Dispersion relations

Kirill Nikonov

PhD student Johannes Gutenberg University, Mainz.

16.02.2016, MTZ Collaboration Meeting, Mainz

Overview

- Formalism.
- DR results for B-amplitudes.
- CGLN-amplitudes.
- Multipoles.
- Conclusions.

Formalism

For real part we have:

$$Ref(z) = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{Imf(z')}{z'-z} dz'$$
⁽¹⁾

For imaginary part we have:

$$Imf(z) = -\frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{Ref(z')}{z'-z} dz'$$
⁽²⁾

Where f is a Principle Value integral and $Imf(z) \to 0, z \to \infty$.

Even functions

$$f(-z) = f^*(z)$$

$$Ref(z) = \frac{2}{\pi} \int_0^{+\infty} \frac{zImf(z')}{z'^2 - z^2} dz'$$

$$Imf(z) = -\frac{2}{\pi} \int_{0}^{+\infty} \frac{z' Ref(z')}{z'^2 - z^2} dz'$$

Odd functions

$$f(-z) = -f^*(z)$$

$$Ref(z) = \frac{2}{\pi} \int_0^{+\infty} \frac{z' Imf(z')}{z'^2 - z^2} dz'$$

$$Imf(z) = -\frac{2}{\pi} \int_{0}^{+\infty} \frac{zRef(z')}{z'^2 - z^2} dz'$$

Dispersion Relations for Invariant amplitudes

$$\operatorname{Re}B_{1,2,6}^{(I)}(\nu,t) = B_i^{(I)\,pole}(\nu,t) + \frac{2}{\pi} \int_{\nu_{thr}}^{\infty} d\nu' \,\frac{\nu' \operatorname{Im}B_{1,2,6}^{(I)}(\nu',t)}{\nu'^2 - \nu^2} \,,$$

$$\operatorname{Re}B_8^{(I)}(\nu,t) = B_i^{(I)\,pole}(\nu,t) + \frac{2\nu}{\pi} \int_{\nu_{thr}}^{\infty} d\nu' \, \frac{\operatorname{Im}B_8^{(I)}(\nu',t)}{\nu'^2 - \nu^2} \,.$$

 B_1, B_2, B_6 are crossing even functions B_8 is crossing odd for π^0 and η photoproduction.

Dispersion Relations for Invariant amplitudes

$$\operatorname{Re}B_{1,2,6}^{(I)}(\nu,t) = \boxed{B_i^{(I)\ pole}(\nu,t)} + \frac{2}{\pi} \int_{\nu_{thr}}^{\infty} d\nu' \ \frac{\nu' \operatorname{Im}B_{1,2,6}^{(I)}(\nu',t)}{\nu'^2 - \nu^2} ,$$
$$\operatorname{Re}B_8^{(I)}(\nu,t) = \boxed{B_i^{(I)\ pole}(\nu,t)} + \frac{2\nu}{\pi} \int_{\nu_{thr}}^{\infty} d\nu' \ \frac{\operatorname{Im}B_8^{(I)}(\nu',t)}{\nu'^2 - \nu^2} .$$

 B_1, B_2, B_6 are crossing even functions B_8 is crossing odd for π^0 and η photoproduction.

$$F_{1}(W,x) = \begin{cases} 0: E_{0+} & S_{11}(1535) \\ 1: (M_{1+} + E_{1+})x + M_{1-} & P_{13}(1720), P_{11}(1440), P_{11}(1710) \\ 2: (M_{2+} + E_{2+})x^{2} + (M_{2-} + E_{2-}) & D_{15}(1675), D_{13}(1520), D_{13}(1700) \\ 3: (M_{3+} + E_{3+})x^{3} + (M_{3-} + E_{3-})x & F_{15}(1680) \end{cases}$$

$$F_2(W,x) = \begin{cases} 1: (M_{1+} + M_{1-}) & P_{13}(1720), P_{11}(1440) \\ 2: (M_{2+} + M_{2-})x & D_{15}(1675), D_{13}(1520), D_{13}(1700) \\ 3: (M_{3+} + M_{3-})x^2 & F_{15}(1680) \end{cases}$$

$$F_{3}(W,x) = \begin{cases} 1: (E_{1+} - M_{1+}) & P_{13}(1720) \\ 2: (E_{2+} - M_{2-})x + (E_{2-} + M_{2-}) & D_{15}(1675), D_{13}(1520), D_{13}(1700) \\ 3: (M_{3+} - M_{3+})x^{2} + (E_{3-} + M_{3-})x & F_{15}(1680) \end{cases}$$

$$F_4(W,x) = \begin{cases} 2: (M_{2+} - E_{2+} - E_{2-} - M_{2-}) & D_{15}(1675), D_{13}(1520), D_{13}(1700) \\ 3: (M_{3+} - E_{3+} - E_{3-} - M_{3-})x & F_{15}(1680) \end{cases}$$

Resonance content of the Invariant Amplitudes

- $B_1(F_1, F_2) \to S_{11}, P_{13}, P_{11}, D_{13}, D_{15}, F_{15}$
- $B_2(F_3, F_4) \to P_{13}, D_{13}, D_{15}, F_{15}$
- $B_6(F_1, F_2, F_3, F_4) \rightarrow \text{All resonances}$
- $B_8(F_1, F_2, F_3, F_4) \rightarrow \text{All resonances}$

Results for $t = -0.2 GeV^2$

19

Results for $t = -0.5 GeV^2$

Results for $t = -1.0 GeV^2$

Results for CGLN amplitudes

Results for W=1500 MeV

Results for W=1600 MeV

Results for W=1700 MeV

Results for W=1800 MeV

Multipoles

E0P(mfm)

Results for E1+

E1P(mfm)

Results for M1+

Results for M1-

-0.6

Results for E2-

Results for M2-

Results for E3+

Results for M3+

Results for E3-

Results for M3-

Conclusions

- We have multipoles!!! :)
- Spikes :(
- Things such as number of points, accuracy, bugs need to be studied :]