Regge phenomenology for π^0 , η , and η' photoproduction

V. L. Kashevarov

Institut für Kernphysik, Johannes Gutenberg-Universität Mainz

Collaboration Meeting "PWA with Complete Experiments", Mainz, 15-19 February 2016

Overview

- η MAID2003 Regge
- Regge cuts
- 1. results for $\gamma p
 ightarrow \pi^0 p$
- 2. adaptation to $\gamma p \to \eta p$
- 3. adaptation to $\gamma p
 ightarrow \eta' p$
- Regge background + nucleon resonances
- Conclusions

$\eta \mathrm{MAID2003}\ \mathrm{Regge}$

Reggeized model for η and η' photoproductin

W.-T. Chiang, S.N. Yang, L.Tiator, M.Vanderhaeghen, D. Drechsel. PRC 68 (2003) 045202.Main difference: vector meson exchanges are described in terms of Regge trajectories.It should be important for high energies.

V	$m_V [{ m MeV}]$	g^v_{VNN}	κ_{VNN}	$\lambda_{V\eta\gamma}$	$\lambda_{V\eta'\gamma}$	$lpha_V(t)$
ρ	768.5	2.4	3.7	0.81	1.24	$0.55 + 0.8 t/{ m GeV}^2$
ω	782.6	9	0	0.29	-0.43	$0.44 + 0.9 t/{\rm GeV}^2$

Tabelle 1: Parameters for the vector mesons in this model.

 $\kappa_{VNN} = g_{VNN}^t/g_{VNN}^v$, where g_{VNN}^v and g_{VNN}^t are vector and tensor hadronic couplings respectively. The hadronic couplings were derived by a fit to high energy data. Parameters for Regge trajectories $\alpha(t) = \alpha_0 + \alpha' t$ were taken from M. Guidal, J.M. Laget, M. Vanderhaeghen, NP A627 (1997) 645.

 $\lambda_{V\eta\gamma}$ and $\lambda_{V\eta'\gamma}$ are electromagnetic coupling constants.

The electromagnetic coupling constants $\lambda_{V\eta\gamma}$ and $\lambda_{V\eta'\gamma}$ can be determined from the radiative decay widths,

$$\Gamma_{V \to \eta \gamma} = \frac{\alpha (m_V^2 - m_{\eta}^2)^3}{24 \, m_V^3 \, m_{\eta}^2} \, \lambda_{V \eta \gamma}^2 \,, \tag{1}$$

$$\Gamma_{\eta' \to V \gamma} = \frac{\alpha (m_{\eta'}^2 - m_V^2)^3}{24 \, m_V^2 \, m_{\eta'}^3} \, \lambda_{V \eta' \gamma}^2 \,, \tag{2}$$

where α is the fine-structure constant.

The values of $\lambda_{V\eta\gamma}$ and $\lambda_{V\eta'\gamma}$ were obtained from the widths $\Gamma_{\rho\to\eta\gamma} = 36 \text{ keV}$, $\Gamma_{\omega\to\eta\gamma} = 5.5 \text{ keV}$, $\Gamma_{\eta'\to\rho\gamma} = 89 \text{ keV}$, and $\Gamma_{\eta'\to\omega\gamma} = 9.1 \text{ keV}$ (PDG-2000).

The pole-like Feynman propagator was replaced by a Regge propagator for each vector meson:

 $\rho\left(1^{-}\right)$ exchange:

$$\frac{1}{t - m_{\rho}^2} \implies \mathcal{P}_{\text{Regge}}^{\rho} = \left(\frac{s}{s_0}\right)^{\alpha_{\rho}(t) - 1} \frac{\pi \alpha_{\rho}'}{\sin(\pi \alpha_{\rho}(t))} \frac{\mathcal{S}_{\rho} + e^{-i\pi \alpha_{\rho}(t)}}{2} \frac{1}{\Gamma(\alpha_{\rho}(t))} \,, \quad (3)$$

 $\omega \left(1^{-} \right)$ exchange:

$$\frac{1}{t - m_{\omega}^2} \implies \mathcal{P}_{\text{Regge}}^{\omega} = \left(\frac{s}{s_0}\right)^{\alpha_{\omega}(t) - 1} \frac{\pi \alpha_{\omega}'}{\sin(\pi \alpha_{\omega}(t))} \frac{\mathcal{S}_{\omega} + e^{-i\pi \alpha_{\omega}(t)}}{2} \frac{1}{\Gamma(\alpha_{\omega}(t))} \,. \tag{4}$$

The parameter s_0 is a mass scale taken as $s_0 = 1 \text{ GeV}^2$.

 $\mathcal{S}=\pm 1$ is the signature of the trajectory.

The gamma function $\Gamma(\alpha(t))$ suppresses poles of the propagator in the unphysical region.

Differential cross section $d\sigma/dt$ for $\gamma p \rightarrow \eta p$.

The solid lines are the predictions from t-channel exchange using Regge trajectories, the dashed (dotted) lines indicate the ρ (ω) contributions only. The data at $E_{\gamma}^{\text{lab}} = 4$ GeV and 6 GeV are from DESY-1970, at $E_{\gamma}^{\text{lab}} = 2$ GeV are from CLAS-2002.

For bosons $\mathcal{S} = (-1)^J$, so for the vector mesons $\mathcal{S} = -1$.

Black lines are η MAID2003 Regge without nucleon resonances.

Blue lines are the same, but with S = -1.

Black circles: DESY-1970

Red circles: WLS-1971

G.R. Goldstein, J.F. Owens III, PRD 7 (1973) 865.

I.S. Barker, J.K. Storrow, NP B137 (1978) 413.

A. Donnachie, Yu.S. Kalashnikova, arXiv:1507.07408v1, 27 Jul 2015.

Regge cuts arise from rescattering two Reggeons R_1 and R_2 (or more). The exchange of two Reggeons with linear trajectories:

$$\alpha_i(t) = \alpha_i(0) + \alpha'_i t, \quad i = 1, 2 \tag{5}$$

yields a cut with a linear trajectory $\alpha_c(t)$:

$$\alpha_c(t) = \alpha_c(0) + \alpha'_c t \tag{6}$$

were

$$\alpha_c(0) = \alpha_1(0) + \alpha_2(0) - 1$$

$$\alpha'_c = \frac{\alpha'_1 \alpha'_2}{\alpha'_1 + \alpha'_2}$$
(7)

Donnachie and Kalashnikova (DoKa) assumed:

linear non-degenerate ρ and ω trajectories:

 $\alpha_{\rho} = 0.55 + 0.8t$ $\alpha_{\omega} = 0.44 + 0.9t$

secondary linear non-degenerate Pomeron (P) and f_2 trajectories:

 $\alpha_P \sim 1.08 + 0.25t$ $\alpha_{f_2} = 0.672 + 0.817t$

trajectory of the associated $\rho - P$ and $\omega - P$ cuts: $\alpha_{\rho-P}^c = 0.64 + 0.160t$ $\alpha_{\omega-P}^c = 0.52 + 0.196t$ trajectories of the associated $\rho - f_2$ and $\omega - f_2$ cuts: $\alpha_{\rho-f_2}^c = 0.222 + 0.404t$ $\alpha_{\omega-f_2}^c = 0.112 + 0.428t$

Tabelle 2: Parameters of the vector mesons used by Donachie and Kalashnikova.

V	g^v_{VNN}	κ_{VNN}	$\lambda_{V\pi^0\gamma}$	
ho	3.4(2.4)	6.1(3.7)	0.119	
ω	15(9)	0(0)	0.322	

 $\kappa_{VNN}=g^t_{VNN}/g^v_{VNN}$, where g^v_{VNN} and g^t_{VNN} are vector and tensor hadronic couplings respectively.

Values in parentheses are parameters used in η MAID2003 Regge.

 $\lambda_{
ho\pi^0\gamma}$ and $\lambda_{\omega\pi^0\gamma}$ are electromagnetic coupling constants.

Donnachie and Kalashnikova:

As a physical mass cannot be be associated with a cut, the simplest form of amplitude for a cut term is

$$A_c(s,t) = C_c D_c(s,t) \tag{8}$$

where C_c is a constant and

$$D_c(s,t) = e^{d_c t} e^{-i\frac{1}{2}\pi\alpha_c(t)} s^{\alpha_c(t)-1}.$$
(9)

where we have retained only the Regge phase and absorbed the rest of the *t*-dependence in the exponential, $\alpha_c(t)$ is the cut trajectory and the constants C_c and d_c for each cut term are obtained by fitting data.

We need a mechanism to allow us to transfer the π^0 cut model to scalar photoproduction. The simplest way is to take the cut terms proportional to the dominant ω and ρ exchanges, retaining the kinematical structure and replacing $\lambda_{V\pi^0\gamma}g_{VNN}D_V(s,t)$, $V = \rho, \omega$ by

$$\lambda_{V\pi^{0}\gamma}g_{VNN}(D_{V}(s,t) + C_{n}^{V-P}D_{c}^{V-P}(s,t) + C_{n}^{V-f_{2}}D_{c}^{V-f_{2}}(s,t)), \quad (10)$$

where C_n^{V-P} and $C_n^{V-f_2}$ are respectively the natural-parity constants for the V-P and V- f_2 cuts.

Red lines: fit results with the cuts (Fit 1).

Black lines: without the cuts. Black circles: SLAC-1971 data

PWA Collaboration Meeting, Mainz, 15-19 February, 2016

Donnachie and Kalashnikova:

These cuts also feed into the unnatural-parity exchange term and are much larger than any cuts generated by $b_1(1235)$ exchange due to its small contribution. So b1 pole term $\lambda_{b_1\pi^0\gamma}g_{b_1NN}D_b(s,t)$ is replaced by

$$\lambda_{b_1\pi^0\gamma}g_{b_1NN}D_b(s,t) + \sum_V \lambda_{V\pi^0\gamma}g_{VNN}(C_u^{V-P}D_c^{V-P}(s,t) + C_u^{V-f_2}D_c^{V-f_2}(s,t)),$$
(11)

where the C_u^{V-P} and $C_u^{V-f_2}$ are the unnatural-parity constants. It turns out that the cuts dominate unnatural parity exchange so in practice the b_1 pole term could be omitted.

The parameters for ρ and ω were taken to be the same:

$$C_n^{\rho-P} = C_n^{\omega-P}, C_n^{\rho-f_2} = C_n^{\omega-f_2},$$

 $C_u^{\rho-P} = C_u^{\omega-P}, C_u^{\rho-f_2} = C_u^{\omega-f_2}.$

 d_c of the exponential also was taken to be the same for all terms.

So in practice we have only five free parameters to describe π^0 photoproduction.

Red lines: fit results with vector and axial-vector mesons (Fit 2).

Black lines: Fit 2. Red lines: fit to SLAC-1971 (black), Botth-1972 (blue), Beinlein-1973 (red), Deutsch-1972 (magenta) data (Fit 3).

PWA Collaboration Meeting, Mainz, 15-19 February, 2016

Black lines: Fit 3

Blue lines: Fit with 6 parameters to all data (Fit 4). Red lines: same as Fit 4, but without P data

PWA Collaboration Meeting, Mainz, 15-19 February, 2016

Electromagnetic coupling constants were recalculated according to new experimental data for the radiative decay widts:

Parameter [keV]	η MAID-03 Regge	PDG-14	
$\Gamma_{ ho o \eta\gamma}$	36	50.6	
$\Gamma_{\omega \to \eta \gamma}$	5.5	3.9	
$\Gamma_{\eta\prime \to \rho\gamma}$	89	58	
$\Gamma_{\eta\prime \to \omega\gamma}$	9.1	5.5	

Vector and tensor hadronic coupling constants

Parameter	η MAID-03	η MAID-03 Regge	Laget-PRC72(2005)	DoKa
$g^v_{ ho NN}$	2.4	2.4	0.92	3.4
$k_{ ho NN}$	6.1	3.7	6.1	6.1
$g^v_{\omega NN}$	16	9	17.9	15
$k_{\omega NN}$	0	0	0	0

Black lines: fit results with 9 parameters

Tabelle 3: Fit parameters

channel	d_c	$C_n^{\rho-P}$	$C_n^{\omega-P}$	$C_n^{\rho-f_2}$	$C_n^{\omega-f_2}$	$C_u^{\rho-P}$	$C_u^{\rho-f_2}$
η	2.01	-1.31	0.50	9.08	-5.37	0.13	1.01
π^0	0.82	-0.84	0.03	1.50	-0.47	0	0.18

 $\begin{aligned} C_u^{\omega-P} &= C_u^{\rho-P} \\ C_u^{\omega-f_2} &= C_u^{\rho-f_2} \end{aligned}$

Two additional fit parameters for η photoproduction:

$$\begin{split} \lambda_{b_1\eta\gamma} \; g^v_{b_1NN} &= 15.3, \\ \lambda_{b_1\eta\gamma} \; g^t_{b_1NN} &= 9.1, \\ \text{where } g^v_{b_1NN} \; \text{and} \; g^t_{b_1NN} \; \text{are vector and tensor hadronic coulings respectively,} \\ \text{and } \lambda_{b_1\eta\gamma} \; \text{is electrmagnetic coupling constant of the } b_1 \; \text{meson.} \end{split}$$

magenta line: background contribution

PWA Collaboration Meeting, Mainz, 15-19 February, 2016

data: A2MAMI (preliminary). Red lines: background contribution

data: A2MAMI (preliminary). Red lines: background contribution.

CBELSA/TAPS data: $d\sigma/d\Omega$ - 2009, T,E,H,P - preliminary

PWA Collaboration Meeting, Mainz, 15-19 February, 2016

data: A2MAMI-2015 (T,F), GRAAL-2007 (Σ), CLAS-2015 (E)

PWA Collaboration Meeting, Mainz, 15-19 February, 2016

magenta line: Regge background

black: A2MAMI (preliminary), blue: CLAS-2009. Red lines: Regge background

data: CLAS-2009. Red lines: Regge background

PWA Collaboration Meeting, Mainz, 15-19 February, 2016

35

data:A2MAMI (preliminary). Red lines: bg + resonances, black: bg

data: A2MAMI (preliminary). Red lines: bg + resonances, black: bg

data: A2MAMI-2015 (T,F), GRAAL-2007 (Σ), CLASS-2015 (E)

PWA Collaboration Meeting, Mainz, 15-19 February, 2016

CBELSA/TAPS data: $d\sigma/d\Omega$ - 2009, T,E,H,P - preliminary

data: A2MAMI (preliminary). Red lines: bg + resonances, black: bg

data: CBELSA/TAPS-2009. Red lines: bg + resonances, black: bg

 $\cos\Theta_n^{\star}$

