

Multipole Amplitude Extraction with the AMIAS

Lefteris Markou

Mainz, 17 Feb 2016

Outline

- Quick reminder what the AMIAS is all about
 - A trivial example of fitting a polynomial
- AMIAS amplitude extraction from MAID07 photoproduction pseudodata
 - A truly model independent analysis
- AMIAS amplitude extraction from MAMI data
 - Handling of double solutions with the AMIAS
 - Results of simultaneous analysis of pп⁰ & nп⁺ data for l = 2, l = 3, and l = 5 ???
 - I(3/2) amplitude extraction from single channel data
- Future Work

Athens Model Independent Analysis Scheme AMIAS

- Based on statistical concepts and relies on Monte Carlo techniques
- Yields the Probability Distributions for parameters
 - Does not assume the shape of a parameter's PDF, e.g. Gaussian Rather it lets the data determine it
- Insensitive parameters are fully accounted and do not bias the result
- All possible correlations are captured due to the randomization process
- Does not rely on χ^2 -minimization techniques
 - Numerically robust and does not fail for low signal-to-noise-ratio
- Requires High Performance Computing
- Successfully applied in the analysis of experimental data in hadronic physics, of lattice QCD correlators, and in SPECT Image Reconstruction

Athens Model Independent Analysis Scheme AMIAS

Suppose I would like to fit data with a polynomial model $f(A_n, x) = \sum A_n x^n$

Athens Model Independent Analysis Scheme AMIAS

Suppose I would like to fit data with a polynomial model $f(A_n, x) = \sum_{n=1}^{\infty} A_n x^n$

Choose n

To employ AMIAS we need a model to connect the parameters to be extracted with the observables

CGLN amplitudes to connect multipoles to observables

AMIAS Flowchart for mutipole extraction (photoproduction)

$\pi\text{-}N$ scattering phases values and model predictions @ the Δ

AMIAS amplitude extraction from pseudodata

AMIAS amplitude extraction from pseudodata

We analyze the data each time allowing more multipole amplitudes to vary

NO amplitudes are fixed to a model

Below 2-pion threshold, phases fixed according to F-W

The analysis is complete once solutions have converged, χ^2_{min} reaches a minimum and adding more parameters to the variation does not affect the derived values

AMIAS amplitude extraction from photoproduction pseudodata

Experimental photoproduction data analysed in this work

		W (MeV)							
		1201	1209	1217	1225	1232	1239		
$\gamma p \rightarrow p \pi^0$									
$d\sigma_0/d\Omega$	MAMI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Σ	MAMI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Τσ ₀	MAMI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$F\sigma_{_0}$	MAMI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
$yp \rightarrow n\pi^+$									
$d\sigma_0/d\Omega$	MAMI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Σ	MAMI	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark		
Т	GWU	\checkmark	X	\checkmark	X	\checkmark	X		

Energy Correction

To bring an observable from the experimentally measured energy (w) to the desired energy (w') we use the formula

$$O(w') = O(w) + \frac{\partial O(w)}{\partial w} \Delta(w' - w) + \frac{\partial^2 O(w)}{\partial w^2} \Delta(w' - w)^2 + \dots$$

	Photon					
Target	Unp.	Circular	Linear			
Unp.	dσ/dΩ		Σ			
Long		E	G			
Trans	т	F	Н			

where the partial derivative of O in respect to the energy w can be computed through a model, e.g. MAID07

Full isospin decomposition and double solutions

 Need combined data for iospin decomposition

$$A_{\pi 0} = A_{p}^{1/2} + 2/3 A^{3/2}$$
$$A_{\pi +} = A_{p}^{1/2} - 1/3 A^{3/2}$$

- AMIAS explores the whole parameter space so any possible solution is captured. When faced with double solutions I choose the one which provides continuity
- T_{π+} is not as precise as the recent measurements, yet it helps reduce the determined parameter uncertainty (compare with red)

The "hard" Double solutions – Graphic Analysis needed! Example, W = 1232 MeV, Observables: $d\sigma_0/d\Omega$, Σ, $T\sigma_0$, $F\sigma_0$, $d\sigma_0/d\Omega$, Σ, T

AMIAS Model Independent Analysis of experimental photoproduction data

We follow the same methodology as with the pseudodata example

Uniformly and Randomly Vary multipoles until convergeance is reached

Example, W = 1201 MeV, Observables: $d\sigma_0/d\Omega$, Σ , $T\sigma_0$, $F\sigma_0$, $d\sigma_0/d\Omega$, Σ , T

AMIAS Model Independent Analysis of experimental photoproduction data

Black: convergeance Red: S-P-D-F extraction

Correlation Plots of E0+^{3/2} – **D-waves**

L = 2

L = 3

We need D-waves to extract E0+ F waves help extract D waves Focus on the resonant $\Delta(1232)$

Bands of allowed solutions (1-sigma) @ W1232 MeV

angle (deg)

Solutions with $\chi^2 < \chi^2_{red} + 1$

Angular coverage in one region does not confine solutions in another

Extracted Electric to Magnetic Ratio (EMR) @ W1232 MeV

Amplitude extraction from single channel data @ W1232 MeV

- E0+^{3/2} drasstically changes with the incluion of D-waves
- Higher $L_{_{cut}}$ needed to describe the $n\pi^{\scriptscriptstyle +}$ data
- The values of E0+1/2 and E2-1/2 as determined by the data signifficantly differ from the MAID07 prediction which was used as model input for the single channel analyses

Extracted Electric to Magnetic Ratio (EMR) @ W1232 MeV

At the $\Delta(1232)$ we have also extracted I(3/2) amplitudes by fixing p(1/2) amplitudes to a model **FMR** = $-(2.8 \pm 0.3)$

Future Work (with real data)

- Analysis of pπ⁰ data in a wider energy range
 - Extraction of resonant amplitudes with p(1/2) amplitudes fixed
 - Extraction of Real and Imaginary parts
- Include some of the world data to my analyses

Thank You !