4	114.6 128.7	29.0 294.0	332.5-337.5	3.2091×10^{-1}	-1.9502×10^{-3}	5.6456×10^{-6}
218.0 219.0 219.0	131.4 146.4 1638	143.9 140.1	29.0 29.0 29.0	332.5-337.5	3.2091×10^{-1}	-1.9502×10^{-3}	2.8818×10^{-6}
219.0 220.0 220.0	163.8 179.9 20.9	160.1 178.5 198.2	296.0 297.0 2980	$337.5-342.5$ 342 5-347.5	1.4484×10^{-1} 7.5780×10^{-2}	-1.1025×10^{-1}	2.8818×10^{-6}
221.0 222.0	200.0 221.7	198.2 220.0	298.0 299.0	342.5-347.5	7.5780×10^{-2}	-5.7359×10^{-4}	1.6055×10^{-6}
223.0	244.3	242.9	300.0				

${ }^{a} \sigma\left(\mathrm{O}_{3}, T\right)=a+b(T-230)+C(T-230)^{2} ; T$ is in $\mathrm{K} ; \sigma\left(\mathrm{O}_{3}\right)$ is in units of $10^{-20} \mathrm{~cm}^{2}$ molecule ${ }^{-1}$ (base e).
${ }^{b}$ From Molina and Molina (1986).

Example:

$\sigma_{03}(310-320 \mathrm{~nm}) \approx 60 \times 10^{-20} \mathrm{~cm}^{2} /$ molecule for $\mathrm{T}=298 \mathrm{~K}$

939.6 975.2 1007 1042 1058 1079 1124 1134 1123 1165

320.0
321.0
322.0
323.0
324.0
325.0
326.0
328.0
330.0
332.0

2.859	3.243
1.368	2.041
2.117	2.435
1.529	1.983
0.7852	1.250
1.486	1.727
0.7276	1.05
1.158	1.300
0.2854	0.4923
0.2415	0.4347

Radiation absorption in the atmosphere

Actinic flux L(λ) - Example:
For $\mathrm{z}=15 \mathrm{~km}$ and solar zenith angle of 40° :
$\mathrm{L}(310-320 \mathrm{~nm})=(1.69+2.08+2.35+2.88+2.95) \times 10^{14 \mathrm{v}} \mathrm{cm}^{-2} \mathrm{~s}^{-1}$
Order of magnitude estimate of $\mathrm{j}_{\mathrm{O3} \rightarrow \mathrm{O}\left({ }^{1} \mathrm{D}\right)}$ for a selected wavelength interval:

[^0]: ${ }^{a}$ For kcal einstein ${ }^{-1}$, divide by $4.184(1 \mathrm{cal}=4.184 \mathrm{~J})$.

[^1]: ${ }^{a}$ Using the quantum yield expression recommended by Talukdar et al., 1998: $\phi=0.06+A e^{-B / T}$.

