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LOGOOutline

● Quick reminder what the AMIAS is all about
– A trivial example of fitting a polynomial

● AMIAS amplitude extraction from MAID07 
photoproduction pseudodata

– A truly model independent analysis

● AMIAS amplitude extraction from MAMI data
– Handling of double solutions with the AMIAS
– Results of simultaneous analysis of pπ0 & nπ+ data for l = 2, l = 3, and 

l = 5 ???
– I(3/2) amplitude extraction from single channel data

● Future Work



Athens Model Independent Analysis Scheme
AMIAS

● Based on statistical concepts and relies on Monte Carlo techniques

● Yields the Probability Distributions for parameters
➢ Does not assume the shape of a parameter's PDF, e.g. Gaussian 

Rather it lets the data determine it

● Insensitive parameters are fully accounted and do not bias the result

● All possible correlations are captured due to the randomization process

● Does not rely on χ2-minimization techniques
➢ Numerically robust and does not fail for low signal-to-noise-ratio

 
● Requires High Performance Computing 

 
● Successfully applied in the analysis of experimental data in hadronic 

physics, of lattice QCD correlators, and in SPECT Image Reconstruction   
  



Athens Model Independent Analysis Scheme
AMIAS

 Suppose I would like to fit data with a polynomial model 

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All parameters randomly & 
uniformly vary

For each configuration I 
compute the χ2

I weight with 

Athens Model Independent Analysis Scheme
AMIAS

 Suppose I would like to fit data with a polynomial model 


Choose n

f (An , x)=∑
n=0

∞

An x
n
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Uniformly Sample the 
parameter space

For each point compute χ2

(or choose another criterion) Assign a probability to each point 
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To employ AMIAS we need a model to connect the 
parameters to be extracted with the observables 

CGLN amplitudes to connect multipoles to observables



AMIAS Flowchart for mutipole extraction (photoproduction)
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π-N scattering phases values and model predictions @ the Δ



AMIAS amplitude extraction from pseudodata

γp → pπ0 data (dσ
0
, Σ, T, F)

γp → nπ+ data (dσ
0
, Σ, T)

Wokman et al.  arXiv:1102.4897

http://arxiv.org/abs/1102.4897


AMIAS amplitude extraction from pseudodata

We analyze the data each time allowing more multipole amplitudes to vary

NO amplitudes are fixed to a model

Below 2-pion threshold, phases fixed according to F-W

The analysis is complete once solutions have converged, χ2

min
 reaches a minimum and 

adding more parameters to the variation does not affect the derived values 



AMIAS amplitude extraction from photoproduction 
pseudodata



Experimental photoproduction data analysed in this work

W (MeV)

1201 1209 1217 1225 1232 1239

γp → pπ0

dσ
0
/dΩ MAMI √ √ √ √ √ √

Σ MAMI √ √ √ √ √ √

Tσ
0

MAMI √ √ √ √ √ √

Fσ
0

MAMI √ √ √ √ √ √

γp → nπ+

dσ
0
/dΩ MAMI √ √ √ √ √ √

Σ MAMI √ √ √ √ √ √

T GWU √ X √ X √ X



Energy Correction
To bring an observable from the experimentally measured energy (w) 
to the desired energy (w') we use the formula

where the partial derivative of O in respect to the energy w can be computed 
through a  model, e.g. MAID07

Photon

Target Unp. Circular Linear

Unp. dσ/dΩ Σ

Long E G

Trans T F H



A
π0

 = A
p

1/2 + 2/3 A3/2

A
π+

 =  A
p

1/2 - 1/3 A3/2

● Need combined data for iospin 
decomposition

● AMIAS explores the whole parameter 
space so any possible solution is 
captured. When faced with double 
solutions I choose the one which provides 
 continuity

● T
π+

 is not as precise as the recent 
measurements, yet it helps reduce the 
determined parameter uncertainty
(compare with red)

● *for l
var

 < 3

Full isospin decomposition and double solutions



The “hard” Double solutions – Graphic Analysis needed!
Example, W = 1232 MeV, Observables:  dσ

0
/dΩ, Σ, Tσ

0, 
Fσ

0,  
dσ

0
/dΩ, Σ, T

M1+1/2

E0+3/2

E2-1/2

E2-32

M1+1/2 > 1



AMIAS Model Independent Analysis of experimental 
photoproduction data

We follow the same methodology as with the pseudodata example

Uniformly and Randomly Vary multipoles until convergeance is reached

Example, W = 1201 MeV, Observables:  dσ
0
/dΩ, Σ, Tσ

0, 
Fσ

0,  
dσ

0
/dΩ, Σ, T



AMIAS Model Independent Analysis of experimental 
photoproduction data
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W independent analyses at 6 different energies
1201, 1209, 1217, 1225, 1232, 1239 MeV

Variation of S-P-D amplitudes (16 parameters)
Phases Constraint by Fermi – Watson

Red color (Truncated)
Black Color (Higher waves fixed to MAID07)
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W independent analyses at 6 different energies
1201, 1209, 1217, 1225, 1232, 1239 MeV

Variation of S-P-D-F amplitudes (24 parameters)
Phases Constraint by Fermi – Watson

Red color (Truncated)
Black Color (Higher waves fixed to MAID07)
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W independent analyses at 6 different energies
1201, 1209, 1217, 1225, 1232, 1239 MeV

Variation up to convergeance 
Phases Constraint by Fermi – Watson

Red color (S-P-D-F variation)
Black Color (Convergeance)



E1+3/2E0+1/2 E0+3/2 E1+1/2

E2+1/2 E2-3/2E2+3/2 E2-1/2 E2-3/2

M1+3/2M1+1/2
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E3+3/2E3+1/2
E3-1/2 E3-3/2

M3+3/2M3+1/2 M3-1/2 M3-3/2

Black: convergeance
Red: S-P-D-F extraction



Correlation Plots of  E0+3/2 – D-waves

L = 2 L = 3

p(1/2) I(3/2) p(1/2) I(3/2)

E+ E+ E+ E+

E- E- E- E-

M+ M+ M+ M+

M- M- M- M-

We need D-waves to extract E0+
F waves help extract D waves



Focus on the resonant Δ(1232)



Bands of allowed solutions (1-sigma) @ W1232 MeV

Solutions with χ2 < χ2

red
 + 1

Angular coverage in one region does not confine solutions in 
another



Extracted Electric to Magnetic Ratio (EMR) @ W1232 MeV

EMR p π
0&nπ

+=−(2.09±0.29
0.26

)%



Amplitude extraction from single channel data @ W1232 MeV

● E0+3/2 drasstically changes with the incluion of D-waves
● Higher L

cut
 needed to describe the nπ+ data

● The values of E0+1/2 and E2-1/2 as determined by the data signifficantly differ from 
the MAID07 prediction which was used as model input for the single channel analyses



Extracted Electric to Magnetic Ratio (EMR) @ W1232 MeV

At the Δ(1232) we have also extracted I(3/2) amplitudes by fixing p(1/2) amplitudes to a 
model

EMR p π
0&nπ

+=−(2.09±0.29
0.26

)%

EMR
pπ

0=−(2.8±0.3)%

EMR
nπ

+=−(1.4±0.7
1.4

)%



Place, 17/02/16   

LOGOFuture Work (with real data)

● Analysis of pπ0 data in a wider energy range
– Extraction of resonant amplitudes with p(1/2) 

amplitudes fixed
– Extraction of Real and Imaginary parts

● Include some of the world data to my analyses 



Thank You !
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