Tincons Institute

Multipole Amplitude Extraction with the AMIAS

Outline

- Quick reminder what the AMIAS is all about
- A trivial example of fitting a polynomial
- AMIAS amplitude extraction from MAID07 photoproduction pseudodata
- A truly model independent analysis
- AMIAS amplitude extraction from MAMI data
- Handling of double solutions with the AMIAS
- Results of simultaneous analysis of $p \Pi^{0} \& n \Pi^{+}$data for $l=2, l=3$, and l = 5 ???
- I(3/2) amplitude extraction from single channel data
- Future Work

Athens Model Independent Analysis Scheme AMIAS

- Based on statistical concepts and relies on Monte Carlo techniques
- Yields the Probability Distributions for parameters
- Does not assume the shape of a parameter's PDF, e.g. Gaussian Rather it lets the data determine it
- Insensitive parameters are fully accounted and do not bias the result
- All possible correlations are captured due to the randomization process
- Does not rely on X^{2}-minimization techniques
- Numerically robust and does not fail for low signal-to-noise-ratio
- Requires High Performance Computing
- Successfully applied in the analysis of experimental data in hadronic physics, of lattice QCD correlators, and in SPECT Image Reconstruction

Athens Model Independent Analysis Scheme AMIAS

Suppose I would like to fit data with a polynomial model $f\left(A_{n}, x\right)=\sum_{n=0}^{\infty} A_{n} x^{n}$

Athens Model Independent Analysis Scheme AMIAS

Suppose I would like to fit data with a polynomial model $f\left(A_{n}, x\right)=\sum_{n=0}^{\infty} A_{n} x^{n}$
Choose n

Uniformly Sample the parameter space

For each point compute χ^{2} $e^{\frac{-1}{2}\left(x^{2}-x_{\text {min }}^{2}\right)}$ (or choose another criterion) Assign a probability to each point

$$
\mathrm{n}=0
$$

$$
\mathrm{n}=1
$$

A1

$$
n=2
$$

$$
\begin{array}{r}
1 \\
\mathbf{A} 2
\end{array}
$$

$$
n=3
$$

$$
\mathrm{n}=0
$$

$$
\mathrm{n}=1
$$

$$
\mathrm{n}=2
$$

$\mathrm{n}=3$

To employ AMIAS we need a model to connect the parameters to be extracted with the observables

CGLN amplitudes to connect multipoles to observables

$$
E_{1+}, \quad E_{1 .}, \quad M_{1+}, M_{1-}, \quad L_{1+}, \quad L_{1-}, \quad 0 \leq I \leq l_{\text {cut }}
$$

F	F_{2},	F_{3},	F_{4}	F_{5},	F_{6},	CGLN

R_{T},	R_{L},	R_{TT},	$\mathrm{R}_{L \mathrm{LT}}, \ldots$	Response Functions
$\mathrm{d} \sigma$,	Σ,	T,	P, \ldots	Spin Asymmetries

AMIAS Flowchart for mutipole extraction (photoproduction)

Define $L_{\text {cut }}$
Total $=4+\left(4^{\star}\left(L_{\text {cut }}-1\right)\right)$ Complex
multipoles for $L_{\text {cut }}>0$
(times two for Isospin Decompisition)
$\left\{A_{1}, A_{2}, A_{3}, \ldots, A_{n}\right\}$

Random Variation of all amplitudes A_{i}

Uniformly
Impose Constraints (e.g. Unitarity)

$\pi-N$ scattering phases values and model predictions @ the Δ

AMIAS amplitude extraction from pseudodata

Wokman et al. arXiv:1102.4897

$$
\mathrm{yp} \rightarrow \mathrm{p} \pi^{0} \text { data }\left(\mathrm{d} \sigma_{0^{\prime}}, \Sigma, \mathrm{T}, \mathrm{~F}\right)
$$

AMIAS amplitude extraction from pseudodata

We analyze the data each time allowing more multipole amplitudes to vary
NO amplitudes are fixed to a model
Below 2-pion threshold, phases fixed according to F-W
The analysis is complete once solutions have converged, $X_{\text {min }}^{2}$ reaches a minimum and adding more parameters to the variation does not affect the derived values

AMIAS amplitude extraction from photoproduction pseudodata

Experimental photoproduction data analysed in this work

		W (MeV)					
		1201	1209	1217	1225	1232	1239
$\mathrm{yp} \rightarrow \mathrm{p} \mathrm{m}^{0}$							
$\mathrm{d} \sigma_{0} / \mathrm{d} \Omega$	MAMI	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	$\sqrt{ }$
Σ	MAMI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
T σ_{0}	MAMI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$F \sigma_{0}$	MAMI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
$\mathrm{yp} \rightarrow \mathrm{n} \mathrm{m}^{+}$							
$\mathrm{d} \sigma_{0} / \mathrm{d} \Omega$	MAMI	$\sqrt{ }$	$\sqrt{ }$	\checkmark	\checkmark	\checkmark	\checkmark
Σ	MAMI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
T	GWU	\checkmark	X	\checkmark	X	\checkmark	X

Energy Correction

To bring an observable from the experimentally measured energy (w) to the desired energy (w ') we use the formula

$$
O\left(w^{\prime}\right)=O(w)+\frac{\partial O(w)}{\partial w} \Delta\left(w^{\prime}-w\right)+\frac{\partial^{2} O(w)}{\partial w^{2}} \Delta\left(w^{\prime}-w\right)^{2}+\ldots
$$

	Photon		
Target	Unp.	Circular	Linear
Unp.	$\mathrm{d} \sigma / \mathrm{d} \Omega$		Σ
Long		E	G
Trans	T	F	H

where the partial derivative of O in respect to the energy w can be computed through a model, e.g. MAID07

Full isospin decomposition and double solutions

- Need combined data for iospin decomposition

$$
\begin{aligned}
& A_{\pi 0}=A_{p}^{1 / 2}+2 / 3 A^{3 / 2} \\
& A_{\pi+}=A_{p}^{1 / 2}-1 / 3 A^{3 / 2}
\end{aligned}
$$

- AMIAS explores the whole parameter space so any possible solution is captured. When faced with double solutions I choose the one which provides continuity

- $T_{\pi+}$ is not as precise as the recent measurements, yet it helps reduce the determined parameter uncertainty (compare with red)
- *for $\mathrm{I}_{\text {var }}<3$

The "hard" Double solutions - Graphic Analysis needed!

Example, $\mathrm{W}=1232 \mathrm{MeV}$, Observables: $\mathrm{d} \sigma_{0} / \mathrm{d} \Omega, \Sigma, \mathrm{T} \sigma_{0,} \mathrm{~F} \sigma_{0,} \mathrm{~d} \sigma_{0} / \mathrm{d} \Omega, \Sigma, \mathrm{T}$

$\mathrm{E} 0+^{3 / 2}$
$\mathrm{M} 1+{ }^{1 / 2}$

$\mathrm{M} 1+^{1 / 2}>1$

AMIAS Model Independent Analysis of experimental photoproduction data

We follow the same methodology as with the pseudodata example
Uniformly and Randomly Vary multipoles until convergeance is reached
Example, $\mathrm{W}=1201 \mathrm{MeV}$, Observables: $\mathrm{d} \sigma_{0} / \mathrm{d} \Omega, \Sigma, T \sigma_{0,} F \sigma_{0,} \mathrm{~d} \sigma_{0} / \mathrm{d} \Omega, \Sigma, \mathrm{T}$

AMIAS Model Independent Analysis of experimental photoproduction data

Black: convergeance Red: S-P-D-F extraction

Correlation Plots of $E 0+^{3 / 2}$ - D-waves

$$
L=2
$$

We need D-waves to extract E0+ F waves help extract D waves

Focus on the resonant $\Delta(1232)$

Bands of allowed solutions (1-sigma) @ W1232 MeV

Solutions with $\mathrm{x}^{2}<\mathrm{X}_{\text {red }}^{2}+1$
Angular coverage in one region does not confine solutions in another

Extracted Electric to Magnetic Ratio (EMR) @ W1232 MeV

$E M R_{p \pi^{0} \& n \pi^{*}}=-\left(2.09 \pm \begin{array}{l}0.29 \\ 0.26\end{array}\right) \%$

Amplitude extraction from single channel data @ W1232 MeV

- MAID07
- MAID07
\$
\$
p\pi\mp@subsup{}{}{0}}\mathrm{ - truncated
p\pi\mp@subsup{}{}{0}}\mathrm{ - truncated
n\pi
n\pi
n\pi+
n\pi+
p\pi}\mp@subsup{}{}{0}\&n\mp@subsup{\pi}{}{+
p\pi}\mp@subsup{}{}{0}\&n\mp@subsup{\pi}{}{+
p\pi\mp@subsup{}{}{0}\&n\mp@subsup{\pi}{}{+}-\mathrm{ - truncated}
p\pi\mp@subsup{}{}{0}\&n\mp@subsup{\pi}{}{+}-\mathrm{ - truncated}
- E0+ ${ }^{3 / 2}$ drasstically changes with the incluion of D-waves
- Higher $L_{\text {cut }}$ needed to describe the $n \pi^{+}$data
- The values of E0+1/2 and E2-1/2 as determined by the data signifficantly differ from the MAID07 prediction which was used as model input for the single channel analyses

Extracted Electric to Magnetic Ratio (EMR) @ W1232 MeV

At the $\Delta(1232)$ we have also extracted $\mathrm{I}(3 / 2)$ amplitudes by fixing $\mathrm{p}(1 / 2)$ amplitudes to a model

$E M R_{p \pi^{0} \& n \pi^{+}}=-\left(2.09 \pm \begin{array}{c}0.29 \\ 0.26\end{array}\right) \%$

$$
E M R_{p \pi^{0}}=-(2.8 \pm 0.3) \%
$$

Future Work (with real data)

- Analysis of $p \Pi^{0}$ data in a wider energy range
- Extraction of resonant amplitudes with $p(1 / 2)$ amplitudes fixed
- Extraction of Real and Imaginary parts
- Include some of the world data to my analyses

Thank You !

