
Theoretical Elementary Particle Physics
Exercise 2

May 22, 2015

-to be handed in on Friday, 5th of June

1. Feynman parametrization (25 points)

(a)(10 points) Using standard integration techniques prove the identity :

1

AB C
= 2

∫ 1

0

dx

∫ 1−x

0

dz
1

[A+ (B − A)x+ (C − A) z]3
(1)

(b)(15 points) Prove the following formula

1

A1A2A3 . . . An
= (n−1)!

∫ 1

0

. . .

∫ 1

0

dx1 dx2 . . . dxn
δ (x1 + x2 + . . .+ xn − 1)

(x1A1 + x2A2 + x3A3 + . . .+ xnAn)n

(2)
( Hint: Use mathematical induction. Useful relation is

1

A1An2
=

∫ 1

0

dx1

∫ 1

0

dx2 δ (x1 + x2 − 1)
nxn−1

2

(x1A1 + x2A2)n+1 (3)

If you use it prove it by performing several derivatives on (A1A2)−1 with respect
to A2 and looking for a pattern or, alternatively, by means of the mathematical
induction.)

2. 1-loop correction to the propagator in φ4 theory (35 points)

(a)(30 points) Using Feynman rules for φ4 theory (see exercise!) write the am-
plitude corresponding to the Feynman diagram in figure 1. The symmetry factor
of this diagram is 2. Use dimensional regularization. The angular part of the
d-dimensional integral equals 2πd/2

Γ( d
2

)
. In the spatial part it is useful to make a sub-

stitution of the integration variable by introducing x = ∆
l2E+∆

. In this simplified

example, which does not require usage of Feynman parametrization, ∆ ≡ m2. An-
other useful identity is :∫ 1

0

dx xα−1(1− x)β−1 =
Γ(α)Γ(β)

Γ(α + β)
(4)

1



Take d = 4 − ε and expand the amplitude in powers of ε. Consider only ε−1

(divergent part) and ε0 parts since other terms will vanish as you go to ε → 0
(d→ 4) limit. For the expansion of the Γ function near z = −1 pole use :

Γ(−1 +
ε

2
) ≈ −2

ε
+ γ − 1 (5)

where γ stands for the Euler-Mascheroni constant introduced in the exercises.
(b)(5 points) After extracting the ε−1 part in dimensional regularization, absorb
this divergence into the renormalization constants δZ and δm by adding the ampli-
tude of the diagram and the counterterm in figure 2 and requiring cancellation of
infinite parts. Use the MS renormalization scheme, i.e. absorb only the divergent
part in δm and δZ .
Solution : δZ = 0, δm = λm2

16π2ε
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Figure 1: One loop correction to the propagator in φ4 theory with 4-momenta labelled.

Figure 2: Counterterm that absorbs infinite contributions for diagram in figure 1. The
Feynman rule for this counterterm is i(p2δZ − δm).

p p

p+ k

k

φ φ

Figure 3: One loop correction to the propagator in Yukawa theory (interaction Lagrangian
is −g ψψφ) with 4-momenta labelled.

3. 1-loop correction to the propagator in Yukawa theory (40 points)

One can study the interaction between a fermion field ψ and scalar field φ which
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is described by the Lagrangian term −gψψφ, g being the coupling constant. The
1-loop correction to the scalar propagator is presented in figure 3. The amplitude
may be expressed in the following form

−g2

∫
ddk

(2π)d
Tr
[(
/k + /p+m

)
(/k +m)

] 1(
(k + p)2 −m2

)
(k2 −m2)

(6)

where m now represents the mass of the fermion propagating in the loop.

(a)(30 points) Starting from equation (6), perform dimensional regularization
using the procedure described in the previous problem. Note that in this case
Feynman parametrization should be employed. When shifting the integration 4-
momentum variable k to l = k+xp note that the terms in the numerator which are
linear in l should be dropped because the integral of an asymmetrical function on
a symmetrical interval vanishes. Show that the amplitude may be written in the
form :

(d− 1)
4ig2

(4π)d/2

∫ 1

0

dx
Γ(1− d

2
)

∆1− d
2

(7)

where ∆ = x(x− 1)p2 +m2 and x is a Feynman parameter.
(b)(10 points) Take d = 4 − ε and expand the factors containing ε. Use again
equation (5) to expand Γ function near pole z = −1. After identifying the divergent
part, using the counterterm from figure 2, obtain the expressions for renormalization
constants δm and δZ . Use the MS renormalization scheme, i.e. absorb only the
divergent part in δm and δZ . Solution : δZ = −4 g2

(4π)2ε
, δm = −24g2m2

(4π)2ε
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