

The Hall-π project

The idea for this little project started when I had to buy probably the 10th Hall-probe for

ca. 1000 € after the old one was broken again by one of my students. I did a bit of

research on the available sensors and figured that one can buy useful linear Hall-

sensors already for 1-2 € / piece. Then I decided to start a little side-project to build a

Gaussmeter run from a Raspberry Pi Mini-Computer. I had sufficient time to finalize it

during the Corvid-19 lockdown in spring 2020.

This report is on setting this all up for a 3-axis Hall-probe, but you can use the same

hardware and programs together with other sensors (e.g. temperature, pressure, etc.)

as long as they are operated by 5V and the measured effect is represented by a

voltage.

Initially I set myself the following aims: The final device should:

 measure magnetic flux (at least 2 T) with high precision in 3 dimensions;

 have calibration options, that can be saved for several different sensors;

 run like a multimeter (touchscreen, battery);

 somehow transfer its data to PCs using a standard protocol;

 cost all in all less than 200 €

I had fun doing this little project, learned a lot about Raspberry Pis and Python.
However, my coding qualities in Python are not great, so if you find ways of optimizing
my code please let me know, so that I can update the file or this report.

Have fun and stay healthy, yours Peter Blümler (April 2020)

What you need: (but better read the instruction before ordering)

To realize this using the following parts (prices from March 2020)

 Raspberry Pi B incl. power supply and SD-card
https://www.raspberrypi.org/ ca. 70 €

 5“ HDMI touchscreen LCD-monitor - 800 x 480 HD
(many monitors are suited, but they need the touch-function be connected via
USB and not through the GPIO-port of the Raspberry!!!) ca. 40 €

 Waveshare Raspberry Pi AD/DA expansion board with
 ADS1256 DAC8552 Sensor Interface
https://www.waveshare.com/wiki/High-Precision_AD/DA_Board ca. 30 €

You could also use another ADC (like the MCP3008), but I wanted a higher
digital resolution than 10bit. The Waveshare offers 24 bit.

 3 Hallsensors (e.g. CYSJ302C from Sonnecy)
https://www.sonnecy-shop.com/en/hall-elements-ics/linear-hall-sensor-
elements.html ca. 6 €

Additionally the following things will be needed/useful:

 USB keyboard (for programming the Raspberry before switching to touchscreen
mode) eventually a HDMI/VGA or HDMI/DVI-adapter if your PC-monitor has no
HDMI input

 USB mouse

 Solder iron

 3D printer (for making nice probe supports and tailored housing

 A 5V powerbank or a 5V battery to run the device cordless. Check the voltage
and the power (2.5 A!) before buying. I used a 10 Ah mini powerbank from
Jonkuu with 2 * 2.4 A and 5V.

 Some Nylon or brass Hex spacers

 USB A, USB B micro and HDMI connectors for soldering to compact the device

https://www.raspberrypi.org/
https://www.waveshare.com/wiki/High-Precision_AD/DA_Board
https://www.sonnecy-shop.com/en/hall-elements-ics/linear-hall-sensor-elements.html
https://www.sonnecy-shop.com/en/hall-elements-ics/linear-hall-sensor-elements.html

This instruction is subdivided in the following sections:

1) The Hall-sensor: Building a 3-axis Hall-probe

2) Setting up the Raspberry Pi hardware

3) Installing the software

4) Establishing contact to a PC

5) The Hallpi-GUI

6) Setting up the touch screen

7) Polish and finish

8) Calibration

Possible Improvements

Before you start, please download the Hallpi.zip file which is an archive with three

directories:

 3D print : contains STL files for 3D-printers

 copy to raspberry : this you should copy to the Raspberry-Pi using a pen

drive

 manuals datasheets : some PDFs about ADDA card, sensors, etc.

It might be advisable to do section 1 in parallel with the rest, because building and
soldering the probe takes much longer than installing the software, and you might need
a functioning Raspberry Pi with the Hall-pi GUI to test your sensors.

1) The Hall-sensor: Building a 3-axis Hall-probe

I have tried 3 different sensors:

1) CYSJ362A from Sonnecy https://www.sonnecy-shop.com/en/hall-elements-

ics/linear-hall-sensor-elements.html
This is a linear GaAs-Hall Effect Sensor 3-4 mV/mT, which is quite sensitive but
probably only if you run it with Vcc = ±12V in (+12V on pin 1 and -12V on pin 3).
With +5V only on pin 1 I expect more like 1.4 mV/mT with a linearity of 2%. But its
max. flux of 3T is nice together with a price of 1.2 €. This one I used for this project.

2) CYSJ302C from the same company. This has a sensitivity of ca. 0.6 mV/mT at 5V

and a maximum flux of 2T, I used this mainly for comparison.

3) A more professional device the HE244 from Advanced Sensor Technology. This

one goes up to 10 T with 0.2 mV/mT. I only bought one for high field checks,
because it costs 135 €.

However, this choice was predominantly due to my “professional hobby” of building
permanent magnets. So 3T is perfect. If you want to go to other fields with higher
sensitivity, there is a lot on the market. A variety of other linear Hall-sensors is given
here http://www.hallsensors.de/Hall-IC.htm

https://www.sonnecy-shop.com/en/hall-elements-ics/linear-hall-sensor-elements.html
https://www.sonnecy-shop.com/en/hall-elements-ics/linear-hall-sensor-elements.html
http://www.hallsensors.de/Hall-IC.htm

Vendors of commercial Hall-probes usually avoid non-magnetic metals as protective
housings, because if you want to measure AC magnetic fields or move the sensor
quickly through it, induced eddy currents might interfere with your measurement.
However, if you stick with static measurements in static fields an aluminium cover is
fine and probably extends the lifetime of your sensors.

The next step is to attach 3 Hall-sensors in orthogonal directions. You might to consider
to get this part made from a professional workshop or if you have access to a CNC-
mill you might mill a suitable support structure from some polymer or metal. I have a
nice 3D-printer, hence I printed an entire probe structure from a nylon filament.

The STL file (3axis Hall probe.stl) for this piece is available in the

Hallpi.zip archive in the folder 3D print. On my Ultimaker 3 a 100% filled print with

ultimate resolution took about 4 h, but the device is rather rigid (see Fig. 1).

Fig. 1: a) Finished print on the 3D-printer, b) Print with supporting structures, which were

removed in c)

The probe design has small orthogonal holes for the Hall-sensors (x,y,z in Fig. 2 insert)
where the sensors can be glued to. There are also grooves for the wires to contact
them along the shaft. These grooves should have feedthroughs into the hollow grip,
but in my printout I had to drill them with a 2 mm drill .

Fig. 2: Schematic view of the probe which has three sections. At its tip there are three

orthogonal holes for each sensor followed by a long groove for the connecting
wires along the shaft. In the hollow grip, the wires can be soldered to a connector.

The hole in the shaft is for Binder-connectors, I had chosen because I had a lot
inherited from some lab clearing (Binder snap in connectors Series 719 or IP40
Subminiature, https://www.binder-connector.com/en/products/subminiature-circular-
connectors#filter:contacts=_5&lock=Snap%20In). You can of course use your favorite
connector. I like to document my pin assignment as a reference for the future… you
do not have to follow that.
Solder thin varnished copper wires to each sensor as shown in Fig. 10a. They should
be ca. 5 cm longer than the entire probe. You can encode your wires (5V, VH and
GND) either by length (5V and GND of the 3 sensors can be soldered together on the
shaft) or by color (painting the wire), cf. Fig. 3a. I used some varnish (e.g. nail polish)
to put a thin insulation layer over the solder spots at the sensors to avoid shorts. After
that has dried I twisted the wires and tested if the sensors worked by connecting them
through a breadboard to the AD/DA card and the Raspberry (so you have to complete
section 2-5 of this manual first). If you bring a small permanent magnet to the sensors
the flux display should change dramatically (of course this depends on your settings of
the offset and calibration, see section 5).
If they all work, glue the sensors in the sockets at the tip of the probe and the twisted
wire into the grooves. I have used 5 min epoxy for that.

https://www.binder-connector.com/en/products/subminiature-circular-connectors#filter:contacts=_5&lock=Snap%20In
https://www.binder-connector.com/en/products/subminiature-circular-connectors#filter:contacts=_5&lock=Snap%20In

Fig. 3: a) Wires mounted to the probe, b) finished probe .

Finally I want to show the connections from the probe via a cable to the Raspberry
(Fig. 4). I do that mainly as a reference for me. But it is advisable to document your
colors etc. somewhere as well.

Fig. 4: Color coding and positions on connectors as I have used it considering the things

that were just in my possession.Note that all connectors are displayed from the
solder side

2) Setting up the Raspberry Pi hardware

Figure 5 shows all three major components that we have to buy to assemble the
necessary hardware.

Fig. 5: Commercial parts: Raspberry-Pi computer, touch screen and AD/DA board before

assembly.

Careful with that monitor, Eugene!
As I already emphasized in the beginning, do not use a monitor, which has its touch
functions transferred via the GPIO bus of the Raspberry Pi. Such monitors typically
have a lengthy connection bar at their lower side (see for instance this one
https://www.rasppishop.de/Resistives-IPS-Touch-Screen-Display-35-fuer-Raspberry,
a nice display but not suitable for this project). The video signal can either be
transferred via HDMI or the display-port of the Raspberry. The touch function is best
connected via USB like in the one shown here.

1) First screw the Raspberry on top of the screen. I used some nylon 2 mm Hex

spacers that were not shipped with the monitor to give the Raspberry a bit more
room for ventilation. (see Fig. 6)

https://www.rasppishop.de/Resistives-IPS-Touch-Screen-Display-35-fuer-Raspberry

Fig. 6: Raspberry-Pi screwed on the back of the screen using Hex-spacers.

2) Then do the same with the Waveshare AD/DA board, connect its lengthy

connector carefully to the GPIO-port of the Raspberry, and use some 15 mm high
spacer screws. Should look like Fig. 7.

Fig. 7: Finally the Waveshare AD/DA board is screwed on top of the Rapberry after

connecting it to the GPIO port (see also Fig. 8).

3) Before we tidily pack up everything in the last step, I recommend to have a first
operational setup. Before we install the touchscreen display in chapter 6, I
recommend to attach a normal PC-monitor via the HDMI-port, a USB keyboard
and an USB mouse. This might look like Fig. 8.

Fig. 8: The hardware assembly is preliminary connected to a PC monitor (HDMI connector

in the back), USB mouse and keyboard (on the left). The AD-port can now be
connected to a breadboard via jumper cables (top). In this photograph you can also
see the GPIO connection between Raspberry and the AD/DA board (black bar in the
front).

Here I have attached the sensors by breadboard jumper cables for a first test.
In my setup the operating voltage and ground are already joined inside the sensor, so
they do not have to be supplied separately. If you however decide to operate different
sensors from the ADC-card, you might to do so.

The 3 Hall sensors we made in chapter 1 are now attached to the ADC on the
Waveshare board. They go to the red encircled ports (the 8 ADC input ports, No. 3 in
Fig. 9).

Fig. 9: Waveshare AD/DA board: We only use the 8 encircled AD ports (No. 3).

The three sensors are attached as shown in Fig. 10. The +5V (pin 1) of each sensor
are joined either inside the probe or later in a connector to the Raspberry. For the
moment I would recommend to do this via a breadboard, which gives most flexibility in
this setup phase. Pin 2 is the flux dependent Hall-voltage VH which we want to measure
this goes to the A connector of three different ADC-channels. If you want my GUI-
program without making changes, you must connect them like shown in b). (Bx-sensor
to AD5, By to AD6 and Bz to AD7). Pin 3 and 4 of each sensor can be soldered together
to reduce wiring inside the probe and then they are connected to one of the GND-ports
of the ADC. Now let’s see if we can read them into Python.

Fig. 10: a) Connection of the Hall-sensors (here CYSJ3xx types) with the +5V Vcc, the Hall-

voltage VH and ground (GND). b) Schematic drawing for connecting 3 such Hall-
sensors to the AD-ports of the Waveshare-board.

3) Installing the software

a) first install your Raspberry-Pi from the SD-card (or making your own SD-card

using https://www.raspberrypi.org/documentation/installation/installing-images/).
Ensure you have a internet connection via WiFi or LAN.

b) update the operating system. Open a terminal and type

~$ sudo apt-get update

~$ sudo apt-get dist-upgrade

c) Configure the SPI-port on the raspberry: open a terminal and type

~$ sudo raspi-config

 then select number 5 Interfacing Options
 then select P4 SPI
 enable it

d) Go to your home directory and create a directory hallpi

~$ cd

~$ mkdir hallpi

e) now copy at least the following programs (download from this webpage) using a
pen-drive or SD-card.

 ADS1256.py

 config.py

 testADC.py

 Hallpi.py

Of course you can copy the entire directory copy to raspberry

Done!

For an easy check if your hardware works you can run the little program testADC.py.

Your screen should look like Fig. 11 (running it from Thonny Python):

You can stop it by pressing either STOP in the menu bar of Python or giving a Ctrl+C
from the keyboard

https://www.raspberrypi.org/documentation/installation/installing-images/

Fig. 11: Screen dump of the output from testADC.py.

You can vary the magnetic flux to see if the channels of the Hall-sensors (here 5,6,7)
change their values….they do?! Great! (if not double check that your SPI channel is
switched on and the files ADS1256.py and config.py are in the same directory)

So were almost there, but before we start the measurement GUI we now have to install
MQTT.

4) Establishing contact to a PC

After pondering about the different possibilities on exchanging data between two PCs
(e.g. USB, Ethernet, FTP…), I decided to use MQTT
(https://de.wikipedia.org/wiki/MQTT) as the transfer protocol. This decision was made
mainly because it was best documented for Python and Raspberrys.
A nice introduction is found here: https://kitflix.com/communication-between-
raspberry-pi-and-pc-using-mqtt/

https://de.wikipedia.org/wiki/MQTT
https://kitflix.com/communication-between-raspberry-pi-and-pc-using-mqtt/
https://kitflix.com/communication-between-raspberry-pi-and-pc-using-mqtt/

Installing MQTT using mosquito:

On the Raspberry-Pi:

~$ sudo apt-get install -y mosquitto mosquitto-clients

~$ sudo systemctl enable mosquitto.service

~$ sudo pip install paho-mqtt

~$ sudo pip3 install paho-mqtt

On the PC:

> pip3 install paho-mqtt

> python -m pip install --upgrade pip

Reboot the PC

Transferring data from Hallpi to the PC:
(you can try after you have understood and ran the Hallpi GUI in the next chapter)

This is a small example in Python (you can easily install IDLE Python on your PC from

https://www.python.org/downloads/) how to receive the data from the Raspberry. You
have to insert the IP-address (here 192.168.0.132) of your Raspberry (displayed when
the program Hallpi.py is started. This program is in the top directory of the ZIP-file

named test_mqtt_client.py.

little example how to receive data from the raspberry pi

send via MQTT over the internet

P. Blümler 2020

import paho.mqtt.client as mqtt

def on_connect(client, userdata, flags, rc):

 if rc==0:

 print("connected OK Returned code=",rc)

 else:

 print("Bad connection Returned code=",rc)

 client.subscribe("hallpi")

def on_message(client, userdata, msg):

 print(msg.payload.decode())

client = mqtt.Client()

client.connect("192.168.0.132",1883,60)

client.on_connect = on_connect

client.on_message = on_message

client.loop_forever()

https://www.python.org/downloads/

then start the Hallpi.py program on the raspberry and then the PC should display

connected OK Returned code= 0

Bx = 0.0380 T

By = 0.0408 T

Bz = 0.0422 T

Bx = 0.0398 T

By = 0.0413 T

Bz = 0.0412 T

Bx = 0.0405 T

…

I did this in a very basic way. If you want to alter the data-style transmitted via MQTT

just alter the format of pubstr in line 185 (client.publish(“hallpi”,pubstr); to

match your desired format.

5) The Hallpi GUI

Now load Hallpi.py into Python and if everything is ok your screen should display the
graphical user interface (GUI) of the Hall-pi program (see Fig. 12) after you have
pressed RUN.

Fig. 12: The Hall-pi GUI with explanations.

I hope you find this GUI intuitive. Concerning the code I have to confess that this is my
first bigger Python code. I wanted to do it more elegantly but after a few trials I gave
up and used whatever worked. Due to the importing of elements I find Python syntax
sometimes very confusing and inconsistent.

The GUI shows the three flux components (Bx, By, Bz) in 3 separate boxes. Each of
them can be switched on or off by ticking the checkbutton on the left. This is for using
single or dual channel probes (with only one or two Hall-probes) with the same device.
The checkbutton is followed by a display of the actual value, B. This value is calculated
by subtracting an offset, Voff, from the measured ADC-voltage, VH, and is then multiplied
by a calibration constant, A.

B = (VH – Voff) A

Both offset, Voff, and calibration constant, A, can be manually changed for each flux
component on the right side. Just type in a value and press RETURN.
Below the three flux channels the amplitude of the flux is displayed in black according
to

|B| = (Bx
2+By

2+Bz
2)0.5

The offsets can be automatically determined by the (set Zero) button on the right.
Therefore, the sensors should be brought into a shielded calibration chamber (for
absolute measurements) or in the background flux (relative measurements). The
offsets are then determined by averaging 100 samples.
The values and settings can be saved and loaded for each probe, in case you want to
attach more than one. Otherwise the actual values are saved in a file default.csv when
leaving the GUI by pressing the QUIT-button in the lower right corner.

There are three further items, the number of averages, i.e. how may individual
measurements are averaged. If you increase this number the display will need much
more time to change, but the values become more stable.
The number of decimal places behind the decimal point. Finally there is a field for
altering the displayed units between useful SI (Tesla) and CGS (Gauss) units.

Of course one doesn’t want to start the GUI always through the Python console, so we
will make a little desktop icon to execute it. For that open the text editor of the
Raspberry (or use nano in the directory /home/pi/Desktop). There you type the
following

[Desktop Entry]

Name=Hallpi

Icon=/home/pi/hallpi/Hallpi_Logo.xpm

Exec=sudo python3 /home/pi/hallpi/Hallpi.py

Type=Application

Encoding=UTF-8

Terminal=false

Save it to the directory /home/pi/Desktop as Hallpi.desktop.

Then open a terminal and..

~$ cd /Desktop

~$ sudo chmod +x Hallpi.desktop

Now you can simply double-click on the Hallpi icon and the program will start. To avoid

the annoying question about executables, open the File Manager of the Raspberry

Pi (in the Menu click Edit-> Preferences -> General) and tick the box “Don’t

ask options on launch executable file” on the “behavior”)

6) Setting up the touch screen

If all functions work to your satisfaction, you can switch the display to the touch
screen. Depending on the model that might be slightly different. The one I used
needs to be connected via an HDMI-cable to the Raspberry (video) and an USB-
cable (touch function).

The software installation has to be matched to the used device as well. Here is a
good overview: http://www.lcdwiki.com/How_to_install_the_LCD_driver.

In my case that was

~$ sudo rm -rf LCD-show

~$ git clone https://github.com/goodtft/LCD-show.git

~$ chmod -R 755 LCD-show

~$ cd LCD-show

~$ sudo ./MPI5001-show

If you need to rotate the screen:

~$ cd LCD-show

~$ sudo ./rotate.sh 90

If you like to switch back to a normal PC-screen

~$ cd LCD-show

~$ sudo ./LCD-hdmi

You might also want to have a keyboard on the touch screen (doesn’t come
automatically). Different versions are available which are all not great, but Matchbox
worked best for me. You can install it by

~$ sudo apt-get install matchbox-keyboard

…and reboot…DONE!

7) Polish and finish

Finally, we want to pack everything in a nice housing. You can find a straight-forward

3D printable case in the STL-file 3D print\Hallpi case.stl. The result is shown

in Fig. 13. (It can be closed with a cover, which can be printed from the file 3D

print\Hallpi Cover.stl). I used PLA for this which took ca. 24 h). After

cutting/filing the support structures you can try to insert the instrument (Screen +
Raspberry Pi + Waveshare AD/DA board as in Fig. 7), but be very careful that you do
not damage anything (e.g. the SD card at the edge of the Raspberry). Of course you
have to strip it from all cables first.

http://www.lcdwiki.com/How_to_install_the_LCD_driver
https://github.com/goodtft/LCD-show.git

Fig. 13: a) 3D printed case for screen, raspi, waveboard, connectors and a powerbank,

b) cover for the back, c) assembled device.

I wanted to compact everything into this case, so I decided to solder some short
connectors (HDMI Screen to HDMI Raspberry) and the USB connector of the screen
and power supply of the Raspberry. I also put on a switch at the side to disconnect it
from the powerbank. It very much depends on how much work you want to invest in
this project. There might be also suitable commercial connectors, but I didn’t search
for them.

Figure 14 shows the typical connectors of the Raspberry, but careful I have 3 or 4 of
them and all of them have different connectors (micro USB B, micro HDMI, normal
HDMI etc.). Therefore, I just present the assignment of the typical connectors here.
Careful when soldering the HDMI-connectors, because some pins are not connected
to the plug (at least in my version). I had to check them (cf. Fig. 14) for continuity
manually. Of course you do not have to solder all pins 1:1, I only connected the 7 pins
on the upper and 6 on the lower side of the HDMI-connector as shown in Fig. 14.

I connected both USB connectors of the powerbank in parallel to a switch and then to
the Raspberry (of course only 5V and GND). This was necessary because one seemed
not to be sufficient (although specified to have 2.4 A). The Raspberry then showed a
little yellow flash (= power problems) on the screen, which disappeared after
connecting both USB ports. To connect the probes conveniently I used a standard D-
Sub 9 connector at the side.
I find it still awkward to use the tiny screen keyboard on the small screen with my
sausage size fingers. It is ok using a stylus or connecting a keyboard (at least during
calibration.
Figure 15 shows the final device (with the cover removed).

Fig. 14 : Connections of a) HDMI and b) USB connectors.

Fig. 15: The final device: a) view from the back (lying on screen). To the left (black box) is the

powerbank connected via a regular switch to the USB power port of the Raspberry.
To the right you can see my home-made HDMI/HDMI cable. B) Side view showing
the D-Sub connector for the Hall-probes. C) shows the other side with the USB ports
of the Raspberry.

Packing everything into a mobile, autonomous unit sounds good, but I found the use
of the touchscreen awkward. So I also designed just a case for Raspberry and
Waveshare-card. So you have to attach a keyboard, mouse and screen. I prefer to use
it this way.

You can find the 3D-printer file for this in 3D print\Hallpi simple case.stl. It

looks then like in Fig. 16.

Fig. 16: Simple case for Raspberry and Waveshare-card. One can still attach the probes

via a D-Sub connector on the top. Otherwise keyboard, mouse, screen and power
supply still need to be attached.

8) Calibration

Of course I have calibrated commercial Gaussmeters and tons of permanent magnets,
so it is no problem for me to find a suitable arrangement to calibrate my Hall-probe(s).

If you do not have anything to refer to, I suggest to use a Helmholtz-coil. That are two
loops of wire with radius R and distance R to each other. If they have N windings they
produce the following flux in the center

708 Tm
(0) 8.9918 10

A5 5

NI NI
B

R R

  
    

 

if a DC-current of strength I is ran through them. In 3D print\Calibration coil.stl

you find a template for such a coil with R = 22.48 mm giving B = 0.04 mT/A/winding.
Using 1 mm varnished copper wire, I easily managed to get 30 windings on each spool
(10 mm wide) and measured a resistance of 0.38 Ω.
Hence, theoretically every amp of current should produce 1.2 mT in its center.
However, in reality (due to wire thickness) I measured only 0.98 mT/A.
There are three orthogonal channel in the coil template (see Fig. 17), where you can
stick the probe in. They all end right in the center. I managed to put 10 A through it for
a short time. Of course you can thinner or thicker wire and a different number of
windings. I recommend to calculate the flux in the center then by adding loops using
Biot-Savart’s law.

Fig. 17: Calibration coil

Here are the calibration values:

1) 3 axis probe using 3  CYSJ362A (build in section 1):
x-channel: offset Voff = 1.362 V, calibration constant A = -2.26 T/V
y-channel: offset Voff = 1.314 V, calibration constant A = 2.96 T/V
z-channel: offset Voff = 1.355 V, calibration constant A = -2.76 T/V

2) AST HE244 probe A: offset Voff = 1.721 V, calibration constant A = 2.20 T/V

3) AST HE244 probe B: offset Voff = 1.727 V, calibration constant A = 1.93 T/V

They show a similar sensitivity like the commercial Hall-sensors I have for a field range
of 0.3 to 3T. Only the last digit is a bit unstable… maybe using a grounded shield for
all could be an improvement, but something I cannot easily do at home.

Possible improvements:

1) It would be advantageous to operate the Hall-sensors symmetrically with 5 V.

This would improve the sensitivity by a factor 2 because there would no longer
be an offset.
Here is a kit (https://www.henri.de/bauelemente/bausaetze-und-
module/strom/28482 /bausatz-netzteil-plus-minus/5v/9v/12v/15v/18v/20v/24v-
2x1a-symmetrische-stromv.html) for a symmetric power supply which needs to
be combined with a 5V transformer. If you want to run the Raspberry from the
+5V output make sure you have at least 2.5 A = 15VAC

2) It would be nice to control the Hallpi-program remotely via the MQTT protocol.

This shouldn’t be a problem. I just didn’t do it.

3) A electromagnetic shielded cover and probe should be tested to see if this

further improves the sensitivity/stability.

I hope you enjoyed this little project. If you have any ideas for improvement please let
me know.

Stay healthy, yours Peter

https://www.henri.de/bauelemente/bausaetze-und-module/strom/28482%20/bausatz-netzteil-plus-minus/5v/9v/12v/15v/18v/20v/24v-2x1a-symmetrische-stromv.html
https://www.henri.de/bauelemente/bausaetze-und-module/strom/28482%20/bausatz-netzteil-plus-minus/5v/9v/12v/15v/18v/20v/24v-2x1a-symmetrische-stromv.html
https://www.henri.de/bauelemente/bausaetze-und-module/strom/28482%20/bausatz-netzteil-plus-minus/5v/9v/12v/15v/18v/20v/24v-2x1a-symmetrische-stromv.html

Source Code of Hallpi.py

from tkinter import *

from tkinter import filedialog

import ADS1256

import paho.mqtt.client as mqtt

from datetime import datetime

from numpy import array

import socket

import csv

#actual time stamp

now=datetime.now()

time_stamp=now.strftime("%d.%m.%y %H:%M:%S")

print("Hall-pi started @ " + time_stamp)

print("Version 1.0 (c) Peter Bluemler, University of Mainz, Germany 4.2020")

print(" ")

#try to get the IP address to establish a MQTT client

hostname = socket.gethostname()

sock=socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

try:

 sock.connect(("8.8.8.8",80))

 IPAddr=sock.getsockname()[0]

 print(hostname + " connected via IP-address: "+ IPAddr)

except socket.error:

 print("WARNING: No internet connection ")

 IPAddr=""

if IPAddr !="": #if there is an IP-address establish MQTT connection

 client = mqtt.Client()

 client.connect(IPAddr,1883,60)

 client.publish("hallpi","Connection established! @ "+time_stamp)

#the global variables used in the program

global B_calib, B_offset, average, digits, unit_mult, comp

#read default values from last leave-procedure from file

filename='defaults.csv'

try:

 with open(filename,'r') as file:

 reader=csv.reader(file)

 data=next(reader)

 B_calib=array([float(data[0]),float(data[1]),float(data[2])])

 B_offset=array([float(data[3]),float(data[4]),float(data[5])])

 average=int(data[6])

 digits=int(data[7])

 unit_mult=float(data[8])

 comp=[int(data[9]),int(data[10]),int(data[11])]

except IOError:

 print("WARNING: could not fine default.csv guessing values")

 B_calib=array([2.0,2.0,2.0])

 B_offset=array([1.1,1.1,1.1])

 average=10

 digits=1

 unit_mult=1

 comp=[1,1,1]

#set the ADC

ADC = ADS1256.ADS1256() # define the ADC

ADC.ADS1256_init()

print("___")

############### FUNCTIONS ####################

def read_ADC():

 ADC_volts = array(ADC.ADS1256_GetAll()) #read the voltages from the ADC

 ADC_volts = ADC_volts*5.0/0x7fffff # multiply all with 5.0 Volts and divide by the bits 2^23

 return ADC_volts

def fetch(entries): # this function handles values entered into the various entry fields

 # 3-5 = calib values, 6-8 offsets, 9=averages, 10=digits

 global B_calib, B_offsets, average, digits

 for k in range(0,len(entries)):

 entry=entries[k]

 if k == 3:

 B_calib[0] =float(entry.get())

 entry.delete(0,END)

 entry.insert(0,B_calib[0])

 if k == 4:

 B_calib[1] =float(entry.get())

 entry.delete(0,END)

 entry.insert(0,B_calib[1])

 if k == 5:

 B_calib[2] =float(entry.get())

 entry.delete(0,END)

 entry.insert(0,B_calib[2])

 if k == 6:

 B_offset[0] =float(entry.get())

 entry.delete(0,END)

 entry.insert(0,B_offset[0])

 if k == 7:

 B_offset[1] =float(entry.get())

 entry.delete(0,END)

 entry.insert(0,B_offset[1])

 if k == 8:

 B_offset[2] =float(entry.get())

 entry.delete(0,END)

 entry.insert(0,B_offset[2])

 if k ==9:

 average=int(entry.get())

 if average < 1:

 average = 1

 entry.delete(0,END)

 entry.insert(0,average)

 if k == 10:

 digits=int(entry.get())

 if digits<0:

 digits=0

 elif digits >8:

 digits=8

 entry.delete(0,END)

 entry.insert(0,digits)

def setzero(entries): #determines the average of 100 measurements at zero field to calc. offsets

 global B_offset

 ave_zero=100 # number of averages

 V_avg=array([0,0,0])

 for k in range(0,ave_zero): #sample flux

 volts=read_ADC()

 V_avg=V_avg+volts[5:8]

 B_offset=V_avg/ave_zero #calc average

 for k in range(0,len(entries)): #set the entries to the new value

 entry=entries[k]

 if k == 6:

 entry.delete(0,END)

 entry.insert(0,B_offset[0])

 if k == 7:

 entry.delete(0,END)

 entry.insert(0,B_offset[1])

 if k == 8:

 entry.delete(0,END)

 entry.insert(0,B_offset[2])

def set_unit(v): #set the unit multiplier from the

 global unit_mult

 multiplier={1:1, 2:1000, 3:10000, 4: 10}

 unit_mult=multiplier[v]

def set_comp(c): #just to assign the comp to a global variable

 global comp

 comp=c

def display_flux(entries):

 #read ADC and display calibrated Bxyz and T values

 def check_ADC():

 global B_calib, B_offset, average, digits, unit_mult,comp

 V_avg=array([0,0,0])

 for j in range(0,average): #do the averaging

 volts=read_ADC()

 V_avg = V_avg + volts[5:8]

 B_act=V_avg/average

 Bstr=["Bx","By","Bz"] #define output string

 Bamp=0

 for k in range(0,3):

 entry=entries[k]

 if comp[k]==1: # if checkbutton is ON

 pubstr=Bstr[k] + " = "+"% "+str(digits+7)+"."+str(digits)+"f" #compose output string

 pubstr=pubstr% round((B_act[k]-B_offset[k])*B_calib[k]*unit_mult,digits)

 Bamp=Bamp+((B_act[k]-B_offset[k])*B_calib[k]*unit_mult)**2

 if unit_mult==1:

 pubstr=pubstr + " T"

 if unit_mult==1000:

 pubstr=pubstr + " mT"

 if unit_mult==10000:

 pubstr=pubstr + " G"

 if unit_mult==10:

 pubstr=pubstr + " kG"

 entry.config(text=pubstr)

 if IPAddr !="": # if connected via MQTT write string to client

 client.publish("hallpi",pubstr)

 else:

 pubstr=Bstr[k] + " = ---- " #if checkbutton is not ticked display ----

 entry.config(text=pubstr)

 #calc and display B amplitude

 entry=entries[11]

 Bamp=Bamp**0.5

 pubstr="|B| = "+"% "+str(digits+7)+"."+str(digits)+"f"

 pubstr=pubstr% round(Bamp,digits)

 if unit_mult==1:

 pubstr=pubstr + " T"

 if unit_mult==1000:

 pubstr=pubstr + " mT"

 if unit_mult==10000:

 pubstr=pubstr + " G"

 if unit_mult==10:

 pubstr=pubstr + " kG"

 entry.config(text=pubstr)

 entry.after(1,check_ADC)

 check_ADC()

def load_probe(window): #read in the data writen with save_probe

 global B_calib, B_offset, average, digits, unit_mult, comp

 filename=filedialog.askopenfilename(title="Save settings as", filetypes=(("csv files","*.csv"),("all files","*.*")))

 try:

 with open(filename,'r') as file:

 reader=csv.reader(file)

 data=next(reader)

 B_calib=array([float(data[0]),float(data[1]),float(data[2])])

 B_offset=array([float(data[3]),float(data[4]),float(data[5])])

 average=int(data[6])

 digits=int(data[7])

 unit_mult=float(data[8])

 comp=[int(data[9]),int(data[10]),int(data[11])]

 except IOError:

 print("ERROR reading "+filename+" values not changed!")

def save_probe(window):

 global B_calib, B_offset, average, digits, unit_mult, comp

 filename=filedialog.asksaveasfilename(title="Save settings as", filetypes=(("csv files","*.csv"),("all files","*.*")))

 file=open(filename,'w') #save settings to default

 with file:

 writer=csv.writer(file)

 data=list(B_calib)+list(B_offset)+[average,digits,unit_mult]+comp

 print("saved the following data to "+filename)

 print(" ")

 writer.writerow(data)

def leave(entries):

 global B_calib, B_offset, average, digits, unit_mult, comp

 file=open('defaults.csv','w') #save settings to default

 with file:

 writer=csv.writer(file)

 data=list(B_calib)+list(B_offset)+[average,digits,unit_mult]+comp

 print("saved the following data to default.csv")

 print(" ")

 writer.writerow(data)

 quit()

def makeform(window):

 #MAIN DISPLAY OF FIELD

 global B_calib, B_offset, average, digits, unit_mult, comp

 B_act=read_ADC()

 entries = []

 # draw some boxes

 Mc1=Canvas(window,width=800,height=440)

 Mc1.place(x=1,y=1)

 Mc1.create_rectangle(5,40,795,110)

 Mc1.create_rectangle(5,40,795,180)

 Mc1.create_rectangle(5,40,795,250)

 lab_dummy=Label(window,text='Magnetic flux monitor', fg='magenta4', font=("Arial 16 bold")).place(x=290,y=8)

 lab_dummy=Label(window,text='© 2020 Peter Blümler', font=("Arial 8")).place(x=600,y=420)

 # the flux labels Bx,y,z

 lab_Bx=Label(window,text='Bx = '+str(round((B_act[5]-B_offset[0])*B_calib[0],digits))+' T', fg='blue', font=("Arial",24),justify=LEFT)

 lab_Bx.place(x=50,y=55)

 lab_By=Label(window,text='By = '+str(round((B_act[6]-B_offset[1])*B_calib[1],digits))+' T', fg='blue', font=("Arial",24),justify=LEFT)

 lab_By.place(x=50,y=125)

 lab_Bz=Label(window,text='Bz = '+str(round((B_act[7]-B_offset[2])*B_calib[2],digits))+' T', fg='blue', font=("Arial",24),justify=LEFT)

 lab_Bz.place(x=50,y=195)

 lab_Ba=Label(window,text='|B| = '+str(round((B_act[7]-B_offset[2])*B_calib[2],digits))+' T', font=("Arial",24),justify=LEFT)

 lab_Ba.place(x=50,y=265)

 #calibration values of ADC -> magnetic field

 lab_Bcx=Label(window, width=16, text='calib. value [T/V]:', justify=RIGHT).place(x=565,y=51)

 ent_Bcx=Entry(window, width=12)

 ent_Bcx.place(x=690,y=50)

 ent_Bcx.insert(0, B_calib[0])

 lab_Bcy=Label(window, width=16, text='calib. value [T/V]:', justify=RIGHT).place(x=565,y=121)

 ent_Bcy=Entry(window, width=12)

 ent_Bcy.place(x=690,y=120)

 ent_Bcy.insert(0, B_calib[1])

 lab_Bcz=Label(window, width=16, text='calib. value [T/V]:', justify=RIGHT).place(x=565,y=191)

 ent_Bcz=Entry(window, width=12)

 ent_Bcz.place(x=690,y=190)

 ent_Bcz.insert(0, B_calib[2])

 #offset values of ADC -> magnetic field

 lab_Box=Label(window, width=16, text='offset [V]:', justify=RIGHT).place(x=540,y=81)

 ent_Box=Entry(window, width=18)

 ent_Box.place(x=642,y=80)

 ent_Box.insert(0, B_offset[0])

 lab_Boy=Label(window, width=16, text='offset [V]:', justify=RIGHT).place(x=540,y=151)

 ent_Boy=Entry(window, width=18)

 ent_Boy.place(x=642,y=150)

 ent_Boy.insert(0, B_offset[1])

 lab_Boz=Label(window, width=16, text='offset [V]:', justify=RIGHT).place(x=540,y=221)

 ent_Boz=Entry(window, width=18)

 ent_Boz.place(x=642,y=220)

 ent_Boz.insert(0, B_offset[2])

 #average entry

 lab_avg=Label(window, width=10, text='averages:', justify=RIGHT)

 lab_avg.place(x=300,y=330)

 ent_avg=Entry(window, width=6)

 ent_avg.place(x=380,y=330)

 ent_avg.insert(0, average)

 #decimal places

 lab_dig=Label(window, width=14, text='decimal places:', justify=RIGHT)

 lab_dig.place(x=265,y=355)

 ent_dig=Entry(window, width=6)

 ent_dig.place(x=380,y=355)

 ent_dig.insert(0, digits)

 #set zero button

 zero_but=Button(window, text='set Zero', fg='blue', command=lambda: setzero(entries))

 zero_but.place(x=710,y=260)

 #set load_probe button

 load_but=Button(window, text='load probe', command=lambda: load_probe(window))

 load_but.place(x=100,y=405)

 #set save_zero button

 save_but=Button(window, text='save probe', command=lambda: save_probe(window))

 save_but.place(x=230,y=405)

 #quit button

 quit_but=Button(window, text='QUIT', fg='red', command=lambda: leave(entries))

 quit_but.place(x=732,y=405)

 #

 #Finally the interacting elements of the GUI are defined in an entry-list

 entries.append(lab_Bx) # [0] = Bx main display label

 entries.append(lab_By) # [1] = By main display label

 entries.append(lab_Bz) # [2] = Bz main display label

 entries.append(ent_Bcx) # [3] = Entry field of Bx calibration

 entries.append(ent_Bcy) # [4] = Entry field of By calibration

 entries.append(ent_Bcz) # [5] = Entry field of Bz calibration

 entries.append(ent_Box) # [6] = Entry field of Bx offset

 entries.append(ent_Boy) # [7] = Entry field of By offset

 entries.append(ent_Boz) # [8] = Entry field of Bz offset

 entries.append(ent_avg) # [9] = average label

 entries.append(ent_dig) # [10] = digits label

 entries.append(lab_Ba) # [11] = amplitude of field

 return entries

The main loop

if __name__ == '__main__':

 window = Tk()

 v=IntVar()

 # define unit multiplactor for radiobuttons

 if unit_mult==1:

 v.set(1)

 if unit_mult==1000:

 v.set(2)

 if unit_mult==10000:

 v.set(3)

 if unit_mult==10:

 v.set(4)

 units=[("Tesla [T]",1),("milliTesla [mT]",2),("Gauss [G]",3),("kiloGauss [kG]",4)]

 #make window

 window.title('Hall-pi flux monitor')

 window.geometry("800x440+0+0") #adapted to the 5" screen (800 * 440 pixels) 0+0 is top left corner

 ents = makeform(window) #make the GUI layout and get the entries

 # make the radiobutton field for the units

 rad_lab=Label(window,text="units:", font=('Arial 12 bold')).place(x=525,y=305)

 for txt, val in units:

 rad_but=Radiobutton(window,text=txt, variable=v, command=lambda: set_unit(v.get()),value=val)

 rad_but.place(x=500,y=310+val*20)

 # and checkbuttons for the flux components (could not find a more elegant way)

 csx=IntVar()

 csx.set(comp[0])

 csy=IntVar()

 csy.set(comp[1])

 csz=IntVar()

 csz.set(comp[2])

 chBBx=Checkbutton(window, variable=csx, command=lambda: set_comp([csx.get(),csy.get(),csz.get()])).place(x=15,y=63)

 chBBy=Checkbutton(window, variable=csy, command=lambda: set_comp([csx.get(),csy.get(),csz.get()])).place(x=15,y=133)

 chBBz=Checkbutton(window, variable=csz, command=lambda: set_comp([csx.get(),csy.get(),csz.get()])).place(x=15,y=203)

 comp=[csx.get(),csy.get(),csz.get()]

 #

 # in case return is pressed after changing entries they are passed to function fetch

 window.bind('<Return>', (lambda event, e=ents: fetch(e)))

 display_flux(ents) # measure and display flux

 window.mainloop() # loop

