Exercise sheet 1 Theoretical Physics 2: SS2016 Lecturer: Prof. M. Vanderhaeghen Assistant: Leonardo de la Cruz

18.04.2016

Exercise 1 (20 points): Divergence

Work out the following expression:

$$\nabla \cdot \left(\mathbf{r} f(r) \right), \tag{1}$$

in terms of f and df/dr.

Apply the previous result to the particular function $f(r) = r^{n-1}$. For which value of n does the divergence vanish ?

Exercise 2 (40 points): Cylindrical coordinates

The Navier-Stokes equations of hydrodynamics contain a nonlinear term of the form

$$\nabla \times \left[\mathbf{v} \times (\nabla \times \mathbf{v}) \right],\tag{2}$$

where ${\bf v}$ is the fluid velocity. Consider a fluid flowing through a cylindrical pipe in the z-direction with

$$\mathbf{v} = v(r)\mathbf{e}_{\mathbf{z}},\tag{3}$$

where $\mathbf{e}_{\mathbf{z}}$ is the unit-vector in the z-direction. Make use of cylindrical coordinates (r, ϕ, z) to express

$$\nabla \times \mathbf{v},$$

$$\mathbf{v} \times (\nabla \times \mathbf{v}),$$

$$\nabla \times [\mathbf{v} \times (\nabla \times \mathbf{v})],$$
(4)

in the cylindrical coordinates unit vectors $\mathbf{e}_{\mathbf{r}}, \mathbf{e}_{\phi}, \mathbf{e}_{\mathbf{z}}$.

Exercise 3 (40 points): Spherical coordinates

Consider a magnetic vector potential of the form

$$\mathbf{A} = C \frac{\mathbf{m} \times \mathbf{r}}{r^3},\tag{5}$$

which corresponds to a point magnetic dipole. The constant vector \mathbf{m} is called the magnetic dipole moment, and C is a constant factor.

For $\mathbf{m} = m \mathbf{e}_{\mathbf{z}}$, express the components of the magnetic field **B** in spherical coordinates (r, θ, ϕ) , with unit vectors $\mathbf{e}_{\mathbf{r}}, \mathbf{e}_{\theta}, \mathbf{e}_{\phi}$.