Übungsblatt 1

zur Vorlesung

"Theorie V - Höhere Quantenmechanik" im Sommersemester 2016

Dozent: Univ.-Prof. Dr. Hartmut Wittig Oberassistent: Andreas Risch

Abgabe: Freitag, 29.04.2016, 10:00, im Foyer des Instituts für Kernphysik.

Bitte vermerken Sie die zur Bearbeitung benötigte Zeit auf Ihrer Abgabe.

1. Wiederholungsfragen

- (a) (1 Punkt) Weshalb führt man in der Vielteilchen-Quantenmechanik den Begriff der ununterscheidbaren Teilchen ein?
- (b) (1 Punkt) Welche Eigenschaften besitzen Operatoren, die Observablen in der Vielteilchen-Quantenmechanik ununterscheidbare Teilchen darstellen?
- (c) (1 Punkt) Welche Auswirkung hat das Prinzip der Ununterscheidbarkeit auf quantenmechanische Zustände?

2. (Anti-)Symmetrisierungsoperator

Sei $(|\varphi_{\nu}\rangle)_{\nu}$ eine orthonormierte Basis eines Einteilchen-Hilbertraumes $\mathscr{H}^{(1)}$. Die Zustände $|\varphi_{\nu_1} \dots \varphi_{\nu_n}\rangle = |\varphi_{\nu_1}\rangle \dots |\varphi_{\nu_n}\rangle$ bilden dann eine Basis des zugehörigen n-Teilchen-Hilbertraumes $\mathscr{H}^{(n)}$ mit $n \geq 2$. Wir definieren den Symmetrisierungsoperator S und den Antisymmetrisierungsoperator A durch

$$S = \frac{1}{n!} \sum_{P \in \mathfrak{S}_n} P \qquad A = \frac{1}{n!} \sum_{P \in \mathfrak{S}_n} \sigma(P) P.$$

 \mathfrak{S}_n ist die symmetrische Gruppe, d.h. die Menge aller Permutationen einer nelementigen Menge. $\sigma(P)$ ist das Signum einer Permutation P. Die Permutationen P operieren auf den Basisvektoren und vertauschen die zugrunde liegenden
Einteilchenzustände:

$$P|\varphi_{\nu_1}\dots\varphi_{\nu_n}\rangle = |\varphi_{\nu_{P(1)}}\dots\varphi_{\nu_{P(n)}}\rangle$$

Für allgemeine Zustände werden die Operatoren S und A linear fortgesetzt. Weiter definieren wir die n-Teilchen-Zustände

$$|\varphi^{(S)}\rangle = |\varphi_{\nu_1} \dots \varphi_{\nu_n}^{(S)}\rangle = S|\varphi\rangle \qquad |\varphi^{(A)}\rangle = |\varphi_{\nu_1} \dots \varphi_{\nu_n}^{(A)}\rangle = A|\varphi\rangle.$$

- (a) (2 Punkte) Zeigen Sie, dass für eine beliebige Permutation P gilt: PS = S und $PA = \sigma(P) A$.
- (b) (1 Punkt) Folgern Sie das Ergebnis von $P|\varphi^{(S)}\rangle$ und $P|\varphi^{(A)}\rangle$. Was bedeutet dies für die Zustände $|\varphi^{(S)}\rangle$ und $|\varphi^{(A)}\rangle$?
- (c) (4 Punkte) Zeigen Sie, dass $S^2=S,\ A^2=A$ und AS=SA=0 gilt. Interpretieren Sie das Ergebnis.
- (d) (1 Punkt) Für welches n gilt $S + A \propto 1$? Interpretieren Sie das Ergebnis.
- (e) (3 Punkte) Bestimmen Sie die Normierungsfaktoren C_A und C_S so, dass die Zustände $C_S|\varphi^{(S)}\rangle$ und $C_A|\varphi^{(A)}\rangle$ normiert sind. Der Index ν der zugrundeliegenden Einteilchenbasis sei hier diskret anzunehmen.

3. Basen des $\mathcal{H}^{(n,S)}$ und $\mathcal{H}^{(n,A)}$

Seien die Zustände $|\varphi_{\nu_1} \dots \varphi_{\nu_n}\rangle$ die Basis des *n*-Teilchen-Hilbertraumes $\mathcal{H}^{(n)}$ wie in Aufgabe 2. Dann bilden die Zustände

$$|\varphi_{\nu_1}\dots\varphi_{\nu_n}^{(S)}\rangle = S|\varphi_{\nu_1}\dots\varphi_{\nu_n}\rangle \text{ mit } \nu_1 \leq \dots \leq \nu_n$$

eine Basis des Unterraums der symmetrischen Zustände $\mathscr{H}^{(n,S)}$ und die Zustände

$$|\varphi_{\nu_1}\dots\varphi_{\nu_n}^{(A)}\rangle = A|\varphi_{\nu_1}\dots\varphi_{\nu_n}\rangle \text{ mit } \nu_1 < \dots < \nu_n$$

eine Basis des Unterraums der antisymmetrischen Zustände $\mathscr{H}^{(n,A)}$, wobei der Symmetrisierungsoperator S und der Antisymmetrisierungsoperator A wie in Aufgabe 2 definiert sind. Die zugrunde liegende Einteilchen-Basis sei bezüglich $\langle \varphi_{\mu} | \varphi_{\nu} \rangle = \delta (\mu, \nu)$ orthonormiert, d.h. es sind sowohl diskrete als auch kontinierliche Indices in der Notation mit eingeschlossen.

(a) (1 Punkt) Zeigen Sie, dass für beliebige symmetrischen Zustände $|\psi^{(S)}\rangle$ und antisymmetrische Zustände $|\psi^{(A)}\rangle$ gilt:

$$\langle \varphi_{\nu_1} \dots \varphi_{\nu_n} | \psi^{(S)} \rangle = \langle \varphi_{\nu_1} \dots \varphi_{\nu_n}^{(S)} | \psi^{(S)} \rangle$$
$$\langle \varphi_{\nu_1} \dots \varphi_{\nu_n} | \psi^{(A)} \rangle = \langle \varphi_{\nu_1} \dots \varphi_{\nu_n}^{(A)} | \psi^{(A)} \rangle$$

- (b) (2 Punkte) Berechnen Sie das Skalarprodukt $\langle \varphi_{\mu_1} \dots \varphi_{\mu_n}^{(A)} | \varphi_{\nu_1} \dots \varphi_{\nu_n}^{(S)} \rangle$ der Basiszustände. Welche Aussage können Sie damit über die Räume $\mathcal{H}^{(n,S)}$ und $\mathcal{H}^{(n,A)}$ treffen?
- (c) (3 Punkte) Berechnen Sie die Skalarprodukte $\langle \varphi_{\mu_1} \dots \varphi_{\mu_n}^{(S)} | \varphi_{\nu_1} \dots \varphi_{\nu_n}^{(S)} \rangle$ und $\langle \varphi_{\mu_1} \dots \varphi_{\mu_n}^{(A)} | \varphi_{\nu_1} \dots \varphi_{\nu_n}^{(A)} \rangle$ der Basiszustände. Welche Aussage können Sie nun über die gegebenen Basen von $\mathcal{H}^{(n,S)}$ und von $\mathcal{H}^{(n,A)}$ treffen?

Hinweis: Nutzen Sie die Ergebnisse aus Aufgabe 2!

4. Energieniveaus

Gegeben sei ein System von drei voneinander unabhängigen Elektronen. Der Hamilton-Operator des Gesamtsystems sei Summe der Einteilchen-Hamilton-Operatoren H_i . Sie besitzen Eigenzustände mit den Energieniveaus 0, 1 und 3 (in willkürlichen Einheiten). Die Energieniveaus sind bezüglich des Spins entartet.

- (a) (3 Punkte) Berechnen Sie die Energieniveaus des Hamilton-Operator des Gesamtsystems und deren Multiplizitäten. Geben Sie für die verschiedenen Gesamtenergie-Eigenzustandsräume jeweils eine Zustandsbasis an.
- (b) (2 Punkte) Berechnen Sie die gleichen Größen für den Fall von Bosonen mit Spin 0.