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Abstract: In this thesis we estimate the measuring time for the parity-violating
asymmetry in elastic and inelastic electron scattering off different spin 0 nuclei
for the P2 experiment at the MESA accelerator in Mainz. With the usage of
measured cross sections for 2C, 4°Ca, 2Ca, “8Ca and 2°®Pb from different
experiments the electric form factor is calculated and the measuring time is
estimated. In order to achieve an analytical expression for the electric form
factor different parameterisations for the form factor e.g. the Helm form factor,
the Sum of Gaussian or the Fourier Bessel form factors are used. For differ-
ent precisions of the parity-violating asymmetry different measuring times are
calculated. For an accuracy of AA = 0.1%A the measuring time for the cross
section averaged asymmetry is between 7' = 3260 h and T' = 45295 h depending
on the nucleus, the parameterisation for the form factor and the polarization of
the electron beam.
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1 Introduction

The goal of physics is to understand and explain the world. Currently we can
only explain 5% of matter-energy in the universe with the Standard Model of
particle physics. Thus to get a better understanding of the underlying principles
of our universe physicists have to search for physics beyond the Standard Model.

One way of searching for physics beyond the Standard Model is to perform high
precision measurements of different parameters of the Standard Model. One of
these parameters is the weak mixing angle sin? (6,,). By measuring the weak
mixing angle with a high precision, the Standard Model is tested and hints
for physics beyond the Standard Model can be found. The weak mixing angle
provides information on fundamental properties of the interaction between the
different particles in the Standard Model. It is an parameter that occurs when
combining the weak interaction with the electromagnetic interaction to the elec-
troweak interaction. Furthermore the measurement of the weak mixing angle
could help us understand dark matter or be a hint for new fundamental forces.

With the P2-experiment at MESA (” Mainz Energy-Recovering Superconducting
Accelerator”) in Mainz the weak mixing angle will be measured with unmatched
precision of 0.14%. The P2-experiment will use a liquid hydrogen target. At
the P2-experiment parity-violating electron-proton scattering experiments at
low momentum transfer values Q? are going to be performed.

In the future, experiments with other targets can be performed. This thesis is
about a first estimation for the measuring time for '2C, 4°Ca, 42Ca, **Ca and
208Ph as other possible targets.

In Chapter 2 the theory of parity-violating electron scattering off nuclei with
spin 0 will be described. Chapter 3 covers the P2-experiment and chapter 4
deals with the preparatory work that was necessary for the thesis. In chapter 5
the result are displayed. Chapter 6 covers the discussion of the results.



2 Theory of parity-violating electron scattering
off nuclei with spin 0

This theory section sticks close to [1] by Bogdan Povh, Klaus Rith, Christoph
Scholz, Frank Zetsche and Werner Rodejohann.

2.1 Mott scattering and electric form factor of nuclei

The Mott scattering describes the scattering of a point-like spin-1/2 particle,
also known as fermion, off a point-like, non moving, electric charge. The incom-
ing electron has the momentum p and the energy E. After the scattering the
electron has the momentum p’ and energy E’.

Incoming electron

P

Figure 1: Sketch of the kinematics for electron scattering off a non-moving
target

Electron scattering is used to determine the structure of nucleons. The Mott
scattering formula is a modification of the Rosenbluth formula due to the spin
of the scattering particle and is given by:

do 772 \° E 1 N
().~ iE) 5w 7 (3)) o

The parameter 3 = £ is the velocity of the particle relative to the speed of

light ¢. Z is the charge of the nucleus and 7’ is the charge of the parti-
cle. € = 8.854187 - 1012 \‘}—; is the electric field constant. The parameter
e = 1.602176-107'9 C is the elementary charge, 6 is the scattering angle, which
can be seen in figure 1. E is the energy of the particle before the scattering and

E’ is the energy of the scattered particle. E’ is given by:

E
E' = 5 . (2)
1+ 7= (1 —cos(0))
M is the mass of the nucleus. The momentum transfer Q% = —¢? is defined by

the four-vectors of the incoming and outgoing electron and is shown in figure 1:



Q=-¢=-p-p) (3)

If we neglect the electron mass, we get for the momentum transfer:

Q2 _ 4EFE' . SiIl2 <0> . (4)

c? 2

2.2 Parameterisation of the electric form factor of nuclei

In order to take into account that nuclei are extended and not point-like parti-
cles, the Mott cross section is modified with the electric form factor. In simplified
terms, the electric form factor can be viewed as the Fourier transform of the
charge density of the nuclei and is dependent on the momentum transfer. The
experimentally measured cross section and the Mott cross section are related by
the electric form factor as follows:

(%), = (@), e .

In order to achieve an analytical expression for the electric form factor, different
parameterisation can be used. The advantage of a parameterisation is that it
can be used in calculations better than single measurement points. The descrip-
tion of the following parameterisations in section 3.2.1, 3.2.2 and 3.2.3 follows
from [2].

2.2.1 The Helm form factor parameterisation

The Helm form factor is a modification of the nucleus as a solid sphere [2]. It
describes the charge density of the nuclei as constant inside with a decrease at
the edge. The charge distribution is given as:

pu () = [ oo (7) pe: (7= 7) a7 ©)
pu is the charge density of the solid sphere and is given by:
3Ze
= — < .
pu (7) =+ for T <R (7)

up to a cutoff radius R. To account for the soft edge of the nucleus a Gaussian
function is multiplied. The charge density of the Gaussian surface smearing is



given by:

1 _r2
() = —— e 5. 8)
"0 o)} (

Here, the parameter g is related to the Gaussian smearing surface. The Helm
form factor is using the spherical Bessel functions of the first order j;(x):

it (2) = sin gx) _ cos (a:) ()

x x

The form factor parameterisation is given by:

N R (10)

We get:

9 sin (qR)  cos (¢RR) ’ e
|F(q)|” = <3 ( (@R W )) : (11)

Here the parameter R is called the effective nuclear radius. The parameter g
is called the nuclear skin thickness. These parameters are different for every
nucleus.

2.2.2 The sum of Gaussian functions parameterisation

The sum of Gaussian parameterisation [2] models the charge density of nuclei
as series of Gaussian functions. The charge density is given by:

a2
where A; is given by:

ZeQ;

A= — .
v 3 R2
22 y3(1 4 275)

(13)

With the assumption of a spherical symmetry, we get a parameterisation for the
form factor of the form:

2R?sin (4%
F(g)=e h2 24 Z Q (qRZ) + 7sm( ) : (14)

qRi
hC 'y2 e

Here, the parameter v is the width of the Gaussian functions. It is the smallest



width of the peaks in the nuclear wave functions that are calculated with the
Hartree-Fock calculations. The parameters @); are the fractional charges carried
by each Gaussian. The charges are normalized such that:

ZQz’ =1 (15)

The parameter R; is the effective nuclear radius of each Gaussian.

2.2.3 The Fourier-Bessel parameterisation

The Fourier-Bessel parameterisation [2] models the charge density as a sum of
Bessel functions of zeroth-order up to a cutoff radius R:

. sin (z
Jo(z) = ;v( ) (16)
The charge density is given by:
N vrr
p(r) = Za,,jo (?) for r <R. (17)
v=1

The density is assumed to be zero afterwards. If we assume a spherical symme-
try, we obtain an expression for the form factor:

) N (=1)%a
sin (ﬁ) Yot 2r2 L2R2

he 5
Flq) = —z S (18)
(;iic Zy:l %

The expression in the denominator normalizes the form factor to F'(0) = 1.

2.2.4 Polynomial function parameterisation

This parameterisation models the form factor as a polynomial multiplied by
a decaying exponential to fit the experimental data. The idea is that we can
expand every function as a power series. It also has the advantage that it can
be nonzero at every value of x in contrast to the other parameterisation that
got introduced before. This parameterisation is given by:

F(x) = e %% (a1 + asx + asx® + azz® + agxt + asz® + agmﬁ) . (19)
We get:

[F(Q)]? = (67&0@2 (a1 4 a2Q° + a3Q* + a3Q° + a4 Q® + a5Q"" + a6Q12))2 '
(20)



2.2.5 Gaussian function parameterisation

The Gaussian function parameterisation describes the form factor as the sum
of Gaussian functions. This parameterisation is similar to the sum of Gaussian
parameterisation but the parameters can be chosen more freely. This param-
eterisation is advantageous because this parameterisation can be nonzero at
x-values where the other parameterisations are zero. It is given by:

F(z) = ay - e (@700)" g, . g5 (@=00)" 4 g . gosi(v=00)", (21)
We get:

B = (a1 e (@) oy (@700 g ere(@=00)")"(29)

2.3 Parity-violating asymmetry of electron scattering off
spin 0 nuclei

The Standard Model of particle physics describes three of the four fundamental
forces and classifies the known particles into a scheme. The weak interaction
is the only force that violates parity. Parity violation was postulated by Lee
and Yang in 1956 [3] and proven by Wu in 1957 [4] with an experiment that
analysed the S-decay of 8°Co. Parity-violating experiments are used to measure
different parameters of the Standard Model. For the formulas used in the theory
parts before an exchange of a photon was assumed during the electron scatter-
ing. During the scattering, a Zy can also be exchanged. These two processes
are represented as Feynman diagrams in figure 2. The interference between the
exchange of a virtual photon and a Z; leads to an asymmetry. The parity vio-
lation in electron scattering can be measured with [5]:

Nt - N—
PV _
Aer = FF TN (23)
Here, N1 describes the number of elastically scattered electrons with a positive
helicity and N~ describes the number of elastically scattered electrons with a
negative helicity. Helicity is definded as:

=

h=25- (24)

S

A particle with positive helicity is called right handed and a particle with nega-
tive helicity is called left handed. This means that for positive helicity the spin

10



N N N N

Figure 2: Feynman diagrams of elastic electron scattering under the exchange
of a photon (left) and Zy (right) [5]

and the momentum of the particle point in the same direction. For negative
helicity the spin and the momentum point in opposite directions.

We can express the parity-violating asymmetry with the cross sections o™ and
o~ from scattering of electrons with positive and negative helicity and the in-

tegrated luminosity L = [ Ldt. Since the number of events is given by:
N = /Ldt-a, (25)

the asymmetry can be calculated with [5]:

e Lot —

e e
e

. O'_
. (26)

. O'+ + oA
We neglect the axial form factor for nuclei with negative parity. For a spin-zero

nucleus with nuclear charge Z the parity-violating asymmetry in leading order
is given by [6]:

_ _Gr @ Qu
— 7 (27)
and using:
Qu = Z (1 — 4sin®(0,)) — N. (28)

The parameter G is the Fermi coupling constant. It is given by (gﬁ =

1.166378 - 1073 GeV~2. The Fermi coupling constant determines how strong
the Fermi interaction is. The Fermi interaction is an effective description of the
weak interaction. It was suggested by Enrico Fermi and it describes 4 directly

11



interacting fermions. The parameter Z is the number of protons and the param-
eter N is the number of neutrons. The parameter @,, is the weak nuclear charge
where sin? (6,,) = 0.231 is called the weak mixing angle. The scale dependence
of the weak mixing angle sin? (,,) and measured values are shown in figure 3.

0.245 .
measurements 3
+ completed data taking 3
+ proposed —;
3 NuTeV E
0.240F IS'—AC'E_}SS =
= N
s 3 APV E
D 0235F ebIs 3
£ E E
2l E 3
%. - Tevatron LEP1 ILHC _§
0.230F - SLC E
3 MOLLER T E
E —e—— 3
E - T E
§_ P2 T n SoLID _§
E— Qweak —E
0.225F 1 3
SRR BT ETIT B AT TTT EEE AT B S AT B S A AT BT B R RTIT::

0.0001 0.001 0.01 0.1 1 10 100 1000 10000

u[Gev]

Figure 3: Scale dependence of the weak mixing angle sin? (6,,) (blue line) to-
gether with the measured values (red) as well as proposed future measurements
(yellow) [5].

It is important to note that this formula does not take into account corrections
that derive from the fact that the nucleus is not a point-like particle.

2.4 Estimate of the measuring time

In section 2.3 the parity-violating asymmetry was explained. The parity-violating
asymmetry, cross section averaged over the acceptance of the detector, is given
by:

 [A%a0

with :

12



/—dQ /|F (“)Mmdﬂ /Zﬂ/e sin(@ )|2~<%>M0ttd9d¢.

(30)
The cross section-averaged parity-violating asymmetry has the advantage that
it takes into account the change in Q? for different scattering angle.
For the uncertainty of the parity-violating asymmetry we have to calculate:

2
AAZ= D (WAN’) : (31)
i=+,—

using the asymmetry from equation (23) and:

ANt~ =N+ (32)

Since the parity-violating asymmetry is very small, we can assume that the
number of scattered events N1~ for both helicities are the same and thus we
introduce the total number of events N = Nt + N—. This leads to:

1
A= (33)

In order to estimate the measurement time, we have to solve:

N = /Ldt a_/Ldt /—dQ (34)

In this case the integration over the time is performed from ¢t =0tot =T. If
we solve this equation for the measuring time and assume that the luminosity
is time independent we get:

N

AT %)

The luminosity for a fixed target experiment is given by the product of the in-
coming particle flux ¢ and the target density np:

The parameter ny depends on the target density p, the target length 1 and the
molar mass mps,; with N4 = 6.02214076 - 1023 mol ~? being the Avogadro con-
stant.

Na

mpol

np = pl (37)

13



The parameter ¢ is given by the beam current I of the particle accelerator:

I
6==

)
€

(38)

where e the electron charge e = 1.602176634 - 10~1° C.

3 The P2-experiment

The P2-experiment is designed to measure the parity-violating asymmetry in
electron-proton scattering. It aims to determine the weak mixing angle, an im-
portant parameter in the Standard Model, with a relative precision of 0.14%
[5]. The P2-experiment can also be used to measure the parity-violating asym-
metry in electron-nucleus scattering. A sketch of the P2-experiment is shown
in figure 4.

In the P2-experiments a 1Hs-target is going to be used off which the beam
electrons will be scattered elastically. The P2-experiment will use longitudi-
nally polarized electrons. These electrons will be polarized up to 85% and
have an energy up to Epcqm = 155 MeV. The beam current is planned to be
Igeam = 150 pA. The helicity of the beam will be switched at a frequency of
f = 1 kHz. The 1Hs-target will have the length of [ = 600 mm and is aligned
along the beam. The scattered electrons will be detected in a Cherenkov de-
tector. The detector consists of 82 wedged fused silica bars (quartz bars) that
will cover the whole azimuth angle. The bars also guide the Cherenkov light to
the photomultiplier tube. The angular acceptance for the P2-experiment ranges
from 6 = 25° to 6 = 45°. Figure 5 shows the Cherenkov ring detector in the
experimental setup of the P2-experiment. Because of the high luminosity the
detector has to detect up to 100 GHz of scattered electrons. The luminosity
for the P2-experiment is going to be:

L= tBeam ) N4 _ 938 10% em 271 (39)
€ mpol

Here, e is the electron charge, p the density of protons in the liquid hydrogen

target (1Hs-target), N4 the Avogardo constant and m s, the molar mass of the

target. It is important to note that the luminosity given here is the luminosity for

a |Hy-target. For the calculation of the measuring time later on the luminosity

for each target is calculated separately.

14
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-
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Proton target Beam dump

Figure 4: Sketch of the experimental method used at the P2-experiment: A
longitudinally polarized electron beam impinges on the proton target. The
scattered electrons are detected in the detector. [5]

Superconducting
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R

Figure 5: CAD drawing of the experimental setup of the P2-experiment. [5]
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4 Preparatory work

4.1 Compilation of scattering cross section world data

At first, the database from nuclear data tables [7] was used. On this site the
energy levels of the different elements are given. So we had to search for the
following nuclei: '2C, 4°Ca, 42Ca, 48Ca and 2°8Pb. The search provided a list
for the electron scattering data.

In this section, papers are listed on where measured electron nucleus scattering
cross sections can be found. These cross sections were written into a text file for
later use in the calculations [10], [11], [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25].

To extend the data set found in the nuclear data tables, the references within
the papers were used. The cross section values found were added to the text
files.

In addition to the nuclear data tables, a search on inspirehep [8] for additional
papers was performed. A lot of papers from this search were already found
before. The newly found cross section were also added to text files.

4.2 Overview of ROOT to analyse data

ROOT 9] is an open-source data analysis framework designed by CERN which
was primarily designed for analysis in the field of particle physics. Later on
ROOT was used for more different applications for example in astronomy. The
Higgs boson was found with the help of ROOT.

ROOT enables the analysis and the display of large amount of data which are
recorded at the large hadron collider. To process this large amount of data
ROOT is written in C++4. ROOT can be used on Windows, macOS or Linux
and is open source. ROOT integrates also with Python.

For this thesis the following functionalities of ROOT are important:

1) Plotting histograms and graphs to visualize distributions and functions

2) Curve fitting

3) Standard mathematical functions

4) Creating files like PDF, PNG etc.

4.3 Usage of the ROOT macros in this work

Different ROOT macros are used to estimate the measuring time for a given
statistical uncertainty and a given nucleus. Depending on the nucleus the codes
of the macros can be adjusted.

First of all the important header files get included as well as the ” Constants.hh”
file that contains the needed physical constants and a system of units, which en-
ables the conversion of different units into one consistent set. The ”read_data”
macro is used such that the text files with the cross sections can be imported into
ROQOT. The function ”Sum_of Gaussian” and ”Fourier_Bessel” are the param-

16



eterisation for the electric form factor and are defined outside the "read_data”
macro for later use in the code. The functions ”Sigma”, ” Asymmetrie” and
7 AsymInt” are defined after the parameterisations. These functions will later
be used to calculate the measuring time.

In the ”PlotC12” macro first of all the Mott cross section from equation (1), the
electric form factor from equation (5) and the momentum transfer from equa-
tion (4) are calculated. After the calculations of the form factor and momentum
transfer new canvases are defined. Then the measured cross section as well as
the Mott cross section are plotted against the angles. Furthermore, the form
factor was plotted against the momentum transfer. Then the different form
factor parameterisations from section 2.2 are fitted to the plotted form factors.
The parameterisation is also plotted into the same plot.

At last, the estimate of the measuring time was performed. To do this the
parameterisation of the form factors is used. Then the asymmetry from equa-
tion (27) and the cross section averaged asymmetry from equation (29) are
calculated to estimate the measuring time from equation (35). The code of the
macros used for the calculations can be found in the appendix in section 9.

17



5 Fit of form factors and calculation of world
data

5.1 Plots of the cross section

The cross sections given in the papers were read in ROOT and plotted against
the scattering angle. The Mott cross section was also plotted into the same plot.
The Mott cross section was calculated using equation (1) from the theory part.
The Mott cross section is always larger than the measured cross section because
the electric form factor is smaller than 1. It takes the electric charge distribution
into account.

5.1.1 Elastic scattering on '?C

The available data for the measured cross sections from experiments [10], [11],
[12], [13], [14], [15], [16] were plotted separately as a function of the scattering
angle. For comparison, the calculated Mott cross section is also shown in the
same plot. One example is shown in figure 6. Plots of the other experiments
are found in section 9.
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Figure 6: Cross section for elastic electron scattering off the ground state of 12C
at a beam energy of F = 374.5 MeV [12]. Error bars are too small to be visible
due to the marker size. The angular acceptance for the P2-experiment ranges
from 6 = 25° to 6 = 45° with a beam energy of E = 155 MeV [5].

For a comparison of all the data sets, the cross section is plotted against the

scattering angle in figure 7. The measured cross sections range from j—g 2

1027 C’gf to j—gz ~ 10734 % depending on the scattering angle as well as the

18



10—27

0 E-
r\E = — I E=250Mev 1 E=187Mev
S, 1028 I E=374.5MeV 1 E=374.6Mev
% E - I E=187Mev 1 E=238MeV
B = . I E=243Mev 1 E=240.17MeV
S 107 T, . - T E=300.52MeV
¢ K] -
103°E - .
E ‘.
= o -~
109 =
g v t
107% ; .
E T ey, . i
10% =
E . - i
3 fon
10 E : i
10*35 Il Il I Il Il ‘ Il Il ‘ Il Il ‘ Il Il ‘ Il Il I Il
40 60 80 100 120 140

Figure 7: Cross section for elastic electron scattering off the ground state of
12C at various beam energies [10], [11], [12], [13], [14], [15], [16]. Error bars
are hardly visible due to the marker size. The angular acceptance for the P2-
experiment ranges from 6 = 25° to § = 45° with a beam energy of E = 155 MeV
[5].

energy of the electrons. There are some data points where the cross section is
smaller than j—g ~ 10734 % Generally, cross section values for experiments
with similar energies tend to have similar dependence of the scattering angle.
The minima of the different graphs are shifted on the x-axis. For higher beam
energies the minima of the cross section values shift towards lower 6 values. For
FE =~ 374 MeV the minimum is at 6 = 55°, for ' =~ 300 MeV the minimum is at

0 ~ 75° and for £ ~ 240 MeV the minimum is at 6 ~ 100°.

5.1.2 Inelastic scattering on '2C

In the case of inelastic scattering the nucleus gets into an excited state. We
look at the three lowest energy levels E, = 4.43 MeV, E, = 7.66 MeV and
E, = 9.64 MeV. A level scheme for the lowest nuclear energy levels in '2C is
displayed in figure 8.

For inelastic scattering similar plots were created as for elastic scattering. The
individual measured cross sections from [10], [11] and [15] for the first three
energy levels B, = 4.43 MeV, E, = 7.66 MeV and E, = 9.64 MeV were
plotted as a function of the scattering angle. In figure 9-11 all cross section
values were plotted as a function of the scattering angle 6. The individual
experiments are found in section 9. Figure 9 shows the measured cross sections
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Figure 8: Level scheme for the lowest nuclear energy levels in 12C [7]. On the
left side the spins and parity of the different levels are shown. On the right side
the excitation energy E, of the different levels is shown in keV.
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Figure 9: Cross section for inelastic electron scattering off the first excited state
E, = 4.43 MeV of 12C at different beam energies [10], [11], [15]. The angular
acceptance for the P2-experiment ranges from 6 = 25° to § = 45° with a beam
energy of E = 155 MeV [5].
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Figure 10: Cross section for inelastic electron scattering off the second excited
state B, = 7.66 MeV of 12C at different beam energies [10], [11], [15]. The
angular acceptance for the P2-experiment ranges from 6 = 25° to § = 45° with
a beam energy of E = 155 MeV [5].
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Figure 11: Cross section for inelastic electron scattering off the third excited
state B, = 9.64 MeV of 2C at different beam energies [10], [11], [15]. The
angular acceptance for the P2-experiment ranges from 6 = 25° to § = 45° with
a beam energy of F = 155 MeV [5].



for £, = 4.43 MeV as a function of the scattering angle 6. The energy level
E, = 7.66 MeV is shown in figure 10 and in figure 11 the energy level E, =
9.64 MeV is plotted as a function of 6.

Generally, we can see that the measured cross section values decrease similar

to the elastic scattering ones. The cross sections range from g—g ~ 10729 %
to g—g ~ 10733 2%2 depending on the scattering angle as well as the energy

of the electrons. Cross sections for the scattering to the third energy level
E, = 9.64 MeV are smaller than the others. They range from j—g ~ 10730 em?

ST
to 92 ~ 10733 %2 For forward scattering, we can see that the cross section for
the elastic scattering is larger than the cross section for the inelastic scattering.
For backward scattering the cross section of the inelastic scattering is equal or
even larger than the cross section of the elastic scattering.

5.1.3 Elastic scattering on *°Ca
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Figure 12: Cross section for elastic electron scattering off the ground state of
40Ca at various beam energies [17], [18], [19], [20]. Error bars are hardly visible
due to marker size. The angular acceptance for the P2-experiment ranges from
0 = 25° to 0 = 45° with a beam energy of E = 155 MeV [5].

The approach for the elastic electron scattering on *°Ca was the same as for
12(. The available measured cross sections for °Ca from [17], [18], [19] and [20]
are plotted as a function of the scattering angle and can be found in section 9.
Figure 12 shows the measured cross sections as a function of the scattering angle

6.
. _ 2
Generally, we see that the cross section values range from j—g ~ 10726 - to

22



5—6 ~ 10734 % so they are approximately in the same order of magnitude
as the cross section values for elastic scattering off 2C. For the smaller ener-
gies and angles the cross section of 4°Ca is bigger than 2C. We see that the
measurements at lower beam energies (E = 43.24 MeV and E = 60.21 MeV)
deviate a lot from the measurements at higher beam energies. The cross section
values for E =~ 250 MeV decrease till § = 55°. From approximately 6§ = 55° to
f = 65° the cross section values have a plateau. Then the values of the cross
section decrease again. Between § = 100° and 6 = 105° the cross section values

have their minimum.

5.1.4 Elastic scattering on *>Ca

For the available measured cross sections [17] and [21] the approach for 42Ca
was the same as for the nuclei before. In section 9 the individual measured cross
sections are plotted against the scattering angle. In figure 13 the measured cross
sections are shown as a function of the scattering angle 6.
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Figure 13: Cross section for elastic electron scattering off the ground state of
42Ca at different beam energies [17], [21]. Error bars are hardly visible due to
marker size. The angular acceptance for the P2-experiment ranges from 6 = 25°
to 8 = 45° with a beam energy of E = 155 MeV [5].

. _ 2 _ 2
The cross section values range from g—g ~ 10728 9t g j—g ~ 10732 CZDT The

Sr S
smaller energy data deviate from the higher energy data. The cross section
values for E' =~ 250 MeV decrease until § = 55° where the data points have their
minimum. Then the cross section increase up to the value of 8 = 65° and start

decreasing to the second minimum of the cross section data.
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5.1.5 Elastic scattering on **Ca

For 8Ca the plots were made the same way as before. The plots for the in-
dividual experiments [17] and [18] can be found in section 9. In figure 14 the
measured cross sections are plotted as a function of the scattering angle 6.
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Figure 14: Cross section for elastic electron scattering off the ground state of
48Ca at different beam energies [17], [18]. Error bars are hardly visible due to
marker size. The angular acceptance for the P2-experiment ranges from 6 = 25°
to § = 45° with a beam energy of E = 155 MeV [5].

The cross section ranges from fi% ~ 10727 % to j—g ~ 10734 % similar to the
values of the cross section for “°Ca. The shapes of the graphs of ®Ca and “°Ca
are almost identical. As for the cross section of “°Ca the cross section values at
lower beam energies (E = 40.64 MeV, E = 60.17 MeV) deviate from the cross
section values at higher beam energies (F = 250 MeV). The decrease of the
cross section values to the first minimum at # = 50° is similar to the decrease
for 4°Ca. In contrast to the plateau for 4°Ca the cross section values for 43Ca
increase up to approximately § = 65°. The cross section values start decreasing

to the second minimum at about 6 = 100°.

5.1.6 Elastic scattering on 2°°Pb

For the 208Pb data sets [22], [23], [25] the same approach as before is used. In

figure 15 the measured cross sections are plotted against the scattering angle 6.
2 2
The cross section ranges from 48 ~ 10722 o 97 ~ 10734 We can see

that the cross sections measured at lower beam energies deviate from the cross
sections at higher beam energies. Generally, we see that the cross section values
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Figure 15: Cross section for elastic electron scattering off 2°8Pb, [22], [23], [25].
Error bars are hardly visible due to marker size. The angular acceptance for
the P2-experiment ranges from 6 = 25° to § = 45° with a beam energy of
E =155 MeV [5].

at lower beam energies are shifted on the x-axis towards larger scattering angles
0. For E ~ 250 MeV the cross section values decreases until 8 = 50° although
the slope decreases from 6 =~ 30° to 6 ~ 50°. From 6 = 50° to § = 60° the cross
section has a plateau before it drops again until 8 = 75°. Then the cross section
has a plateau again until § = 85° before they start dropping off again.

5.1.7 Inelastic scattering on 2°°Pb

For the inelastic scattering off 2°°Pb [24] we looked at the two lowest energy
levels E, = 2.6 MeV and E, = 3.2 MeV. The level scheme of 2°8Pb is displayed
in figure 16. The same approach as for the inelastic scattering off 2C from
section 5.1.2 is used. Figure 17 shows the cross section values for F, = 2.6 MeV
plotted against € and figure 18 shows the cross section values for E, = 3.2 MeV
plotted against 6.

Generally, we see that the cross section range for the first energy level is bigger

than the cross section range for the second energy level. The range for the
2

cross section of the first energy level E, = 2.6 MeV is from 92 ~ 10729 <I™ {0

42 ~ 1073 0%2 For the second energy level E, = 3.2 MeV the cross section
ranges from % ~ 10731 % to g—g ~ 10733 % For the E, = 2.6 MeV level

and a beam energy of E = 167 MeV a plateau is visible from approximately
f# = 65° to # = 80°. Then the cross section values decreases until # = 110° where
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Figure 16: Level scheme for the lowest nuclear energy levels in 2°Pb [7]. On
the left side the spin and parity of the different levels are shown. On the right
side the excitation energies E, of the different levels are displayed in keV.
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Figure 17: Cross section for inelastic electron scattering off the first excited state
E, = 2.6 MeV of 208Pb at different beam energies [24]. The angular acceptance
for the P2-experiment ranges from 6 = 25° to § = 45° with a beam energy of
E =155 MeV [5].
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Figure 18: Cross section for inelastic electron scattering off the second excited
state F, = 3.2MeV of 28Pb at different beam energies [24]. The angular
acceptance for the P2-experiment ranges from 6 = 25° to § = 45° with a beam
energy of E = 155 MeV [5].
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the data points have a minimum. For the second energy level FE, = 3.2 MeV
and a beam energy of £ = 167 MeV the cross section values decrease until
approximately 6 = 95° where the minimum is.

5.2 Plots of the electric form factors

The electric form factor can be interpreted as the Fourier transform of the charge
distribution of the nucleus. The form factor can be obtained from the measured
cross section using a parameterisation for the Mott cross section. Using (5) from
the theory part we get for the form factor:

(

)Exp
— . 40
(38 v "

To calculate the uncertainty the Gaussian error propagation is used. We assume
that only the measured cross section is an error-prone value. We get:

1 do
AR = A () . (41)
(gT))Mott dQ Exp

o.‘o.
2lQ

|F(¢*) =

oo
58

The electric form factor depends on the momentum transfer Q2. The momen-
tum transfer can be calculated using equation (4). The momentum transfer
uncertainty is also calculated with the Gaussian error propagation. It is given
by:

o [4EE . Q " Q E . o Q MEc2 sin (9)
a0 _< & C“(z)““”“(z)* e (2>'( £ <1—cos<e>>+1>2>M'

Mc?
(42)

In the following sections the form factor of the different nuclei is presented.

5.2.1 Elastic scattering on '2C

The calculated form factors are shown in figure 19 as a function of the mo-
mentum transfer Q2. All experiments are distinguishable in the plot by using
different colors and different symbols for the markers.

Generally, we see that all data points fit well together. We see that 2 data
points deviate strongly from the other data points. These two data points are at
Q2 ~ 70-10% MV and at Q% ~ 90-10° MY~ Between Q2 &~ 110-10° MY~ and
Q? ~ 140 - 10° M(’f—zvz the data points for the experiments with £ = 374.5 MeV
and F = 374.6 MeV do not agree well with the data points of the other experi-
ments.

In general, the calculated form factor is getting smaller for larger momentum
transfers Q2. The electric form factor ranges from |F(Q?)|? =~ 1 to |F(Q?)]? ~

10~ depending on the momentum transfer Q2. At Q% ~ 125-10° Mce—;ﬂ the form
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Figure 19: Form factor for elastic electron scattering off the ground state of 2C
for various beam energies. The errors are mostly not visible due to marker size.

factor has its local minimum. The form factor rises until Q% ~ 190 - 103 MS—YA‘
and drops off afterwards towards the second minimum.

5.2.2 Inelastic scattering on 2C

For the inelastic scattering we distinguish between the 3 lowest energy levels
E, = 443 MeV, E, = 7.66 MeV and E, = 9.64 MeV. The form factors for
E, = 4.43 MeV are plotted against the momentum transfer Q? in figure 20. In
figure 21 the form factor for E, = 7.66 MeV is plotted as a function of Q? and in
figure 22 the form factor for £, = 9.64 MeV is plotted against the momentum
transfer Q2. All experiments are distinguishable in the plot by using different
colors and different symbols for the markers.

We see that the form factor for the inelastic scattering by exciting the E, =
4.43 MeV level is approximately 10 times bigger than the form factors for the
inelastic scattering to the F, = 7.66 MeV and E, = 9.64 MeV level. Comparing
the maxima of the E, = 7.66 MeV and the E, = 9.64 MeV we see that the
maximum for the E, = 9.64 MeV level is larger than the E, = 7.66 MeV level.
The form factors in figure 20,21 and 22 have generally the shape of a Gaussian
function. These Gaussian functions have different parameters for the position
and height but approximately the same variance.

For the calculations of the measuring time later on the inelastic scattering con-
tributions will be neglected because the form factor for inelastic scattering under
forward angles is between 100 times for the F, = 4.43 MeV level and 1000 times
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Figure 20: Form factor for inelastic electron scattering off the first excited state
E, = 4.43MeV of '2C at various beam energies.
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Figure 21: Form factor for inelastic electron scattering off the second excited
state E, = 7.66MeV of 12C at various beam energies.
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Figure 22: Form factor for inelastic electron scattering off the third excited state
E, = 9.64MeV of 2C at various beam energies.



for the E, = 7.66 MeV level and E, = 9.64 MeV level smaller than the form
factor for elastic scattering.

5.2.3 Elastic scattering on *°Ca

In figure 23 the calculated form factor is plotted as a function of the momen-
tum transfer Q2. The different experiments are distinguishable by the different
markers that were used.
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Figure 23: Form factor for elastic electron scattering off the ground state of
40Ca at various beam energies. The error bars are mostly not visible due to the
marker size.

Generally, the data points fit well together. The form factor values range
from |F(Q?)|?> ~ 1 to |F(Q?)|> ~ 1075. The form factor values decrease un-
til the first minimum at Q? ~ 50 - 103 MceiQVQ From Q? = 50 - 103 Mcei;/z to

2 =175-10% Mf—ryg the form factor values increase towards their local maximum.
From there the form factor values decrease until the second local minimum at
Q? ~ 150 - 10? % For higher values of Q2 the cross section values increase
slightly again.

5.2.4 Elastic scattering on “2Ca

In figure 24 the form factor of 2Ca are shown as a function of the momentum
transfer Q2. The 2 experiments are distinguishable by the different markers.

We see that the form factor values range from |F(Q?)|? ~ 1 to |F(Q?)|? ~ 10~%.
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Figure 24: Form factor for elastic electron scattering off the ground state of
42(Ca at different beam energies. The error bars are mostly not visible due to

marker size
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Figure 25: Form factor for elastic electron scattering off the ground state of

48(Ca at different beam energies. The error bars are mostly not vis
marker size.

32

ible due to



It is important to note that the range of the Q?-values is smaller than for the
2
plots before. It only ranges up to Q* = 100 - 10° M= The form factor

values decrease until the first minimum at Q2 =~ 55 - 103 MSQV ®. Then the

form factor values increases until Q2 = 70- 103 MS—;/Z For Q2 values larger than

Q?=170-103 MZ’—;’Q the drop off of the form factor values to the second minimum
is visible.

5.2.5 Elastic scattering on **Ca

The form factor values for 8Ca are shown in figure 25 as a function of the
momentum transfer.

We see that the plot for “8Ca looks similar the plot for *°Ca. The form factor
ranges from |F(Q?)]? = 1 to |F(Q?)|*> ~ 107°. The form factor values decrease
until Q% ~ 55-10° M(’f—yz where the form factor values have their first minimum.
From Q? = 55-103 MS—Y} the form factor values increase until Q2 = 70-103 MS—«Y}

before they decrease until Q2 = 145 - 103 Mce;/ ® where the form factor values
have their second minimum. Aftzer the second minimum the form factor values
increase until Q2 ~ 180-103 MZ’—QV before they start decreasing towards the third

minimum.

5.2.6 Elastic scattering on 2Pb

In figure 26 the form factor values for 2°®Pb are shown as a function of the
momentum transfer Q2.
We see that the form factor values range from F?(Q?) ~ 1 to F?(Q?) ~ 107°.

The form factor values no longer correlate well for Q2 > 30 - 103 MS—ZW This is
not observed for the other nuclei and is the reason that ROOT has problems
with the fits for 2°8Pb later on.

We can see that the form factor values decrease until Q? = 40-10% M¢Y ®. In the

interval from Q? = 40 - 103 MS—;/Z to Q% ~ 60 - 103 Ms—;}z the form factor values

MeV?
c -
MeV?

—>— before
C

form a plateau before they start decreasing until Q% = 80 - 103 From

there the form factor values form a plateau until Q% = 120 - 103
they start decreasing.

5.2.7 Inelastic scattering on 2°°Pb

For the inelastic scattering we distinguish between the two lowest energy levels
E, =2.6 MeV and E, = 3.2 MeV. In figure 27 the form factor for the inelastic
scattering to F, = 2.6 MeV is shown as a function of the momentum transfer
Q?. The form factor of the inelastic scattering to E, = 3.2 MeV is shown as a
function of the momentum transfer Q2 in figure 28.

The form factor values for the inelastic scattering to F, = 2.6 MeV are one
order of magnitude larger than the form factor values for the inelastic scatter-
ing to E, = 3.2 MeV. The form factor values generally have the shape of two
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Figure 26: Form factor for elastic electron scattering off the ground state of
208Ph at various beam energies. The error bars are hardly visible due to marker
size.
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Figure 27: Form factor for inelastic electron scattering off the first excited state
E, = 2.6 MeV of 2°8Pb at different beam energies.
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Figure 28: Form factor for inelastic electron scattering off the second excited
state B, = 3.2 MeV of 2°8Pb at different beam energies.



Gaussian functions. The difference is that the height as well as the expected
value for the Gaussian functions differ from each other.

Like for 2C the form factor values for inelastic scattering get neglected for the
later computations of the measuring time because the form factors for inelastic
scattering under forward angles are much smaller than for forward elastic scat-
tering.

5.3 Parameterisation of the form factor for elastic electron
scattering

In this section the different parameterisations introduced in section 2.2 are used
to fit the form factor plots made in section 5.2.

5.3.1 Helm form factor parameterisation

The Helm form factor parameterisation introduced in equation (11) is used to
fit the form factor data for each nucleus.

To start fitting the Helm form factor to the data points, the starting parameters
had to be guessed. To do these guesses the fit panel of ROOT was used. The
fit panel visualizes the fit of the data points for a given set of parameters. This
way by guessing different sets of parameters we can try to approximate the fit
function. If one set of parameters matches the data point the parameters were
set as starting parameters for the fit function of ROOT. If ROOT does not find
a good solution with the given parameters new sets of parameters are tested
with the help of the fit panel. This is done for each nucleus.

In figure 29 the Helm form factor fit function for the form factor of 12C is plotted
together with the data from figure 19. Figure 30 shows the Helm form factor
parameterisation for the specific Q? interval of the P2-experiment. The Q? in-

terval ranges from Q? = 3OOOM§—¥2 to @2 = 7000 MfZVQ

The fit function agrees well with the form factor value up to @2 = 110-10? Ms—;ﬂ
After that the fit deviates up to the minimum of the data points. From Q? =

130 - 103 Mf—;ﬂ to Q% = 190 - 103 Mf—zvz the fit agrees well with the form factor
values. For the data points @2 > 190 - 103 MZ’—;’Z‘ the form factor values and the
fit function deviate greatly.

The fit parameters for the Helm parameterisation are listed in table 1.

Parameter ‘ Value
Effective nuclear radius | 0.0127847 + 1.1-107° 5
Nuclear skin thickness | 0.0041082 4+ 1.7 - 106 M‘(’;V

Table 1: Fit parameter for the Helm parameterisation for 12C
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Figure 29: Helm form factor parameterisation for elastic electron scattering off
the ground state of 12C.

In figure 31 the fit function for the Helm parameterisation for the form factor
of 40Ca is plotted together with the data from figure 23. Figure 32 shows the
Helm parameterisation in the Q2 interval of the P2-experiment.

The fit function matches the data points up to Q? ~ 40-103 Ms—z\ﬂ We see that
the fit function can not be used to describe the minimum of the data points be-
cause the helm function gets zero at Q2 ~ 50-10° Me;ﬂ . From Q% = 60-103 Mey*

c c2
to Q% =130 - 103 Mg—gvz the fit functions matches the data points good. The fit
function can also not describe the minimum at @* = 140 - 10® Y.

The fit parameters for the Helm parameterisation are given in table 2.

Parameter ‘ Value
Effective nuclear radius | 0.0202456 + 4.7 - 10~6 M(év
Nuclear skin thickness 0.004542 +£1.1-107° MZV

Table 2: Fit parameter for the Helm parameterisation for 4°Ca

For #2Ca the Helm form factor fit function is plotted in figure 33 and figure 34
shows the Helm parameterisation for the Q2 interval of the P2-experiment.
The fit function agrees with the data points up to Q% ~ 30 - 103 Mf—zvz In the
interval from Q2 = 30- 103 MS—;/Q to Q? = 55-10° Mce—;ﬂ the fit function deviates
from the data points. For Q% > 55 - 103 Mgir}’z the fit function agrees with the
form factor values.

The fit parameters are listed in table 3.
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Figure 30: Helm form factor parameterisation for elastic electron scattering off
the ground state of '2C in the Q? interval of the P2-experiment. The averaged
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Figure 31: Helm form factor parameterisation for elastic electron scattering off

the ground state of 4°Ca.
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Figure 32: Helm form factor parameterisation for elastic electron scattering off
the ground state of “°Ca in the Q? interval of the P2-experiment. The averaged

Q? for the P2-experiment is Q2 = 5000

MeV?
c2



1 X2/ ndf 212.9/15

‘8 = effective nuclear radius 0.02016 + 1.696e-05
Ly - nuclear skin thickness 0.004489 + 3.859e-05
— fit function } E=250MeV
10
- I E=54.73MeV
102 =
10° =
10 ‘ L x10°
0 20 40 60 80 100
Q[MeV¥c?

Figure 33: Helm form factor parameterisation for elastic electron scattering off
the ground state of *2Ca.
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Figure 34: Helm form factor parameterisation for elastic electron scattering off

the ground state of “2Ca in the Q2 interval of the P2-experiment. The averaged
2

Q? for the P2-experiment is Q2 = 5000 Mce—;/
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Value
0.020161 + 1.7-107° <

MeV
0.004489 + 3.9 10~ o

Parameter ‘
Effective nuclear radius
Nuclear skin thickness

Table 3: Fit parameter for the Helm parameterisation for 42Ca

The Helm form factor parameterisation for **Ca is shown in figure 35. Figure 36
shows the Helm form factor in the limited interval of Q2 for the P2-experiment.

o 1 X2/ ndf 1077/ 49
Na E effective nuclear radius 0.02012 + 5.296e-06
= - nuclear skin thickness  0.00421 + 6.549e-06
10
= — fit function I E=250MeV
1072 I E=40.64MeV I E=60.17MeV
10°
10 =
10°
ot b v V1 dae
0 20 40 60 80 100 120 140 160 180 200
QMeV¥c?

Figure 35: Helm form factor parameterisation for elastic electron scattering off
the ground state of 48Ca.

The fit function matches the data points up to Q2 = 45 - 103 MZ’—;/Q From
Q? = 45-103 Mf—ryz to Q% = 70 - 10° MS—ZYZ the fit function does not agree with
the form factor values. From Q? = 70 - 103 Mg—;ﬂ up to Q% = 140 - 103 Ms—;ﬂ
the fit does not precisely agree with the data points. For Q2 values larger than
Q? = 140 - 103 Mg—zvz the fit function does not agree very well with the data
points. In table 4 the fit parameters are listed.

Parameter

Value

Effective nuclear radius

0.0201175 £ 5.3-107% <

Nuclear skin thickness | 0.0042099 4+ 6.5 - 106

MeV
c
MeV

Table 4: Fit parameter for the Helm parameterisation for 48Ca

For 2%Pb ROOT was not able to find a fit function. The problem is that the
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Figure 36: Helm form factor parameterisation for elastic electron scattering off

the ground state of **Ca in the Q2 interval of the P2-experiment. The averaged
2

Q? for the P2-experiment is Q2 = 5000 MeY—.

c2

different data points do not correlate as good as the data points for the other
nuclei.

5.3.2 Sum of Gaussian functions form factor parameterisation

The sum of Gaussian parameterisation introduced in equation (14) is used to
fit the form factor plots of each nucleus.

To start fitting the data points the starting parameters need to be guessed. For
the sum of Gaussian functions parameterisation the values from the ”Nuclear
Data Tables” [26] were used as starting parameters for the fitting function of
ROQT. Therefore, the values that were found by ROOT are not the same as
the values from the ”Nuclear Data Tables”.

The sum of Gaussian parameterisation for '2C is shown in figure 37. Figure 38
shows the sum of Gaussian parameterisation for the limited Q2 interval of the
P2-experiment.

The sum of Gaussian parameterisation is consistent up to Q% = 180 - 103 MS—«Y}
with the Helm form factor parameterisation. For Q2 values larger than Q% =
180 - 103 Mf—ryz the sum of Gaussian parameterisation describes the form factor
values better than the Helm form factor parameterisation. It is important to
note that the sum of Gaussian parameterisation has 4 parameters more than
the Helm parameterisation. The sum of the ); parameters gives approximately
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Figure 37: Sum of Gaussian form factor parameterisation for elastic electron
scattering off the ground state of 12C.
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Figure 38: Sum of Gaussian form factor parameterisation parameterisation for

elastic electron scattering off the ground state of '2C in the Q2 interval of the
2

P2-experiment. The averaged Q? for the P2-experiment is Q2 = 5000 Mce—;/
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1. The fit parameters are listed in table 5.

Parameter Value
v 1.501 £1-1073 fm
Ry 1.189 £9-1072 fm
Q1 0.62 + 0.14
R, 1.163 £ 5-1073 fm
Q2 0.40 +0.14
R; 3.016 & 0.063 fm
Qs 4.63 -107° £ 0.37-1079

Table 5: Fit parameter for the sum of Gaussian parameterisation for 12C

The sum of Gaussian parameterisation fit function for “°Ca is plotted in fig-
ure 39. Figure 40 shows the sum of Gaussian parameterisation in the Q? interval
of the P2-experiment.

Up to Q% = 30103 ME—ZVQ the fit function matches the data points. The sum
of Gaussian parameterisation does not describe the form factor values as good
as the Helm parameterisation for Q2 values between Q2 = 30 - 103 MZ’—ZVQ and
Q% =40-10° Mj—ryz Like the Helm parameterisation the sum of Gaussian pa-
rameterisation does not match the data points around the local minimum. From
Q% =55-103 ME—Q/Q up to 130-103 M?—;ﬂ the fit function agrees even better than
the Helm parameterisation with the form factor values. For larger momentum
transfers than Q2 = 130-103 MS—QVQ the fit function deviates from the data points.
Just as for 12C the sum of the Q; parameters gives approximately 1.

The fit parameters for the sum of Gaussian function are given in table 6.

Parameter Value

¥ 1.703 + 0.029 fm
Ry 0.1362 £ 0.0886 fm
Q1 0.0812 =+ 0.0031
Ry 3.88 £ 0.11 fm
Q2 0.131 £ 0.022
R3 2.58 4+ 0.01 fm
Q3 0.866 + 0.018

Table 6: Fit parameter for the sum of Gaussian parameterisation for 4°Ca

For #2Ca the fit function is shown in figure 41. Figure 42 shows the sum of
Gaussian fit function for #2Ca in the Q2 interval for the P2-experiment. The fit
parameters are listed in table 7.
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Figure 39: Sum of Gaussian form factor parameterisation for elastic electron
scattering off the ground state of °Ca.
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Figure 40: Sum of Gaussian form factor parameterisation for elastic electron

scattering off the ground state of 4°Ca in the Q? interval of the P2-experiment.
2

The averaged Q? for the P2-experiment is Q2 = 5000 ME—;/
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Figure 41: Sum of Gaussian form factor parameterisation for elastic electron
scattering off the ground state of 2Ca.

@ =
o 0.9
0.8 ;
07
0.6 ;
o5 [ X2/ ndf 70.1/10 f
EolyY -4.401e-06 + 0.1557
04 | Ry 4765 + 0.017
E | Q 0.6027 + 0.008292
03 | R, 2.23 +3.167 |— fit function [ e=2s0mev
o2b | 0.00192 + 0.0757
“E | Re 2.23 +0.01484 } E=54.73MeV
01 L9 0.5073 + 0.07567
E Ll Ll Ll Ll Ll ‘
3000 4000 5000 6000 7000 8000

QMeV¥c?

Figure 42: Sum of Gaussian form factor parameterisation for elastic electron

scattering off the ground state of 42Ca in the Q? interval of the P2-experiment.
2

The averaged Q? for the P2-experiment is Q2 = 5000 ME—;/
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Figure 43: Sum of Gaussian form factor parameterisation for elastic electron
scattering off the ground state of 48Ca.
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Figure 44: Sum of Gaussian form factor parameterisation for elastic electron

scattering off the ground state of 8Ca in the Q? interval of the P2-experiment.
2

The averaged Q? for the P2-experiment is Q2 = 5000 ME—;/
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Parameter Value

¥ 0.00 £ 0.16 fm
Ry 4.765 + 0.017 fm
Q1 0.6027 +£8.3-1073
Ro 2.2 £3.2fm
Q- 21072 £ 76-1073
R3 2.23 £+ 0.01 fm
Q3 0.507 + 0.076

Table 7: Fit parameter for the sum of Gaussian parameterisation for 42Ca

Generally, the sum of Gaussian parameterisation describes the form factor pre-
cisely. The sum of Gaussian parameterisation agrees with the data points better
than the Helm parameterisation which was used before. The sum of of the Q);
is approximately 1.

In figure 43 the sum of Gaussian fit for 8Ca is plotted. Figure 44 shows the
same parameterisation in the Q? interval of the P2-experiment.

The function was only fitted up to Q2 = 140- 103 MS—;ﬂ because ROOT was not
able to fit a function over the whole interval of Q2. Therefore, the function is
fitted as far as possible.

Up to Q2 ~ 30-103 Mj—zvg the fit function matches the form factor values. From
Q?=30-10% ME—QVZ to Q% = 50-103 Mji;’z the fit function does not agree with the
data points. For larger Q2 up to Q% = 140 - 10° ME—ZVQ the fit function describes
the form factor precise. The sum of the parameters @Q; is approximately 1.
The fit parameters are listed in table 8.

Parameter Value

¥ 0.20 £ 0.10 fm
Ry 4.656 £ 0.037 fm
Q1 0.40 £ 0.01
Ry 0.57 + 0.20 fm
Q2 0.0622 + 0.00072
R3 2.889 £ 0.027 fm
Qs 0.589 + 0.012

Table 8: Fit parameter for the sum of Gaussian parameterisation for 44Ca

For 208Pb the same problem as for the Helm parameterisation occurs. ROOT
is not able to fit the function to the data points.
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5.3.3 The Fourier-Bessel parametersisation

The Fourier-Bessel parameterisation introduced in equation (18) is used to fit
the form factor data of each nucleus.

The start parameters for the fit are again taken from the ”Nuclear Data Ta-
bles” [26]. The fit for '2C is shown in figure 45. Figure 46 shows the fit for the
Q? interval of the P2-experiment.

w1 X2/ ndf 3.901e+04 / 193
S g R 4.323 +0.004485
r r a 0.03439 + 0.0007866
| a, 0.01914 * 0.0004322
107°E a,  -0.008266 + 0.0001874
- — fit function I E=250MeV
L I E=187Mev 1 E=374.5MeV
2| 1 E=374.6Mev 1 E=187Mev
102
= 1 E=238MeV I E=243Mev
E 1 E=240.17MeV I E=300.52Mev
10°
lO“';
105 L~ Ll - P P10
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Q[MeV¥c?

Figure 45: Fourier-Bessel form factor parameterisation for elastic electron scat-
tering off the ground state of '2C.

Generally, we see that even in the range for small values of Q2 up to Q? =
40-103 Ms—;/? the fit function deviates more from the form factor values than the
parameterisations before and describes the form factor for Q2 > 180 - 103 Mf—;ﬂ
even worse than the parameterisations before.

The fit parameters are given in table 9.

Parameter | Value
R 4.3235 + 4.5 - 1073 fm
a 0.03439 + 7.9.-10~¢
as 0.01914 + 4.3 -10~¢
as -0.00827 £ 0.00019

Table 9: Fit parameter for the Fourier-Bessel parameterisation for '2C
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Figure 46: Fourier-Bessel form factor parameterisation for elastic electron scat-

tering off the ground state of 12C in the Q? interval of the P2-experiment. The
2

averaged Q? for the P2-experiment is Q2 = 5000 M=
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Figure 47: Fourier-Bessel form factor parameterisation for elastic electron scat-
tering off the ground state of “°Ca.
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Figure 48: Fourier-Bessel form factor parameterisation for elastic electron scat-

tering off the ground state of 4°Ca in the Q? interval of the P2-experiment. The
2

averaged Q? for the P2-experiment is Q2 = 5000 MeY=.
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In figure 47 the Fourier-Bessel parameterisation for 4°Ca is plotted. Figure 48
shows the Fourier-Bessel fit function in the Q2 interval of the P2-experiment.

The Fourier-Bessel parameterisation has problems with describing the minimum
of the data points at Q2 ~ 55-103 Ms—;}z The fit function matches the data points
until Q2 = 45 - 10° M and from Q% = 70 - 103 MYV= 0 Q% = 140 - 103 MeY”,
For larger Q%-values then Q2 = 140 - 103 Mce—;ﬂ the function does not match the

data points.
The fit parameters are listed in table 10.

Parameter ‘ Value
R 6.491 4 0.010 fm
ay 0.1107 £ 6.8-1073
as 0.0643 £ 0.0038
as -0.0561 £ 0.0034

Table 10: Fit parameter for the Fourier-Bessel parameterisation for 4°Ca

For #2Ca the fit function is plotted in figure 49. Figure 50 shows the fit function
for 42Ca in the Q? interval of the P2-experiment.

The Fourier-Bessel parameterisation again has the problem in matching the
minimum of the form factor values at Q2 = 50 - 103 Ms;/ ® . The fit function
agrees with the other form factor values.

The fit parameters are given in table 11.

Parameter ‘ Value
R 6.915 4+ 0.056 fm
aq 0.025 + 0.010
as 0.0190 =+ 0.0079
as -0.0134 £ 0.0057

Table 11: Fit parameter for the Fourier-Bessel parameterisation for 42Ca

The Fourier-Bessel fit function for “3Ca is plotted in figure 51. Figure 52 shows
the fit function in the Q2 interval of the P2-experiment.

As for the nuclei before the Fourier-Bessel function struggles to describe the
minimum at Q2 ~ 50 - 103 M;,V ®. In contrast to the parameterisations used
before the Fourier-Bessel parameterisation does not precisely describe the form
factor values in the interval from Q2 = 70 - 103 ME—QVZ to Q% =130 - 10° MS—;/Q
In table 12 the fit parameter are listed.

For 208Pb the same applies as for the parameterisations used before.
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Figure 49: Fourier-Bessel form factor parameterisation for elastic electron scat-
tering off the ground state of 42Ca.
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Figure 50: Fourier-Bessel form factor parameterisation for elastic electron scat-

tering off the ground state of 4>Ca in the Q)2 interval of the P2-experiment. The
2

averaged 2 for the P2-experiment is Q2 = 5000 MCGTV
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Figure 51: Fourier-Bessel form factor parameterisation for elastic electron scat-
tering off the ground state of *®Ca
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Figure 52: Fourier-Bessel form factor parameterisation for elastic electron scat-

tering off the ground state of ®Ca in the Q)2 interval of the P2-experiment. The
2

averaged 2 for the P2-experiment is Q2 = 5000 MCGTV
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Parameter ‘ Value

R 5.2428 + 4.6 - 1073 fm
aq 0.153 £ 0.018

as -0.0383 + 0.0046
as -0.0201 4 0.0024

Table 12: Fit parameter for the Fourier-Bessel parameterisation for **Ca

5.3.4 Polynomial function parameterisation

The polynomial function parameterisation introduced in equation (20) is used
to fit the form factor data of each nucleus.

To find the start parameters for this parameterisations the fit panel of ROOT
was used. The first 4 parameters were found by trying to fit the data points
up to the first minimum of the form factor values. The other parameters were
calculated by the fit function of ROOT after presetting the 4 parameters.

The fit function for '2C is plotted in figure 53 as a function of the momentum
transfer. Figure 54 shows the polynomial fit function in the Q? interval of the
P2-experiment.

Generally, we see that the fit functions describes the form factor up to Q? =
125 - 10 MY” with high precision. For the values of Q% = 125 - 10% M&Y® o
Q? =135-10° MZ’—QVZ the fit function differs from the measuring data. For the
rest of the O values the fit describes the measuring data better than the Helm
form factor parameterisation and the Fourier Bessel parameterisation but worse
than the sum of Gaussian parameterisation.

Table 13 lists the fit parameter of the polynomial parameterisation for '2C.

Parameter Value
ap 3.3897-107%° 4+ 9.3-10~% vaz
ay -0.949 + 0.018
-5 7 2

as -2.090-107° & 5.3-1077 g
as 537810710 £ 5.9.1071% £
as -7.2535-10715 + 6.9-10718 MST"V
as 40231072 + 1.2-107%* 5
ag -2.219-107%0 4+ 8.8-10728 o

Table 13: Fit parameter for the polynomial function parameterisation for 12C

For 4°Ca the polynomial parameterisation fit function is plotted in figure 55.
Figure 56 shows the shows the fit function in the Q? interval of the P2-experiment.

Here, we only fitted up to Q% = 135 - 103 Mg—;,vz because ROOT was not able to
find a good fitting result for larger intervals of Q2. The chosen fit functions was
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Figure 53: Polynomial function form factor parameterisation for elastic electron
scattering off the ground state of 12C.

—— fit function 1 E=250MeVv
o 1 I E=187Mev 1 E=374.5MeV
o« — 1 E=374.6MeVv 1 E=187MeVv
LQL: 09:— T E=238MeV I E=243Mev
= K 1 E=240.17MeV I E=300.52MeV
0.8
0.7
0.6—
= X2/ ndf 3.093e+04 / 190
OSE a 3.30e-05 + 9.31e-08
0.4 2 -0.9488 + 0.01769
E a, -2.09e-05 * 5.34e-07
0.3 a 5.378e-10 + 5.85e-12
= ay ~7.253e-15 + 6.938e-18
02— as 4.023e-20 + 1.204e-22
= 3 —2.219e-26 + 8.755e-28
0.1—
T TR B N R I Ll
2000 3000 4000 5000 6000 7000 8000
Q’MeV?/c?

Figure 54: Polynomial function form factor parameterisation for elastic electron

scattering off the ground state of 12C in the Q? interval of the P2-experiment.
2

The averaged Q? for the P2-experiment is Q2 = 5000 ME—;/
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Figure 55: Polynomial function form factor parameterisation for elastic electron

scattering off the ground state of 4°Ca.
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Figure 56: Polynomial function form factor parameterisation for elastic electron

scattering off the ground state of *°Ca in the Q?

interval of the P2-experiment.
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The averaged Q2 for the P2-experiment is Q% = 5000 Me¥—
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Figure 57: Polynomial function form factor parameterisation for elastic electron

scattering off the ground state of 42Ca.
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Figure 58: Polynomial function form factor parameterisation for elastic electron
scattering off the ground state of #2Ca in the Q2 interval of the P2-experiment.

The averaged Q? for the P2-experiment is Q% = 5000 Mj—;’z
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Figure 59: Polynomial function form factor parameterisation for elastic electron
scattering off the ground state of 48Ca.
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Figure 60: Polynomial function form factor parameterisation for elastic electron
scattering off the ground state of 8Ca in the Q2 interval of the P2-experiment.

The averaged Q? for the P2-experiment is Q% = 5000 MeV?

c2




not able to describe the last local maximum at around Q2 = 180 - 10> MS—;ﬂ In
the given interval the fit function agrees precisely with the form factor values.
The fit parameters for “°Ca are given in table 14.

Parameter Value

a 1071104 + 2.3 1077 s
ay 1.044 £ 0.015

a 7641077+ 0.29-107° i
as 3481070 £ 016107 g
ay 24231071 £+ 3.9.1071° ngﬁ
as -1.671-107 ' £ 7.3.10720 Mfﬂ{g
ag 15921072 £ 1.2 1073 e
az 2.591-107%" + 1.9- 107 5
as -8.41-107% £ 2822107 S

Table 14: Fit parameter for the polynomial function parameterisation for 4°Ca

For #2Ca the polynomial parameterisation fit function is shown in figure 57. Fig-
ure 58 shows the polynomial fit function in the Q2 interval of the P2-experiment.
Generally, the fit function agrees with the measuring data over the whole Q-

interval. In the interval from Q2 =0 Mev to Q%2 =5-103 MEV the fit function
has a large slope which leads to form factor values larger than 1. This is con-
trary to what we would expect. However this fit function is still chosen because
it describes the form factor values in the interval from Q% = 5 - 103 Mg—f to
Q*=15-10° Mev well which is relevant for the P2-experiment.

In table 15 the ﬁt parameters for 42Ca are listed.

Parameter Value
ao 8.765-107° + 58107
a 1.761 + 0.085
a 1671074 £ 0.15-1074 5oos
as 17631078 + 5.6- 10710 £or
as 55310713 4+ 0.11-1013 Mg:VG
as 54310718 £ 0.12- 10718 oo

Table 15: Fit parameter for the polynomial function parameterisation for 42Ca

or 8Ca the fit function is shown in figure 59. Figure 60 shows the fit function
in the Q? interval of the P2-experiment.
As for 49Ca the fitting interval is adjusted to get a better fitting result. In the
whole interval from Q% =0 ME;’ > to Q% =140-103 Mz—;]z the fit function agrees
with the form factor values.
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The fitting parameters for 8Ca are presented in table 16.

Parameter Value

ag 1.0302:10~% + 2.7- 1077 5
a 1.021 + 0.014

a 1.066-10~" & 3.4-107° &

as -1.251-107% 4+ 2.3-107" 5
ay 1.0204-1072 £+ 6.0 - 107" &oo
as 298310717 + 1.2-1071° M;VS
ag 2.864-10722 £ 1.8- 107 o

Table 16: Fit parameter for the polynomial function parameterisation for 43Ca
For 208Pb the same applies as for the parameterisations used before.

5.3.5 Gaussian function parameterisation

The polynomial function parameterisation introduced in equation (22) is used
to fit the form factor data of each nucleus.

Again the starting parameter are found with the help of the ROOT fit panel.
The fit function for the Gaussian function parameterisation for 12C is plotted
in figure 61. Figure 62 shows the fit function in the Q2 interval of the P2-
experiment.

We see that up to Q% = 115 - 103 ME—;/Z the fit function describes the cross

section values with good precision. Around the minimum of the cross section
2 2

values from Q% = 115 - 103 M= to Q2 =130 -10® MG~ the function deviates

from the cross section values. For Q% > 130-103 Mz’—gvz the fit function describes
the form factor values precisely. It is important to note that in the interval from
Q*=0 Mf—;’z to Q% =5 MY ® the from factor parameterisation is larger than 1
which is contrary to what we would expect. This will lead to a deviation of the
measuring time from the other form factor parameterisations for '2C.

The fit parameters of the Gaussian function parameterisation for '2C are listed

in table 17.

For 4°Ca the fit function is shown in figure 63. Figure 64 shows the fit function
in the Q? interval of the P2-experiment.

As for the polynomial function parameterisation the fitting interval was short-
ened in order to get good fitting results. In the whole fitting interval from
Q*=0 Mf—fyz to Q2 = 135 - 10° Mg/i;”" the form factor values are described by
the fitting function precisely.

The fit parameters are displayed in table 18.
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Figure 61: Gaussian function form factor parameterisation for elastic electron
scattering off the ground state of 12C.
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Figure 62: Gaussian function form factor parameterisation for elastic electron

scattering off the ground state of 12C in the Q? interval of the P2-experiment.
2

The averaged Q? for the P2-experiment is Q2 = 5000 ME—;/

98



o~ 1 — fit function I E=250MeVv X2/ ndf 289.6 /99
S E 1 E=249MeV T E=249MeV 8 4.31+0.1061
[ing = 1 E=249MeV T E=183MeV :2 _5'136531,8 t 8-383;59‘13
. i -5.239e+04 + 615.
107t 1 E=43.24Mev I E=60.21Mev °
3 4 ¢ . & a, 0.01951 0.001579
o a -3.69e-09 + 2.783e-10
102 a, 6.774e+04 + 350.9
g & 0.02585 =+ 0.0008998
C ag -9.401e-10 + 5.159e-11
103 3y 8.989e+04 + 1224
10
Sl + + +
= & -
e N AN AR RPN RN AU IR IR IR PO (10
0 20 40 60 80 100 120 140 160 180 200
QY MeV¥c?

Figure 63: Gaussian function form factor parameterisation for elastic electron
scattering off the ground state of 4°Ca.
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Figure 64: Gaussian function form factor parameterisation for elastic electron
scattering off the ground state of “°Ca in the Q2 interval of the P2-experiment.
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Figure 65: Gaussian function form factor parameterisation for elastic electron
scattering off the ground state of 42Ca.
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Figure 66: Gaussian function form factor parameterisation for elastic electron

scattering off the ground state of #2Ca in the Q2 interval of the P2-experiment.
2

The averaged Q? for the P2-experiment is Q? = 5000 M=
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Figure 67: Gaussian function form factor parameterisation for elastic electron
scattering off the ground state 8Ca
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Figure 68: Gaussian function form factor parameterisation for elastic electron

scattering off the ground state of 8Ca in the Q2 interval of the P2-experiment.
2

The averaged Q2 for the P2-experiment is Q% = 5000 Me¥—

c2




Parameter Value
a 0.3575 £ 1.7-10 7
as -1.5256-10710 &+ 5.1 10718
az -9078 + 43 Mey®
as 1.034107%+ 1.5-1078
as 5.0841-1071 & 4.6 - 1071 £on
ag 5.185-10° + 443 Mey*
ay -0.1058 £1.9-107%
as -6.876-10712 + 7.0- 1071 oo
ag -3.168-10° = 1897 M-

Table 17: Fit parameter for the Gaussian function parameterisation for 12C

Parameter Value
ar 131 £0.10
a 513610710 £ 5.4 10712 £
as -5.239-10% 4 0.062 - 10* MY~
as 0.0195 £0.0016
as -3.69-1070 +£2.8- 10710 <
a 6.774-10% + 0.035 - 10* MeY”
ar 0.02585 £9.0 - 10~
as 29.401-10710 £ 0.52 - 10710 £1
ag 8.989-10* £ 0.12 - 10* MY~

Table 18: Fit parameter for the Gaussian function parameterisation for 4°Ca

In figure 65 the Gaussian parameterisation fit function for 42Ca is shown. Figure
66 shows the Gaussian parameterisation in the Q2 interval of the P2-experiment.
As for 49Ca the fitting functions agrees with the form factor values over the whole
fitting interval from Q% = 0 MS—«}/Q to Q% = 110 - 103 M(‘j—y? Whats notable is
that for Q%> =0 MS—QVZ) the value for the form factor is not exactly 1 which is not
observed for most of the other parameterisations. For these the value for the

form factor for Q% =0 Mce;/ s approximately 1.
The fit parameters for the Gaussian function parameterisation for 42Ca are pre-

sented in table 19.

For “8Ca the Gaussian parameterisation fit function is displayed in figure 67.
Figure 68 shows the fit function in the Q2 interval of the P2-experiment.
2

We see that up to Q% ~ 40 - 10° MG the fit functions agrees with the data
points. In the interval from Q2 = 40 - 10° MS—yz to Q% = 100 - 103 Mg—;ﬂ the
fit functions deviates from the data points. For Q% > 100 - 103 Mgif the fit
functions describes the form factor values precise again. If the Q? values for the
experiment lays in the Q? interval where the fit function does not describe the
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Parameter Value
a 1.159 +£0.033
as -1.013107% £ 1.4 - 10711 £
as ~1.58210* + 0.027 - 10* Me\”
as 0.03825 +6.5 - 10~
as -1.200-107° £ 8.6 - 1071 &n
as 7.748-10% £ 0.059 - 10* M=

Table 19: Fit parameter for the Gaussian function parameterisation for 42Ca

data points precisely we can shorten the fitting interval which is shown in figure
69. The same fit function in the Q? interval of the P2-experiment is shown in
figure 70.

We see that the interval from Q2 = 40 - 10? MS—fyz to Q% = 100 - 103 Mﬁ—y is
described by the fit function accurately.

The fit parameters for the fit function in figure 48 can be found in table 20 and
the fit parameters for the fit function in figure 49 can be found in table 21.

Parameter Value

ar 3.42 £ 0.58
as -6.15-10710 + 0.54- 10710 £
as -4.36:10% + 0.49 - 10710 Mo
a 0.04496 + 6.0 - 1074

-10 -10 _c*
as 291910710 4+ 0.31- 107" geos
as 7.947-10* £ 0.048 - 10* MeY
ar 6.98107% + 0.1-1073
as -8.23-10710 + 0.63- 10710 £
ag 1.818-10° + 0.009 - 10° MeY”

Table 20: Fit parameter for the Gaussian function parameterisation for 8Ca in
the complete Q2 interval

For 298Pb the fit function is shown in figure 71. Figure 72 shows the fit function
in the Q? interval of the P2-experiment.

We can see that the fit function describes the form factor values in the fitting
interval from Q2 = 0 M‘j—;ﬂ to Q% =80 -10? szvz. This fit was made by using
the fit panel and separately changing the parameters. ROOT itself was not able
to find a fit function for the form factor values. This is probably because the dif-
ferent data points do not correlate for Q2-values bigger than Q2 = 40-103 MZ’—ZVQ
The fitting parameter for the Gaussian function parameterisation fit function
for 208Pb are displayed in table 22. We see that the errors for the different
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Figure 69: Gaussian function form factor parameterisation for elastic electron
scattering off the ground state of *8Ca in a shortened interval.
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Figure 70: Gaussian function form factor parameterisation in the shortened
interval for elastic electron scattering off the ground state of *®Ca in the Q2
interval of the P2-experiment. The averaged Q2 for the P2-experiment is Q% =
5000 Mey=,

C
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Figure 71: Gaussian function form factor parameterisation for elastic electron
scattering off the ground state of 2°8Pb.
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Figure 72: Gaussian function form factor parameterisation for elastic electron

scattering off the ground state of 2°8Pb in the Q? interval of the P2-experiment.
2

The averaged Q? for the P2-experiment is Q2 = 5000 ME—;/
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Parameter

Value

aj
a2
as
Gy
as
ae
ar
as
a9

5.86 £+ 0.44

—-10 —-10 _c*
-4.5-10 + 0.17-10 MCV4

-6.19-10* + 0.25 - 10* MG
0.02154 + 2.38 - 1073

-9 -9
-4.81-10~7 £ 0.74-10 AT

6.828-10% + 0.009 - 10* Mey™
0.0321 £ 1.7-1073

—10 —-10 _c*
-9.28-10 + 0.51-10 T

8.79-10% £ 0.12-10* M-

Table 21: Fit parameter for the Gaussian function parameterisation for 8Ca in

the shortened Q2 interval

Parameter

Value

ai
az
as
Qa4
as
ae
ar
as
a9

4.892 £1.1-10-24

— — 64
-4.018-107% 4+ 2.1-1073* 5

-1.948-10% £ 1.1-1072 Mey?
0.1409 + 5.4 - 10728

-9 —35 C
443107 £ 5.4-107% 5y

1.524-10* + 4.9 10723 Mey®
0.03268 + 5.9 - 1028

-8.349-10710 £ 4.5-107% <oy

4.439-10* + 5910722 Mey”

4

4

Table 22: Fit parameter for the Gaussian function parameterisation for 2°*Pb.
The errors are not from the fit because the values for the parameters are set by

hand.

parameters are very small. This is because the fit was made only by using the

fit panel of ROOT.
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5.4 Form factor parameterisation inelastic scattering

The Gaussian function parameterisation used before in section 5.3.5 was used
to fit the form factor data.

For '2C the fit function for the first energy level E, = 4.43 MeV is displayed in
figure 73. The fit function for the second energy level E, = 7.66 MeV is plotted
in figure 74 and the fit function for the third energy level E, = 9.64 MeV is
plotted in figure 75.

We have to remember that we actually have to fit 2s+1 form factors where s
is the spin of the state. Because we do not have enough data we only fit one
form factor. Generally, the form factor for the inelastic scattering off '2C can
be described by one simple Gaussian function. We see that the maximum of the
form factor values for the E, = 4.43 MeV level is one order of magnitude larger
than for the E, = 7.66 MeV and F, = 9.64 MeV levels. The position for each
of the Gaussian functions differ from each other because the maxima of each of
the form factor value sets are shifted. The variance of the different fit functions
are approximately the same.

The fit parameters for F, = 4.43 MeV are listed in table 23. In table 24
the fit parameters for £, = 7.66 MeV and in table 25 the fit parameters for
E, =9.64 MeV are displayed.

Parameter ‘ Value
ar 0.11736 £7.7- 10~ *
a -1767-10710 £4.6- 10712 ooy
as 6.084-10* £ 0.048 - 10* MeY”

Table 23: Fit parameter for the Gaussian function parameterisation for the first
excited state E, = 4.43 MeV of 12C.

Parameter ‘ Value
a, 0.05445 £6.0 - 10~%
as -1.989-10710 £ 8.1 10712 £
as 3.72-10* £0.14 - 10* M

Table 24: Fit parameter for the Gaussian function parameterisation for the
second excited state E, = 7.66 MeV of 12C

The Gaussian function parameterisation fit function for the E, = 2.6 MeV level
of 208Pb is plotted in figure 76 and the fit function for the Q2 interval of the
P2-experiment is shown in figure 77. Figure 78 shows the the Gaussian form
factor parametersiation for inelastic electron scattering off the second excited
state £, = 3.2 MeV level of 2°8Pb and figure 79 shows the same fit function in
the Q2 interval of the P2-experiment.

In contrast to the inelastic scattering off 2C two Gaussian functions are needed
to describe the data points for the first excited state E, = 2.6 MeV. We can
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Figure 73: Gaussian function form factor parameterisation for inelastic electron
scattering off the first excited state E, = 4.43 MeV of 2C.
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Figure 74: Gaussian function form factor parameterisation for inelastic electron
scattering off the second excited state E, = 7.66 MeV of 12C.
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Figure 75: Gaussian function form factor parameterisation for inelastic electron
scattering off the third excited state £, = 9.64 MeV of 12C.



Parameter ‘ Value

ay 0.06878 +5.7-10~*
as -1.497-10710 £ 7.0 - 10712 £
as 7.398-10* +0.074 - 10* Mey”

Table 25: Fit parameter for the Gaussian function parameterisation for the third
excited state E, = 9.64 MeV of 12C

see that the form factor for the F, = 2.6 MeV level is one order of magnitude
larger than the form factor for the £, = 3.2 MeV level. The form factor values
of the E, = 3.2 MeV level have their maximum at Q% = 20 - 103 Mce—;/z At this
Q? value the form factor values of the E, = 2.6 MeV level have their minimum.
The fit parameters for the £, = 2.6 MeV level are listed in table 26 and in the
fit parameters for the E, = 3.2 MeV level are given in table 27.

Parameter Value
ar 0.02117 £3.4-107*
a -7.341070 £0.42 - 107 for
az 1.304-10* £ 0.035 - 10* MeY”
as 8.007-1073 +6.9-10~°
as -1.9781079 £ 7.8 - 1071 £os
ag 4.572-10* £0.028 - 10* M=

Table 26: Fit parameter for the Gaussian function parameterisation for the first
excited state E, = 2.6 MeV of 2%Ph

Parameter Value
a 6.327-1073 £ 0.104 - 103
as -1.66-107° £0.15 - 107 o
as 2.61-10* £ 0.99 - 10* MY

C

Table 27: Fit parameter for the Gaussian function parameterisation for the
second excited state E, = 3.2 MeV of 208Pb
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Figure 76: Gaussian function form factor parameterisation for inelastic electron
scattering off the first excited state £, = 2.6 MeV of 20%Pb.
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Figure 77: Gaussian function form factor parameterisation for inelastic electron

scattering off the first excited state E, = 2.6 MeV of 2°8Pb in the Q? interval of
2

the P2-experiment. The averaged Q? for the P2-experiment is Q? = 5000 ME—;/
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Figure 78: Gaussian function form factor parameterisation for inelastic electron
scattering off the second excited state E, = 3.2 MeV of 298Pb.
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Figure 79: Gaussian function form factor parameterisation for inelastic elec-
tron scattering off the second excited state E, = 3.2 MeV of 2°8Pb in the
Q? interval of the P2-experiment. The averaged Q2 for the P2-experiment is
Q? = 5000 Mey™

= e
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5.5 Results for the parity-violating asymmetry

The parity-violating asymmetry is calculated with equation (27) from section 2.3.
The weak nuclear charge @,, is calculated using equation (28) from section 2.3.
The value of the parity-violating asymmetry is different for each nucleus. The
parity-violating asymmetries calculated for each nucleus by assuming Q? =
4.5-1073 Gf—;’z which is the Q? value for the P2-experiment using a [ Ho-target
are shown in table 28.

Nucleus A
2C 3.74-1077
OCa |[3.74-1077
2Ca | 4.15-1077
8Ca | 5.36-1077
208ph | 5.91-1077

Table 28: Parity-violating asymmetry A for Q2 = 4.5- 1073 GeV?

These values are problematic because they assumes that the Q2-values for the
different targets are the same as for the | Ho-target.

If we want to take these differences into account we need to calculate the cross
section averaged asymmetry. We averaged the asymmetry over the angle accep-
tance of the P2-experiment. The angle acceptance for the P2-experiment ranges
from 6 = 25° to 6 = 45°. The cross section averaged asymmetry was calculated
using equation (29) from section 2.4.

This way the Q? dependence for each nucleus is correctly taken into account.
With the help of the previously introduced parameterisations we can calculate
3—6. This way we get for each parameterisation a different value for the cross
section averaged asymmetry. The values for the different asymmetries for 12C,
40Ca, *2Ca and *8Ca can be found in tables 29-32.

Parameterisation (A)
Polynomial 5.98 1077
Gaussian 5.85-10~7
Helm 5.95-10"7
Sum of Gaussian | 5.94-1077
Fourier-Bessel 5.96-10~7

Table 29: Cross section averaged parity-violating asymmetry (A) for 12C

For 2°8Pb we only had one parameterisation. We get for the cross section aver-
aged parity-violating asymmetry:

(A) =831-107"
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Parameterisation (A)
Polynomial 5.61-10~7
Gaussian 5.65-10~7
Helm 5.70 - 10~ 7
Sum of Gaussian | 5.65- 107"
Fourier-Bessel 5.73-10~7

Table 30: Cross section averaged parity-

violating asymmetry (A) for 4°Ca

Parameterisation (A)
Polynomial 6.15-10~7
Gaussian 6.38-10~7
Helm 6.32-1077
Sum of Gaussian | 6.22-1077
Fourier-Bessel | 6.35-10~7

Table 31: Cross section averaged parity-

violating asymmetry (A) for 42Ca

Parameterisation (A)
Polynomial 8.01-107"7
Gaussian 8.08-10~7
Helm 8.18-1077
Sum of Gaussian | 8.11-1077
Fourier-Bessel 8.21-1077

Table 32: Cross section averaged parity-violating asymmetry (A) for 48Ca

5.6 Results for the measuring time

To calculate the measuring time first of all the luminosity L has to be calcu-
lated. The luminosity can be calculated with equation (36) from section 2.4. In
table 33 the luminosity for each nucleus is presented. The different parameters
that are needed to calculate the luminosity are also explained in equations (37)
and (38) in section 2.4. The beam current is I = 150 yA. We have to chose the
length of the targets individually for each nucleus to take the different scattering
cross sections into account. Heavier nuclei have a larger cross section because
the cross section scales with Z2. If we would have chosen the same length for
208ph as for 12C the radiation levels would be to high in the experiment hall.

Before we can calculate the measuring time we need to determine how many
scattering events take place. This depends on how precise we want to calcu-
late the asymmetry. For this calculations we chose a precision of % = 0.01,
24 = 0.005, 22 = 0.003 and 22 = 0.001. To calculate the number of events
equation (33) from section 2.4 is used.
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Nucleus | Density [-£5] | Length [cm] | Luminosity [ ]
2C 2.26 2.2 2.34-10%8
40Ca 1.55 0.2 4.81-10%7
42Ca 1.55 0.2 4.58 - 10%7
48Ca 1.55 0.2 4.01-10%7
208phH 11.342 0.025 6.76 - 1037

Table 33: Luminosity for the different nuclei

Equation (33) can be solved for the number of scattering events:

1
- AAY

N (43)

Usually not all the electrons in the beam are polarized. This can be taken into
account if we calculate:

1

N=prax

(44)

The parameter P is the polarization of the beam.

Now the total amount of events can be calculated if we assume a 100% polarized
electron beam as well as an electron beam with a polarization of 80%. In table 34
the number of events for fixed Q? at P = 100% and P = 80% are displayed.
The number of events are independent of the parameterisation because we just
look at the asymmetry at fixed Q2. We get the same numbers of events for “°Ca
as for 12C because both nuclei have the same asymmetry.
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Nucleus | Precision | N ,P =100% | N ,P = 80%
2C 0.1%- A 7.1-10'8 1.1-101
2¢ 0.3% - A 7.9-1017 1.2-108
2¢ 0.5% - A 2.9.107 4.5-107
2¢ 1% - A 7.1-10%6 1.1-10'7

0Ca 01%- A 7.1-1018 1.1-107
0Ca 0.3% - A 7.9.107 1.2-10®
40Ca, 0.5% - A 2.9.10'7 4.5-10'7
40Ca 1% - A 7.1-10%6 1.1-10'7
2Ca 01%-A 5.8-1018 9.1-10™8
£2Ca 0.3% - A 6.5-10'7 1.0-10'®
£2Ca 0.5% - A 2.3-10'7 3.6-10'7
42Ca 1% - A 5.8-1016 9.1-10'6
BCa 01%- A 3.5-1018 5.4-10™8
48(Ca 0.3% - A 3.9-10'7 6.0 -10'7
BCa 0.5% - A 1.4-10'7 2.2-107
48(Ca 1% - A 3.5-10%6 5.4-106
208py, | 0.1% - A 2.9.-1018 4.5-10™8
208py, | 0.3% - A 3.2.10Y7 5.0 - 1017
208py | 0.5%- A 1.1-10'7 1.8 - 107
208p, 1% - A 2.9.10'6 4.5.10'6

Table 34: Number of Events N needed to reach a given precision with a beam
polarisation of P = 100% and P = 80% electron beam for the non averaged
asymmetry A

The rate of the scattered electrons is:
. do
N=L- | —dQ. 45
[ % (45)

The rate of the scattered electrons can be found in table 35. The integral was
evaluated using equation (30) from section 2.4 and the angle acceptance of the
P2-experiment (6 = 25° - § = 45°).
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The cross section averaged number of events can be found in table 36 and table
37.

If we want to calculate the measuring time we have to use equation (35) from
section 2.4. We assume that the luminosity is a time independent parameter.
The measuring time estimation is done for all conditions mentioned before for
the different nuclei. In table 38 and table 39 the measuring times for the non
averaged asymmetries are displayed. Table 40 and table 41 display the cross
section averaged measuring times.

Nucleus N [1] Parameterisation
2¢ 2.1-10 Polynomial
12¢ 2.5 10t Gaussian
12¢ 2.1-10% Helm

12¢ 2.2-10' | Sum of Gaussian
2¢ 2.1-10'! Fourier-Bessel
10Ca 3.1-1010 Polynomial
0Ca | 3.1-101 Gaussian
0Ca | 3.0-101° Helm

40Ca 3.2-10'9 | Sum of Gaussian
10Cq 3.1-10%0 Fourier-Bessel
12Ca 3.0-10™ Polynomial
42Ca 2.7-10%0 Gaussian
2(Ca 2.8-1010 Helm

2Ca, 3.0- 1019 | Sum of Gaussian
2Ca | 3.0-10'% | Fourier-Bessel
48Ca 2.6-10' Polynomial
8Ca, 2.6 - 1010 Gaussian
8Ca 2.5-1010 Helm

BCa | 2.6-10'° | Sum of Gaussian
BCa 2.6 - 100 Fourier-Bessel
208Pph | 3.4-10%0 Gaussian

Table 35: Rate N of the scattered electrons for different form factor parame-
terisations. These values were calculated using equation (45). The luminosity
was taken from table 33. The integral was calculated using equation (30). The
angle acceptance of the P2-experiment was used as limits for the integral.
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Nucleus | Precision | Nyyeraged » P = 100% | Naveraged , P = 80% | Parameterisation
2¢ 0.1% - A 2.8-10% 4.4-10'8 Polynomial
12¢ 0.3%- A 3.1-10'7 4.8 - 107 Polynomial
2¢ 0.5% - A 1.1-10'7 1.7-10%7 Polynomial
12¢ 1%- A 2.8-1016 4.4-10' Polynomial
2C 0.1% - A 2.9.10'8 4.6-10'8 Gaussian
2¢C 0.3% - A 3.2-10'7 5.1-10'7 Gaussian
2¢ 0.5% - A 1.2-10Y7 1.8-10%7 Gaussian
12¢ 1% - A 2.9.1016 4.6 - 1016 Gaussian
2C 01% - A 2.8-10'8 4.4.10T8 Helm
2¢ 0.3% - A 3.1-10'7 4.9.10' Helm
2¢ 0.5% - A 1.1-10%7 1.8-10%7 Helm
2¢ 1% - A 2.8-10'6 4.4.10'6 Helm
12¢ 0.1% - A 2.8.108 4.4-1088 Sum of Gaussian
12¢ 0.3% - A 3.1-10'7 4.9.10'7 Sum of Gaussian
2C 0.5% - A 1.1-10% 1.8- 107 Sum of Gaussian
12¢ 1% - A 2.8 1016 4.4-1016 Sum of Gaussian
2C 0.1% - A 2.8-10'8 4.4.10™8 Fourier-Bessel
2¢ 0.3% - A 3.1-10'7 4.9.10'7 Fourier-Bessel
2C 0.5% - A 1.1-10%7 1.8 - 107 Fourier-Bessel
12¢ 1% - A 2.8 1016 4.4-1016 Fourier-Bessel

Nucleus | Precision | Nayeraged » P = 100% Noveraged , P = 80% | Parameterisation
MCa [ 0.1%-A 3.2-10™8 5.0-10™8 Polynomial
OCa | 0.3%-A 3.5-10'7 5.5-10'7 Polynomial
40Ca 0.5%- A 1.3-10%7 2.0-10'7 Polynomial
10Ca 1%- A 3.2-1016 5.0 -1016 Polynomial
0Ca 0.1% - A 3.1-10™8 49-.10™ Gaussian
40Ca 0.3% - A 3.5-10'7 5.4-10'7 Gaussian
40Cq 0.5% - A 1.3-10'7 2.0- 107 Gaussian
40Cq, 1% - A 3.1-10% 4.9 - 1016 Gaussian
WCa 0.1% - A 3.1-10™8 48.10™ Helm
0Ca 0.3% - A 3.4-10'7 5.4 -1017 Helm
40Ca 0.5%- A 1.2-10%7 1.9- 107 Helm
0Ca 1% - A 3.1-10%6 4.8.10'6 Helm
0Ca 0.1% - A 3.1-10'8 4.9-1018 Sum of Gaussian
40Cq 0.3% - A 3.5-1017 5.4 -1017 Sum of Gaussian
40Cq 0.5% - A 1.3-10%7 2.0- 107 Sum of Gaussian
004 1% - A 3.1-106 4.9-106 Sum of Gaussian
DCa 0.1% - A 3.0-10'8 4.8-1018 Fourier-Bessel
40Cq 0.3% - A 3.4-107 5.3.1017 Fourier-Bessel
40Cq, 0.5% - A 1.2-10%7 1.9 107 Fourier-Bessel
0Ca 1% - A 3.0-1016 4.8.1016 Fourier-Bessel

Table 36: Number of Events N needed to reach a given precision with a beam
polarisation of P = 100% and P = 80% electron beam for the averaged asym-

metry (A)
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Nucleus | Precision | Ngyeraged P = 100% | Naveragea P = 80% | Parameterisation
2Ca | 0.1%-A 2.6-10™8 4.1-10™8 Polynomial
2Ca | 0.3%-A 2.9-10'7 4.6 -10'7 Polynomial
2Ca | 0.5%-A 1.1-10'7 1.7-107 Polynomial
42Ca 1% - A 2.6 - 1016 4.1-10' Polynomial
2Ca 0.1% - A 2.5-10'8 3.8.10™8 Gaussian
£2Ca 0.3%- A 2.7-10'7 4.3-10'7 Gaussian
2Ca | 0.5%-A 9.8-1016 1.5-10'7 Gaussian
42Ca 1% - A 2.5-10%6 3.8.10%6 Gaussian
2Ca [ 01%-A 2.5-108 3.9-1018 Helm
2Ca | 03%-A 2.8 - 107 4.4 -1017 Helm
2(Ca 0.5% - A 1.0 - 107 1.6 - 107 Helm
2Ca 1%- A 2.5-1016 3.9-10 Helm
2Ca 0.1% - A 2.6-10'8 4.0-10™ Sum of Gaussian
2Ca 0.3%- A 2.9-10'7 4.5-107 Sum of Gaussian
42Ca 0.5% - A 1.0 - 107 1.6 - 107 Sum of Gaussian
2Ca 1% - A 2.6-10'6 4.0-10' Sum of Gaussian
2Ca 0.1% - A 2.5-10™8 3.9-10™8 Fourier-Bessel
42Ca 0.3%-A 2.8-10%7 4.3-107 Fourier-Bessel
42Ca 0.5%- A 9.9-10'6 1.6 - 107 Fourier-Bessel
2Ca 1% - A 2.5-10'6 3.9-10' Fourier-Bessel

Nucleus | Precision | Nyyeraged P = 100% | Naverageda P = 80% | Parameterisation
BCa | 01%-A 1.6 - 1018 2.4-1018 Polynomial
48Ca 0.3%-A 1.7-10'7 2.7-10'7 Polynomial
BCa | 05%-A 6.2 - 10 9.7-10 Polynomial
48Ca 1% - A 1.6 - 1016 2.4 106 Polynomial
48Ca 01%- A 1.5-108 2.4-10™8 Gaussian
48Ca 0.3% - A 1.7-10'7 2.7-10'7 Gaussian
18Ca, 0.5% A 6.1-10' 9.6 - 106 Gaussian
48Ca 1% - A 1.5-1016 2.4 106 Gaussian
18Ca 0.1% - A 1.5-10'8 2.3-10'8 Helm
BCa | 0.3%-A 1.7- 1017 2.6 - 1017 Helm
8Ca 0.5% - A 6.0-10'6 9.3-10'6 Helm
48Ca 1% - A 1.5-1016 2.3 - 106 Helm
BCa 0.1%- A 1.5-10'8 2.4-10'8 Sum of Gaussian
48Ca, 0.3% - A 1.7- 107 2.6 -10'7 Sum of Gaussian
BCa 0.5% A 6.1-10'6 9.5-10'6 Sum of Gaussian
8Ca 1% - A 1.5-1016 2.4-10'6 Sum of Gaussian
BCa 01%-A 1.5-10'8 2.3-10'8 Fourier-Bessel
18Ca, 0.3% - A 1.7-10'7 2.6-10'7 Fourier-Bessel
BCa 0.5% - A 5.9 .10 9.3-10'6 Fourier-Bessel
8Ca 1% - A 1.5-10'6 2.3-10%6 Fourier-Bessel

Nucleus | Precision | Nayeraged P =100% | Naveraged P = 80% | Parameterisation
208ph | 0.1%- A 1.4-10™® 2.3-10™8 Gaussian
208py 0.3%- A 1.6 - 107 2.5-10%7 Gaussian
208ph | 0.5%- A 5.8 10 9.1-1016 Gaussian
208pp 1% - A 1.4-10'6 2.3-10%6 Gaussian

Table 37: Number of Events N needed to reach a given precision with a beam
polarisation of P = 100% and P = 80% electron beam for the averaged asym-
metry (A)
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Nucleus | Precision | T', P =100% [h] | T, P = 80% [h] | Parameterisation
2¢ 0.1% - A 9294 14522 Polynomial
12¢ 0.3%- A 1033 1614 Polynomial
12¢ 0.5% - A 372 581 Polynomial
12¢ 1% - A 93 145 Polynomial
2C 01%-A 7965 12445 Gaussian
2¢C 03%- A 885 1383 Gaussian
2¢ 0.5% A 319 498 Gaussian
2C 1% - A 80 124 Gaussian
e 0.1%- A 9398 14684 Helm
2 0.3% - A 1044 1632 Helm
12¢ 0.5% - A 376 587 Helm
12¢ 1% - A 94 147 Helm
e 0.1%- A 9129 14264 Sum of Gaussian
12¢ 0.3%- A 1014 1646 Sum of Gaussian
2C 0.5% A 379 593 Sum of Gaussian
2¢ 1% - A 91 143 Sum of Gaussian
2C 0.1% - A 9285 14507 Fourier-Bessel
2¢ 0.3% - A 1032 1585 Fourier-Bessel
2C 0.5%- A 371 580 Fourier-Bessel
2¢ 1% - A 93 145 Fourier-Bessel

Nucleus | Precision | T, P =100% [h] | T, P = 80% [h] | Parameterisation
MCa [ 0.1%-A 64473 100738 Polynomial
OCa | 0.3%-A 7164 11193 Polynomial
40Ca 0.5%- A 2579 4030 Polynomial
10Ca 1% - A 645 1007 Polynomial
0Ca [ 0.1%-A 64015 100024 Gaussian
0Ca | 0.3%-A 7113 11114 Gaussian
40Ca 0.5%- A 2561 4001 Gaussian
40Ca, 1% - A 640 1000 Gaussian
0Ca, 0.1% - A 67128 104888 Helm
40Ca 0.3% - A 7459 11654 Helm
0Ca | 05%-A 2685 4196 Helm
40Ca 1% - A 671 1049 Helm
0Ca 01%- A 62912 98300 Sum of Gaussian
40Ca 0.3% - A 6990 10922 Sum of Gaussian
40Ca, 0.5% A 2516 3948 Sum of Gaussian
0Ca 1% - A 632 987 Sum of Gaussian
0Ca 01%- A 63677 99496 Fourier-Bessel
40Ca 0.3% - A 7075 11055 Fourier-Bessel
40Ca, 0.5% A 2547 3932 Fourier-Bessel
0Ca 1% - A 637 995 Fourier-Bessel

Table 38: Estimated measuring time T needed to reach a given precision with a
beam polarisation of P = 100% and P = 80% for the non averaged asymmetry

A
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Nucleus | Precision | T', P =100% [h] | T, P = 80% [h] | Parameterisation
2Ca | 0.1%-A 53394 83428 Polynomial
2Ca 0.3% - A 5933 9270 Polynomial
2Ca | 0.5%-A 2136 3337 Polynomial
42Ca, 1% - A 534 834 Polynomial
2Ca [ 01%-A 58794 91866 Gaussian
2(Ca 0.3% - A 6533 10207 Gaussian
2Ca 0.5% A 2352 3675 Gaussian
42Ca 1% - A 588 919 Gaussian
2Ca [ 01%-A 56930 88954 Helm
2Ca | 0.3%-A 6326 9884 Helm
2Ca | 05%-A 2277 3558 Helm
42Ca 1% - A 569 890 Helm
2Ca 0.1% - A 53284 83257 Sum of Gaussian
2Ca 0.3% - A 5920 9251 Sum of Gaussian
2Ca 0.5%- A 2131 3330 Sum of Gaussian
42Ca 1% - A 533 833 Sum of Gaussian
2Ca [ 01%-A 53858 84154 Fourier-Bessel
2Ca 0.3% - A 5984 9350 Fourier-Bessel
42Ca 0.5%- A 2154 3366 Fourier-Bessel
42Ca 1% - A 539 842 Fourier-Bessel

Nucleus | Precision | T, P =100% [h] | T, P = 80% [h] | Parameterisation
BCa | 0.1% A 37652 58332 Polynomial
8Ca | 0.3%-A 4184 6537 Polynomial
8Ca 0.5%- A 1506 2353 Polynomial
18Ca 1% - A 377 588 Polynomial
BCa 0.1%- A 37126 58009 Gaussian
48Ca 0.3%- A 4125 6445 Gaussian
48Ca 0.5% A 1485 2320 Gaussian
8Ca, 1% - A 371 580 Gaussian
BCa 0.1% - A 38187 59667 Helm
48Ca 0.3% - A 4243 6630 Helm
BCa | 05%-A 1527 2387 Helm
8Ca 1% - A 382 597 Helm
48Ca 0.1%- A 37337 58339 Sum of Gaussian
48Ca 0.3% - A 4149 6482 Sum of Gaussian
8Ca, 0.5% A 1493 2334 Sum of Gaussian
BCa 1% - A 373 583 Sum of Gaussian
48Ca 0.1%- A 37118 57997 Fourier-Bessel
8Ca, 0.3% - A 4124 6444 Fourier-Bessel
18Ca, 0.5%- A 1485 2320 Fourier-Bessel
48Ca 1% - A 371 580 Fourier-Bessel

Nucleus | Precision | T', P =100% [h] | T, P = 80% [h] | Parameterisation
208py 0.1%- A 23310 36422 Gaussian
208p 0.3% - A 2590 4047 Gaussian
208py 0.5% - A 932 1457 Gaussian
208pp 1% - A 233 364 Gaussian

Table 39: Estimated measuring time T needed to reach a given precision with a
beam polarisation of P = 100% and P = 80% for the non averaged asymmetry

A
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Nucleus | Precision | Typeraged » P = 100% [h] | Taveraged , P = 80% [h] | Parameterisation
e 0.1% - A 3635 5680 Polynomial
20| 0.3%- A 404 631 Polynomial
12¢ 0.5% - A 145 227 Polynomial
12C 1% - A 36 57 Polynomial
2C 0.1% - A 3260 5094 Gaussian
2¢ 0.3% - A 362 566 Gaussian
12C 0.5%- A 130 204 Gaussian
2¢ 1% - A 33 51 Gaussian
e 0.1% - A 3721 5815 Helm
12¢ 0.3% - A 413 646 Helm
12¢ 0.5% - A 149 233 Helm
12 1% - A 37 58 Helm
2C 0.1% - A 3625 5664 Sum of Gaussian
2C 0.3%- A 403 629 Sum of Gaussian
2¢C 0.5% - A 151 236 Sum of Gaussian
2 1% - A 36 57 Sum of Gaussian
2C 0.1% - A 3667 5730 Fourier-Bessel
12¢ 0.3%- A 407 637 Fourier-Bessel
2¢ 0.5% - A 147 229 Fourier-Bessel
12 1% - A 37 57 Fourier-Bessel

Nucleus | Precision | Tyyperaged » P = 100% [h] | Taveraged , P = 80% [h] | Parameterisation
0Ca [ 01%-A 28681 44815 Polynomial
10Ca 0.3%- A 3187 4979 Polynomial
OCa | 05%-A 1147 1793 Polynomial
00y | 1%-A 287 448 Polynomial
0Ca | 0.1%-A 28112 43926 Gaussian
0Ca 0.3% - A 3124 4881 Gaussian
40Ca, 0.5% A 1124 1757 Gaussian
40Ca 1% - A 281 439 Gaussian
0Ca 0.1% - A 28989 45295 Helm
OCa | 0.3%-A 3221 5033 Helm
10Cq 0.5% - A 1160 1812 Helm
40Ca 1% - A 290 453 Helm
0Ca 0.1%- A 27658 43215 Sum of Gaussian
40Ca, 0.3% - A 3073 4801 Sum of Gaussian
OCa | 0.5% A 1106 1728 Sum of Gaussian
0Ca 1% - A 277 432 Sum of Gaussian
0Ca 01%-A 27189 42483 Fourier-Bessel
40Ca, 03%- A 3021 4722 Fourier-Bessel
O0Ca | 0.5%-A 1088 1699 Fourier-Bessel
0Ca 1% - A 272 425 Fourier-Bessel

Table 40: Estimated measuring time T needed to reach a given precision with a
beam polarisation of P = 100% and P = 80% for the averaged asymmetry (A)
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Nucleus | Precision | Typeraged » P = 100% [h] | Taveraged , P = 80% [h] | Parameterisation
2Ca | 01%-A 24314 37991 Polynomial
2Ca | 0.3%-A 2702 4221 Polynomial
42Ca, 0.5%- A 973 1520 Polynomial
2Ca 1% - A 243 380 Polynomial
2Ca 0.1% - A 24869 38858 Gaussian
£2Ca 0.3% - A 2763 4318 Gaussian
42Ca 0.5%- A 995 1554 Gaussian
42Ca 1% - A 249 389 Gaussian
2Ca [ 01%-A 24539 38342 Helm
2Ca | 0.3%-A 2727 4260 Helm
2Ca 0.5% - A 982 1534 Helm
12Ca 1%- A 245 383 Helm
2Ca 0.1% - A 23693 37021 Sum of Gaussian
42Ca 0.3%-A 2633 4113 Sum of Gaussian
42Ca 0.5%- A 948 1481 Sum of Gaussian
42Ca, 1% - A 237 370 Sum of Gaussian
2Ca 0.1% - A 22985 35914 Fourier-Bessel
42Ca 0.3% - A 2554 3990 Fourier-Bessel
2Ca, 0.5% A 919 1437 Fourier-Bessel
42Ca, 1% - A 230 359 Fourier-Bessel

Nucleus | Precision | Tyyeraged s P = 100% [h] | Toveraged , P = 80% [h] | Parameterisation
48Ca 01%- A 16865 26351 Polynomial
8Ca | 0.3%-A 1874 2928 Polynomial
18Ca 0.5% - A 675 1054 Polynomial
48Ca 1% - A 169 263 Polynomial
BCa | 0.1%-A 16362 25566 Gaussian
18Ca, 0.3% - A 1818 2841 Gaussian
18Ca, 0.5%- A 654 1023 Gaussian
48Ca 1% - A 164 256 Gaussian
BCa | 0.1%-A 16392 25613 Helm
BCa | 0.3%-A 1821 2846 Helm
BCa 0.5% - A 656 1025 Helm
48Ca 1% - A 164 256 Helm
BCa | 0.1%-A 16337 25526 Sum of Gaussian
18Ca, 03%- A 1815 2836 Sum of Gaussian
BCa 0.5% A 653 1021 Sum of Gaussian
8Ca 1% - A 163 255 Sum of Gaussian
BCa 01%-A 15849 24763 Fourier-Bessel
BCa | 03%-A 1761 2751 Fourier-Bessel
BCa 0.5% A 634 991 Fourier-Bessel
48Ca 1% - A 158 248 Fourier-Bessel

Nucleus | Precision | Typeraged P = 100% [h] ‘ Toveraged P = 80% [h] ‘ Parameterisation
208ph | 01% - A 11822 18473 Gaussian
208pp 0.3%- A 1314 2053 Gaussian
208pp 0.5% - A 473 739 Gaussian
208pp 1% - A 118 185 Gaussian

Table 41: Estimated measuring time T needed to reach a given precision with a

beam polarisation of P = 100% and P = 80% for the averaged asymmetry (A)
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6 Results and discussion

6.1 Summary of the parity-violating asymmetry and mea-
suring time

In this thesis the estimated measuring times of parity-violating electron scat-
tering for different nuclei at the P2-experiment in Mainz were calculated. The
selected nuclei are '2C, 4°Ca, *2Ca, *8Ca and 2°%Pb.

To do this different parameterisations are used in order to get an analytical ex-
pression for the electric form factor. This was achieved by calculating the form
factor from various electron nuclei cross section data sets and using a fit function
to describe the form factor data points. As parameterisations for the form fac-
tor the Helm parameterisation, the Sum of Gaussian functions parameterisation,
the Fourier-Bessel parameterisation, the polynomial function parameterisation
and the Gaussian function parameterisation were used. Only for 2°®Pb we were
only able to find a fit solution for the Gaussian function parameterisation. This
is because the form factor values deviate from each other for @2 > 30-103 MS—QVQ
which is not the case for the other nuclei.

The inelastic electron scattering is neglected for the calculation of the asym-
metry and measuring time because for forward scattering the cross section and
form factor values are smaller by a factor ~ 1000 compared to elastic scatter-
ing. Because the angular range of the P2-experiment is from 25° to 45° only
the forward scattering values are important to take into account.

Generally, the parity-violating asymmetry becomes larger for heavier nuclei. We
also see that the cross section averaged asymmetry is between 1.4 and 1.6 times
larger for the nuclear targets than the parity-violating asymmetry calculated
with the Q2-value for the P2-experiment from using a hydrogen target. The
reason for the different values for the cross section averaged asymmetry is that
the different parameterisations are taken into account. The differences in pa-
rameterisation is particularly noticeable if we look at figures 33, 41, 49, 57 and
65. We can see that for ?Ca the fit functions for the form factor differ from
each other. This is because we have the fewest data points for >Ca. Therefore,
the fitting tool of ROOT has problems finding good fit solutions for the data
points.

The biggest difference in measuring time between parameterisation for a given
precision were calculated for °Ca and 2Ca. The reason for this is that the pa-
rameterisation differ from each other in the Q%-interval from Q? ~ 4.5-103 Mf—f
to Q2 ~ 15 10% Mey~,

The measuring time for '2C ranges from T = 15000 h to T ~ 33 h dependent
on which parameterisation is used, which precision is desired and if we use the
non averaged or the cross section averaged asymmetry. For *°Ca the measur-
ing time ranges from 7 ~ 105000 h to T~ 272 h and for *>Ca the measuring
time is between T ~ 92000 h and T ~ 230 h. The measuring time for *3Ca
is between T' ~ 59700 h and T ~ 158 h and for ?°®Pb we get measuring times
from T ~ 36421 h to T =~ 118 h. It is important to remember that the tar-

82



gets of the different nuclei have different lengths. The target for '2C was 2.2 cm
long, those for 4042:48Ca, were 0.2 cm long and that for 2°®Pb was 0.025 cm long.

6.2 Discussion of the parity-violating asymmetry and mea-
suring time

Generally, the order of magnitude of the estimated measuring time seems real-
istic. Nevertheless there are some inaccuracies that happen during the calcula-
tions.

First of all it is important to note that not all of the cross section data sets
have radiative corrections applied. Furthermore the angular acceptance of the
different detectors are unknown. Because there were no corrections made in ret-
rospect for the analysis in this thesis, this can lead to inaccuracies for the cross
section data which further influences the form factor values. These inaccuracies
influence the further calculations because every set of data is treated equally.
This leads to inaccuracies for the fit functions found by ROOT. What also has
to be taken into account is that the starting parameters for the fitting tool of
ROOQOT influences the outcome for the fitting function. There is a possibility that
for different starting parameters other fit functions can be found that describe
the data points better. This has an influence on the calculations that depend
on the fit parameters.

For the calculations of the luminosity for the different targets we assumed that
we only have one target with a specific length. In reality the target consists
of many smaller targets. This assumption leads to a small inaccuracies. One
minor source of uncertainties is that we used only one density for “°Ca, 42Ca
and *¥Ca.

It is also important to note that the formula that was used to calculate the
parity-violating asymmetry is not completely accurate. The formula is only ac-
curate in leading order. Nevertheless the calculated result seem to be realistic.
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9 Appendix

9.1 C+4+4 code used for the calculations
Code:

#include <iostream>

#include <fstream>

#include <sstream>

#include <string>

#include <vector>

#include <math.h>

#include ” Constants.hh”

/] sk sk sk ok sk ok sk sk sk sk ok sk ok sk sk sk sk ok sk ok sk sk ok sk ok sk sk o sk ok sk ok sk ok R sk ok sk ok sk ok sk ok ok sk ok sk sk sk sk ok sk sk ok ok ok sk ok sk ok K sk ok sk ok ok ok ok /
using std::ios;
using std::cout;

using std::cerr;

using std::endl;

using std::stringstream;
using std::vector;

using std::string;

using std::ifstream;

/] 3k sk sk ok sk ok sk sk sk sk ok sk ok sk sk sk ok ok sk ok sk ok ok sk ok sk sk sk ok sk ok sk ok K sk ok sk ok sk ok K sk ok sk ok sk sk ok ok ok sk sk ok ok sk ok Sk ok K sk ok sk ok ok ok ok ok /
void read_data(string dateiname,vector<double> &Energie ,vector<double> &Winkel, vector<double>
&Wirkungsquerschnitt , vector<double> &FehlerWirkungsquerschnitt , vector<double>
&FehlerWinkel){
ifstream stream;

double Energietemp, Winkeltemp, Wirkungsquerschnitttemp, FehlerWinkeltemp
,FehlerWirkungsquerschnitttemp ;

stringstream nn;
stream .open (dateiname.c_str (), ios::in);

string line;
if (!stream.good()) { cerr << ”Warning: No data file found.” << endl; return;}
getline (stream , line);

while (true){
if (stream.eof()) break;
getline (stream, line );
if ( line [0] != "#’ && !line.empty() ) {

nn.str (””);

nn.clear ();

nn.str(line);

nn >> Energietemp >> Winkeltemp >> Wirkungsquerschnitttemp >>
FehlerWirkungsquerschnitttemp >> FehlerWinkeltemp ;

//cout << ”Energietemp "<<Energietemp <<”Winkeltemp "<< Winkeltemp
<< ”"Wirkungsquerschnitttemp "<<Wirkungsquerschnitttemp
<<"FehlerWirkungsquerschnitttemp ”

<< FehlerWirkungsquerschnitttemp <<

?FehlerWinkeltemp "<<FehlerWinkeltemp << endl;

Energie.push_back (Energietemp); // run
Winkel. push_back (Winkeltemp );
Wirkungsquerschnitt.push_back (Wirkungsquerschnitttemp );
FehlerWirkungsquerschnitt.push_back (FehlerWirkungsquerschnitttemp );
FehlerWinkel . push_back (FehlerWinkeltemp );

}

stream . close ();

}

double Sum_of_GauB(double #x,double *par){
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double g = sqrt(x[0]);

const int N = 3;
double parQ[N];
double parR[N];

double parGamma = par [0]*fm;

q /= hquerc;
double SumQ = 0;

for (int i=0;i<N;i++){
parQ[i]=par[2%i+2];
parR[i]=par[2%i+4+1]*fm;

double Formfaktor =
double Summe = 0;

exp(—pow (qxparGamma,2) /4);

for (int i=0;i<N;i++){
double Tl=parQ[i]/(1+2*pow(parR[i]/parGamma,2));

double T2=cos(g*parR[1i ]
double T3=(2xpow (parR[1i
double T4=sin (g*parR[i]

)3
]/parGamma,2));
)/ (axparR[i]);

Summe += T1x%(T24+T3xT4)

Formfaktor %= Summe;

return pow(Formfaktor ,2);

}

double Fourier_Bessel (double *x,double xpar){

double q = sqrt(x[0]);

const int N = 3;
double parA[N];

double parR = par[0]*fm;

q /= hquerc;

double Suml 0;
double Sum2 = 0;
double Formfaktor =

for (int i=1;i<=N;i++){
double Tl=pow((—1),i)*parA[i—1]
double T2=pow((—1),i)*parA[i—1]

sin (gqxparR)/(qg*parR);
for (int i=0;i<N;i++){
parA[i] = par[i+1];

/(pow (i,2)*pow(M_PI,2) —pow(q,2)*pow(parR,2));
/(pow (i,2)*pow(M_PI,2));

Suml += T1;
Sum2 += T2;
}
Formfaktor = Suml/Sum?2;
return pow(Formfaktor ,2);
}

double Sigma(double *x,double xpar){

double Z=6;
double M_Kern=12;

double Energie = 155xMeV;

double Geschwindigkeit= sqrt(1—pow ((( M-Elektron)/(Energie—M_Elektron)), 2));

double Faktorl=1/(14+Energie/(M_Kern*931.4936)*(1—cos(x[0]xdeg)));

double neuer_Mott= pow (((Zxhquerc*alpha)/(2xEnergie)),2)*(1/ pow(sin(x[0]xdeg/(2)),4))
#(Faktorl)*(1— pow((Geschwindigkeit),2)* pow(sin(x[0]xdeg/(2)),2));

double Q_squared [1]
double Formfaktor =
//double Formfaktor
//double Formfaktor

//double Formfaktor

{4xEnergiexFaktorl*Energie*pow(sin (x[0]xdeg/(2)),2)};

Fourier_Bessel (Q_squared , par);

Sum_of_GauB (Q-squared , par);

pow (3*(sin (sqrt (Q-squared [0])= par[0])/pow(

sqrt (Q-squared [0])* par[0],3) —cos(sqrt (Q-squared [0])* par [0]) /pow (
sqrt (Q-squared [0])* par[0] ,2)) ,2)*exp(—1lxpow(sqrt (

Q_squared [0]) ,2)*pow (par[1],2));

pow (par [0]*exp (par[1l]*pow(Q_squared[0] —par[2],2))+ par [3]*exp (
par [4]*xpow(Q_squared [0] —par [5],2))+ par [6]xexp (par [7]* pow (
Q-squared [0] —par [8] ,2)),2);
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}

//double Formfaktor = pow(exp(—par[0]* Q_squared[0]) * ( par[l] 4 par[2]* Q_squared[0]
+par [3]*xpow (Q-squared [0] ,2)+ par [4]*pow (Q-squared [0] ,3)+ par [5]
*pow (Q-squared [0] ,4)+ par [6] * pow (Q_squared [0] ,5)) ,2);

return Formfaktor*2+«M_Plxsin (x[0]*deg)*neuer_Mott;

double Asymetrie(double xx, double xpar){

}

double Z = 6;
double M_Kern = 12;
double Beam_Energy = 155«MeV; //in GeV

double Faktorl=1/(1+Beam_Energy/(M_Kernxu)x(1—cos(x[0]*deg)));

double Q-squared = 4xBeam_EnergyxFaktorl*Beam_Energys*pow (sin (x[0]+deg/(2)),2);
double Q.w = Zx(1—4xweak_mixing_angle)—(M_Kern—27);

double Asym = —(G_f*Q_squared*137)/(4*xsqrt (2)«xM_PI)xQw/Z;

return Asym;

double AsymlInt(double *x, double spar){

}

return Asymetrie(x, par)xSigma(x,par);

void PlotC12(){

const int nexp=9;

vector<double> Energie [nexp],Winkel [nexp], Wirkungsquerschnitt [nexp],FehlerWinkel [nexp],
FehlerWirkungsquerschnitt [nexp],Mott [nexp], Formfaktor [nexp],Impulsiibertrag [nexp],
Formfaktor_Fehler [nexp],Impulsiibertrag_Fehler [nexp];

vector<double> Impulsiibertrag_alle ,Impulsiibertrag_Fehler_alle , Formfaktor_alle ,
Formfaktor_Fehler_alle , Winkel_alle ,

Wirkungsquerschnitt-alle , Winkel_Fehler_alle, Wirkungsquerschnitt_Fehler_alle;

double Geschwindigkeit , Masse_e, Lichtgeschw ,epsilon0 ,Z,Faktorl ,M_Kern, neuer_Mott ,
neuer_Formfaktor ,neuer_Impulsiibertrag ,neuer_Formfaktor_Fehler ,
neuer_Impulsiibertrag_Fehler;

string Datei[9]={" Determination of Radiative Transition widths of C12 elastic

and inelastic (elastic scattering 250MeV).txt”,” Elastic and Inelastic Electron
Scattering for 187—-MeV Electrons from Cl12(Elastic) 187MeV.txt”,” Elastic Electron
Scattering from C12 and O16 1970 (21.11.2020)(E0=374.5MeV). txt”,” Elastic Electron
Scattering from C14 and C12(E0=374.6MeV). txt” ,” High—Energy Electron Scattering

and Nuclear structure Determinations of Cl2(elastic) 187MeV.txt”,” Energy dependence
of the form factor for elastic electron scattering from C12(E0=238MeV). txt”,” Energy
dependence of the form factor for elastic electron scattering from C12(E0=243MeV).txt”,
”Nuclear Charge Distribution and rms Radius of C12 from absolute elastic

electron scattering (E0=240.17MeV). txt” ,” Nuclear Charge Distribution and rms Radius
of C12 from absolute elastic electron scattering (E0=300.52MeV).txt” };

for (int i=0;i<nexp;i++){

read_data (Datei[i], Energie[i],Winkel[i], Wirkungsquerschnitt [i],
FehlerWirkungsquerschnitt [i], FehlerWinkel[i]);

Z=6; //muss an den jeweiligen Kern angepasst werden
M_Kern=12; //muss an den jeweiligen Kern angepasst werden
for (int j=0;j<nexp;j++){
for (int i=0;i<Energie[j].size ();i++){
Geschwindigkeit= sqrt(l—pow ((( M_Elektron)/(Energie[]
Faktorl=1/(1+Energie[j][i]/(M-Kernxu)*(1—cos ( Winkel [
neuer_Mott= pow (((Zxhquerc*alpha)/(2*Energie[j][i]))
(1/ pow( sin(Winkel[j][i]xdeg/(2)), 4))x(Faktorl)=(1
* pow( sin(Winkel[j][i]*xdeg/(2)), 2));
Mott[j]. push_back (neuer_Mott );
neuer_Formfaktor=Wirkungsquerschnitt [j][i]/Mott[j][i];
Formfaktor [j]. push_back (neuer_Formfaktor);

][i]—M_Elektron)), 2));
illilxdeg)));
, 2)x

— pow ((Geschwindigkeit), 2)
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neuer_Formfaktor_Fehler=FehlerWirkungsquerschnitt [j][i]/Mott[j][i];
Formfaktor_Fehler [j]. push_back(neuer_Formfaktor_Fehler);
neuer_Impulsiibertrag=4«Energie[j][i]* Faktorl«Energie[j][i]*
pow(sin (Winkel[j][i]*xdeg/(2)),2);

Impulsiibertrag [j]. push_back(neuer_Impulsiibertrag );
neuer_Impulsiibertrag_Fehler=(4xEnergie[j][i]* Faktorl*Energie[]
cos (Winkel[j][i]xdeg/(2))*sin(Winkel[j][i]*deg/(2))+4*Energie|
pow(sin (Winkel[j][i]*xdeg/(2)),2)*( Energie[j][i]*sin(Winkel[j]]
/pow ((( Energie[j]|[i]/M_Kernxu)x(1—cos(Winkel[j][i]*deg))+1),2)
*FehlerWinkel [j][i]*deg;

Impulsiibertrag_Fehler [j]. push_back(neuer_Impulsiibertrag_Fehler
Impulsiibertrag-alle.push_back(neuer_Impulsiibertrag);
Impulsiibertrag_Fehler_alle.push_back(neuer_Impulsiibertrag_Fehler );
Formfaktor_alle.push_back(neuer_Formfaktor);
Formfaktor_Fehler_alle.push_back(neuer_Formfaktor_Fehler);
Wirkungsquerschnitt_alle.push_back(Wirkungsquerschnitt [j][i]);
Winkel_alle.push_back (Winkel[j][i]);
Wirkungsquerschnitt_Fehler_alle.push_back(FehlerWirkungsquerschnitt[j][i]);
Winkel_Fehler_alle.push_back(FehlerWinkel [j][i]);

[1]#
J[1]=
]*deg)/M_Kern*u)

)

)
!
)
)

}
}

TCanvas* cl [nexp];

TGraphErrors xgr[nexp];

TGraph *grl[nexp];

string Legende [nexp]={"E=250MeV” ,” E=187MeV” ,"E=374.5MeV” ,"E=374.6MeV” ,” E=187MeV” ,
?E=238MeV” ,” E=243MeV” ,”E=240.17MeV” ,”E=300.52MeV” };

for (int i=0;i<nexp;i++){

string tname = ”"c.” 4+ to_string(i);

cl[i] = new TCanvas(tname.c_str (),” Elastische Streuung C12”7,1500,1000);
gr[i] = new TGraphErrors(Winkel[i]. size(),& Winkel[i][0],& Wirkungsquerschnitt[i][0],
&FehlerWinkel [1][0] ,& FehlerWirkungsquerschnitt [1][0]);

grl[i] = new TGraph(Winkel[i]. size(),& Winkel[i][0],&Mott[i][0]);
gr[i]->SetTitle (” ;#theta [\xB0];d#sigma/d#Omega [cm” {2}/sr]”);
gr[i]—>GetYaxis()—>SetTitleOffset (1.5);

gr[i]—>SetMarkerStyle (20);

gr[i]—>SetMarkerColor (kRed —2);

gr[i]->SetLineColor (kRed —2);

gr [i]—=>Draw (”AP”);

grl[i]—>SetMarkerStyle (21);

grl[i]—>SetMarkerColor (kCyan—2);

grl[i]—>SetLineColor (kCyan—2);

grl[i]—>Draw(”P”);

TLegend* legend = new TLegend(.9,1,.9,1);

legend—>SetHeader (Legende[i]. c_str (),”C”);

legend —>AddEntry(gr[i],” Experimentally measured cross section”,”ep”);
legend —>AddEntry (grl[i],” Mott cross section”,”p”);

legend —>Draw () ;

¥

TCanvas* c¢3 = new TCanvas(”c3”,” Wirkungsquerschnitt” ,1500,1000);

TGraphErrors* gr5 = newTGraphErrors(Impulsiibertrag_alle.size(),& Winkel_alle [0],
&Wirkungsquerschnitt_alle [0] ,

&Winkel_Fehler_alle[0] ,& Wirkungsquerschnitt_Fehler_alle [0]);

gr5—>Draw ("AP”);

gr5—>SetTitle (? ;#theta [\xBO0];d#sigma/d#Omega [cm {2}/sr]”);

int Marker2 [nexp]={20,34,22,23,33,29,8,43,45};

int Color2[nexp]={6,9,42,1,7,8,34,20,46};

TGraphErrors *grd [nexp];

TLegend* legend3 = new TLegend (0.2,0.7,0.6,0.9);

legend3—>SetNColumns (2);

for (int i=0;i<nexp;i++){

grd[i] = new TGraphErrors(Impulsiibertrag[i]. size(),& Winkel[i][0],
&Wirkungsquerschnitt [i][0] ,& FehlerWinkel [i][0],& FehlerWirkungsquerschnitt[i][0]);
grd [i]—>Draw (”P”);
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grd [i]—>SetMarkerStyle (Marker2[i]);

grd [i]—>SetMarkerColor (Color2[i]);

grd [i]—>SetMarkerSize (0.9);

legend3—>AddEntry(gr4 [i],Legende[i]. c_str(),”ep”);

}
legend3 —>Draw () ;

TCanvas* c2 = new TCanvas(”c2”,” Formfaktor” ,1500,1000);

TGraphErrors* gr2 = new TGraphErrors(Impulsiibertrag_alle.size (),
&Impulsiibertrag_alle [0]

&Formfaktor_alle [0] , &Impulsiibertrag_-Fehler_alle [0], &Formfaktor_Fehler_alle[0]);
gr2—>SetMarkerStyle (22);

gr2—>SetMarkerColor (kBlack );

gr2—>SetLineColor (kBlack);

gr2->SetTitle (* Q" {2}[MeV™{2}/c " {2}];IF(Q{2})|"{2}");

//TF1 xf = new TF1(” f” ,”pow(exp(—[0]*x) * ( [1] + [2]*x+[3]*pow(x,2)+[4]*pow(x,3)+
[5]% pow (x,4) +[6]% pow (x,5)) ,2) ")

//TF1 xf = new TF1(” f” ,” pow ([0]*exp ([1]*pow(x—[2],2))+[3]*exp ([4]*pow(x—[5],2))+[6]=
exp ([7] % pow (x—[8],2)) ,2)");

//TF1 xf = new TF1(” f” ,”pow (3*(sin(sqrt(x)=*[0])/pow(sqrt(x)*[0],3) —

cos (sqrt(x)*[0])/pow(sqrt(x)*[0],2)),2)*xexp(—1l*pow(sqrt(x),2)*xpow ([1],2))");

//TF1 %f = new TF1(” {7 ,Sum_of_-Gauf3,0,200e3,7);

TF1 xf = new TF1(” {”,Fourier_Bessel ,0,200e3,4);

f—>SetNpx (5000);

//f—>SetParNames (" a_{0}”,”a_{1}”,”a_{2}",7a_{3}",7a_{4}”,7a_{5}7,7a_{6}”,”a_{7}”
//f—>SetParNames (" a_{1}",7a_{2}”,7a_{3}”7,7a_{4}” ,”a_{5}”,”a_{6}",” a_ {7}” ”a_{8}7, " a. {9}7);
/]t >SetParNames(”effect1ve nuclear radius”,” nuclear skin thickness?”
//ff>SetParNarnes(”#gamma”, ”R,{l}”, 7’Q—{1}”7 nR,{Q}”, a>Q7{2}:7, "R_ {3})7 ’7Q—{3}”);
f—>SetParNames("R”, "a_{1}”, 7a_{2}”, "a_{3}7);

gStyle—>SetOptFit (); // gibt fit parameter an

//f—>SetParameters (9.629e¢—6,0.931,5.174e—6,2.645e¢—10,—5.275e¢—15,3.989e¢—20,—1.104e —25);
//f—>SetParameters (0.3632,—1.498e¢—10,—1.078e4,1.133e¢—6,4.684e—11,5.365¢e5,
—0.1055,—-6.828e—12,-3.182e5);

//f—>SetParameters (0.01273,0.0039);

//f—>SetParameters (1.501,1.189,0.6242,1.163,0.3971,3.022,4.668e—9);

f—>SetParameters (4,0.035,0.018,—0.0077);

//f—>SetRange (0,126e3);

gr2-—>Fit (f);

gr2—>Draw ("AP” ) ;

int Marker [nexp]={20,34,22,23,33,29,8,43,45};
int Color [nexp]={6,9,42,1,7,8,34,20,46};

TGraphErrors xgr3[nexp];
TLegend* legendl = new TLegend (0.2,0.7,0.6,0.9);
//legendl—>SetHeader (” 7 ,”C”);
legend1-—>AddEntry (f,” fit function”,”17);
legend1—>SetNColumns (2);
for (int i=0;i<nexp;i++){
gr3[i] = new TGraphErrors(Impulsiibertrag[i]. size(),&Impulsiibertrag [i
&Formfaktor [i][0] ,& Impulsiibertrag_Fehler [i][0],& Formfaktor_Fehler [i
gr3[i]—>Draw(”P”);

)

—-

gr3[i]—>SetMarkerStyle (Marker[i]
gr3[i]—>SetMarkerColor (Color[i]);
gr3[i]—>SetMarkerSize (0.9);

legend1-—>AddEntry (gr3[i],Legende[i].c_str(),”ep”);

}
legend1—>Draw () ;

double Q_squared = 4.5e—3xGeVxGeV;
double Dichte_Graphit = 2.26%g/cm3;
double Dichte_Diamant = 3.51%g/cm3;
double Strom = 150%mul;
double Linge_Target = 2
double Molare_Masse = 1
double Beam_Energy = 15

.2%cm;

2;
5xMeV;
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double Polarisation = 0.8;
double Integral;

double Q-w = Zx(1—4xweak_mixing_angle)—(M_Kern—Z);

double Asym = —(G_f*Q_squared)/(4*sqrt (2)*M_PlIxalpha)*xQw/Z;

double Fehler_Asym = 0.001*Asym;

double Events = 1/(pow(Fehler-Asym ,2));

double Events_pol = 1/(pow(Fehler_Asymx*Polarisation ,2));

cout << "Events: ’<< Events<<”Events polarisiert: "<<Events_pol << endl;

double Luminositdat_-Graphit = (Strom/Ladung)*Dichte_Graphit*Lange_Target*
Avogadro/Molare_Masse ;

double Luminositat_-Diamant = (Strom/Ladung)*Dichte_Diamant*Linge_Target=
Avogadro/Molare_Masse ;

cout << ”Strom: "<<Strom << ” Avogadro: "<<Avogadro << ”Dichte_Graphit: ”

<< Dichte_-Graphit<<” Laenge: "<< Lange_Target << 7 Molare Masse: "<< Molare_Masse<<
” Ladung: ”"<<Ladung<< endl;

cout << ”Luminositaet_Graphit: "<<Luminositdt_-Graphit<<” Luminositaet_-Diamant:
<< Luminositdt_-Diamant<<endl;

cout << ”Asymmetrie: "<< Asym <<endl;

TF1 xf_sigma = new TF1(” f_sigma” ,Sigma,0,180,4);

TF1 «f_Asym = new TF1(” f_Asym” ,AsymlInt,0,180,4);

»

for (int 1=0;i<4;i++){
f_sigma—>SetParameter (i ,f—>GetParameter(i));
f_Asym—>SetParameter (i,f—>GetParameter(i));

}

Integral = f_sigma-—>Integral (25,45);

Integral *x= deg;

cout << "Integral: ”"<< Integral<<endl;

double AsymlIntegral = f_Asym-—>Integral (25,45);

AsymlIntegral = deg;

cout << ”AsymlIntegral: "<< Asymlntegral<<endl;

double Asym_gemittelt = AsymlIntegral/Integral;

double Testwinkel [3] = {25,35,45};

for (int i=0;i <3;i4++){

Faktorl=1/(1+Beam_Energy /(M_Kern*u)*(1—cos ( Testwinkel [i]xdeg)));
neuer_Impulsiibertrag=4«xBeam_Energy*Faktorl*Beam_Energys*pow (sin ( Testwinkel[i]xdeg/(2)),2);
cout << ”Testwinkel: "<<Testwinkel [i]<<” Q_squared: "<<neuer_Impulsiibertrag
<<” Formfaktor: "<<f->Eval(neuer_Impulsiibertrag)<< ” Sigma: "<<
f_sigma—>Eval(Testwinkel [i])<<endl;

double T_Messzeit_Graphit = Events/(Luminositdt_GraphitxIntegral*3600);

double T_Messzeit_-Graphit_pol = Events_pol/(Luminositat_-Graphit

x*Integral *3600);

cout<< ”"Vermutete Messzeit: "<<T_Messzeit_Graphit <<”Vermutete Messzeit polarisiert: ”
<<T_Messzeit_Graphit_pol<<endl;

double Fehler_-Asym_gemittelt = 0.001% Asym_gemittelt;

double Events_gemittelt = 1/(pow(Fehler_Asym_gemittelt ,2));

double Events_gemittelt_pol = 1/(pow(Fehler_Asym_gemittelt*Polarisation ,2));

double T_Messzeit_-Graphit_gemittelt = Events_gemittelt /(Luminositdt_Graphit
*Integral *x3600);

double T_Messzeit_-Graphit_gemittelt_.pol = Events_gemittelt_-pol/(Luminositat_-Graphit
x*Integral *3600);

cout << "Events_gemittelt: << Events_gemittelt <<’Events_gemittelt_pol: ”
<<Events_gemittelt_pol<<endl;

cout<< ” Asymmetrie gemittelt: "<< Asym_gemittelt<< endl;

cout<< ”Vermutete Messzeit gemittelt: "<<T_Messzeit_Graphit_gemittelt

<<”Vermutete Messzeit gemittelt polarisiert: "<<T_Messzeit_Graphit_gemittelt_pol<<endl;

double Rate = Luminositat_-Graphit * Integral;
cout << ”"Rate: "<< Rate<<endl;
cout<<muA<<endl ;

}

/**>k****>k*****>k****>k****>k****>k>k****>k****>k****>k*************************/

”Constants.hh”:
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#ifndef PHYS_.CONST
#define PHYS.CONST 1
#include <math.h>

const double MeV = 1;

const double s = 1;

const double rad = 1;

const double deg = M_PI/180;
const double A = 1;

const double =
const double

const double m = le2x*cm;
const double fm = le—15%m;
const double mm = le—3xm;
const double cm2 = cmx*cm;
const double cm3 = cm*cm#*cm;
const double m2 = mxm;

const double m3 = msm=m;
const double fm2 = fmxfm;
const double fm3 = fm*fm=fm;
const double barn = le—28+m2;
const double mbarn = le—3xbarn;

const double muA = le—6x%A;
const double GeV = 1le3xMeV;

const double ¢ = 299792458*m/s;

const double alpha = 1/137.035999;

const double hquerc = 197.326980xMeVxfm ;
const double G_.f = 1.166378e—5/(GeVxGeV);
const double M_Elektron = 0.510998950«MeV;
const double u = 931.494102+«MeV;

const double weak_-mixing_-angle = 0.2312;
const double Avogadro = 6.02214076¢e23;
const double Ladung = 1.602176634e—19*Axs;

const double minute = 60x%s;
const double h = 60xminute;
const double d = 24xh;

#endif
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9.2 Plots of the measured cross sections for different nu-
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Figure 88: Cross section for inelastic electron scattering off the first excited
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Figure 96: Cross section for inelastic electron scattering off the third excited
state E, = 9.64 MeV 12C, [10]
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Figure 99: Cross section for elastic electron scattering off the ground state of
40Ca, [19]
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Figure 100: Cross section for elastic electron scattering off the ground state of
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Figure 101: Cross section for elastic electron scattering off the ground state of
40Ca, [20]
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Figure 102: Cross section for elastic electron scattering off the ground state of
40Ca, [18]
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Figure 106: Cross section for elastic electron scattering off the ground state of
18Ca, [17]
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Figure 107: Cross section for elastic electron scattering off the ground state of
48Ca, [18]
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Figure 108: Cross section for elastic electron scattering off the ground state of

48Ca, [17]
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Figure 109: Cross section for elastic electron scattering off the ground state of

208pp, [22]
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Figure 110: Cross section for elastic electron scattering off the ground state of

208pp, [22]
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Figure 111: Cross section for elastic electron scattering off the ground state of

208P, (23]
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Figure 112: Cross section for elastic electron scattering off the ground state of

208pY, [23]
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Figure 113: Cross section for elastic electron scattering off the ground state of

208pp, [25]
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Figure 114: Cross section for elastic electron scattering off the ground state of

208P1,, [25]
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Figure 115: Cross section for inelastic electron scattering off the first excited
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Figure 116: Cross section for inelastic electron scattering off the first excited
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Figure 117: Cross section for inelastic electron scattering off the second excited
state of E, = 3.2 MeV of 298Pb, [24]
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Figure 118: Cross section for inelastic electron scattering off the second excited
state E, = 3.2 MeV of 208Pb, [24]
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