Exercise sheet 7 Theoretical Physics 2: SS2016 Lecturer: Prof. M. Vanderhaghen Assistant: Leonardo de la Cruz

06.06.2016

Exercise 1 (20 points): Lorentz invariants

(a) (7 points) Compute

 $F_{\mu\nu}F^{\mu\nu}, \quad \tilde{F}_{\mu\nu}\tilde{F}^{\mu\nu}, \quad F_{\mu\nu}\tilde{F}^{\mu\nu},$

in terms of the fields **E** and **B**.

(b) (5 points)

What can be concluded from these results with regard to the Lorentz invariance of the 3 quantities?

(c) (5 points)

Show that $\varepsilon_{\mu\nu\rho\sigma}$ is invariant with respect to proper Lorentz transformations. (d) (3 points)

Show that the contraction of a symmetric tensor $S_{\mu\nu}$ with an antisymmetric tensor $A_{\mu\nu}$ is zero.

Exercise 2 (35 points): Moving magnetic moment

A magnetic dipole moment \mathbf{m} is located at the origin of an inertial system S' that moves with speed \mathbf{v} with respect to S. In S' the potential is given by

$$\mathbf{A}' = \frac{\mathbf{m} \times \mathbf{r}'}{4\pi r'^3} \quad \text{and} \quad \phi' = 0. \tag{1}$$

(a) (15 points)
Find the scalar potential φ in S.
(b) (10 points)
Find φ in the nonrelativistic limit.
(c) (10 points) Calculate E from φ.

Exercise 3 (20 points): Electric and magnetic fields in different reference frames

In an inertial system S the electric field \mathbf{E} and the magnetic field \mathbf{B} are neither parallel nor perpendicular.

(a) (5 points)

Show that $\mathbf{E} \cdot \mathbf{B}$ is in general relativistically invariant.

(b) (5 points)

Is it possible to have an electromagnetic field that appears as a purely electric field in one inertial frame and as a purely magnetic field in some other inertial frame ?

(c) (10 points)

Show (independent of the choice of S), that in an inertial system S', moving relative to S with velocity **v** given by

$$\frac{\mathbf{v}}{1+v^2/c^2} = \frac{c\mathbf{E}\times\mathbf{B}}{E^2+B^2}$$

the fields \mathbf{E} and \mathbf{B} are parallel.

Exercise 4 (25 points): Motion of a charge in a constant uniform electric field

A particle with q moves in an electromagnetic field with the field tensor $F_{\mu\nu}$. The covariant equation of motion is given by

$$m\frac{du^{\mu}}{d\tau} = \frac{q}{c}F^{\mu}{}_{\nu}u^{\nu},$$

with $u^{\mu} = dx^{\mu}/d\tau = \gamma dx^{\mu}/dt$ and the relativistic momentum $p^{\mu} = mu^{\mu}$. (a) (10 points)

Derive equations of motion for the energy W and the momentum **p** using the explicit representation of $F_{\mu\nu}$ and the covariant equation of motion.

(b) (15 points)

Solve these equations and find the path $\mathbf{r}(t)$ of the particle in a uniform electric field $\mathbf{E} = E_0 \mathbf{e}_x$, where the particle starts at the beginning in the origin with velocity $\mathbf{v} = v_0 \mathbf{v}_x$.