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Chapter 1

Introduction

The theory of Quantum Chromodynamics (QCD) is widely regarded as the correct theory

to describe one of the four interactions in nature, the strong force. It describes the

fundamental interaction of elementary particles named quarks and gluons which are the

basic building blocks of so-called hadrons such as the proton or the neutron.

Physicists are interested in the question, if the properties of the hadrons can be rigorously

derived from the basic theory which can, in principle, be formulated as a one-line equation.

However, due to the complex mathematical structure, analytical solutions to QCD have

not yet been found.

The key reason for this absence is, that the most successful tool in physics, perturbation

theory, is not as easy to apply to QCD as it is to other theories such as Quantum

Electrodynamics (QED). The electromagnetic interaction can be considered as a small

perturbation to the system and the theory of QED can be expanded in a small parameter,

usually the coupling constant. For the coupling constant of QED it is α ≈ 1/137 and

therefore, the series expansion converges quickly. This approach gave most impressive

results confirmed by experiments such as the anomalous magnetic dipole moment g of

the electron which is known up to 10 significant digits. This makes this value one of the

most exact values known in physics and gives confirmation of the theory at very high

precision.
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Coupling constants usually show a dependence of the energy scale. That is, the coupling

constant of QCD, αs, is a function of the momentum transfer q2 of the examined process.

This energy dependence is given by the beta-function which for QCD was first found by

Wilczek, Politzer and Gross. It reads

αs(q2) ≈ 1
β0 log(k2/Λ2)

where β0 is a constant and Λ is the QCD scale.

At both ends of the energy scale, QCD behave quite differently. In the limit of high

energy, for which the coupling constant becomes small, quarks can move freely within the

nuclei. That fact—called asymptotic freedom—was also discovered by Wilczek, Politzer

and Gross[GW73, Pol73] and was rewarded with the Nobel Prize in 2004. On the other

hand, in the limit of low-energy reactions, the coupling constant becomes large as q2

decreases and perturbation theory is no longer applicable. This phenomenon is called

color confinement and is the reason for the absence of free quarks in nature.

To study the low-energy regime of QCD and confinement in particular, in 1974 Kenneth

Wilson introduced Lattice QCD [Wil74]. In this formulation, Wilson was able to treat

QCD in a non-perturbative way and to investigate quark confinement analytically.

However, this formulation also formed also the foundation to analyze QCD using numerical

methods.

Lattice simulations demand extreme computing resources. To simulate a physical system

with reasonable dimensions, the lattice volume in physical units need to be at least in the

order of the simulated particles which is around 1–2 fm. On the other hand, the lattice

needs to be fine enough to suppress discretization errors, this is usually the case for a

physical lattice spacing of around 0.1 fm. For the extrapolation to the physical point with

a = 0, it is necessary to simulate at even finer lattice spacings. Current lattice volumes

have volume extents of T = 128 and L = 64 and more, resulting in tens or hundreds of

millions of lattice sites.

Systems of that size can not be handled by single processors computers efficiently. On

computer clusters, the combination of a multitude of single computing nodes with a fast
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network interface, such lattices will be divided in smaller sub-lattices and each sub-lattice

can be computed in parallel. With recent algorithms, the communication necessary

between the sub-lattices can be kept at a minimum and the efficiency of this approach

highly depends on the adjustment of the network interface and the performance of the

single processors.

Another development gives the promising perspective to a whole new approach for lattice

computations. In the last ten years, graphic processing units (GPU) turned from simple

output devices which present information on the screen to the user to programmable,

highly flexible, massively parallel processing units with a very reasonable prices tag.

The hunt for more and more realistic 3D scenes in professional like CAD (“Computer

Aided Design”) software or video games and the ability to efficiently accelerate the basic

calculations needed for the rendering process pushed development of hardware solutions

further and further.

Nowadays, the peak performance of a single GPU has broken the magic barrier of

one TFlops/s—that is one trillion or 1012 floating-point operations per second—and is

available for the mass-market. The question is raised, if this vast computing power in

almost every modern consumer personal computer can be exploited for lattice calculations.

This diploma thesis is organized as follows. In Chapter 2, a short introduction of lattice

QCD. The Wilson-Dirac operator and the Neuberger operator for chiral fermions is

described and the necessity of an efficient implementation for those operators is given with

a short overview of numerical simulations. In Chapter 3, NVIDIA’s framework for general

purpose computations on the GPU, CUDA (“Compute Unified Device Architecture”), is

presented with some technical description of the used hardware. Chapter 4 focuses on

the implementation of the Wilson-Dirac operator and the Neuberger operator and the

results obtained are presented in Chapter 5.



Chapter 2

Theoretical background

The generic concepts of the lattice formulation can be summarized by the following

statement[Wit08]:

Lattice QCD is the non-perturbative approach to the gauge theory of the strong interaction

through regularized, Euclidean functional integrals. The regularization is based on a

discretization of the QCD action which preserves gauge invariance at all stages.

The starting point for lattice QCD is the Euclidean functional integral itself, thus avoiding

any particular reference to perturbation theory in the first place. Therefore, lattice QCD

can be regarded as an ab initio method to QCD which can compute observables from first

principles. Furthermore, the Euclidean formulation reveals the close relation between

Quantum Field Theory and Statistical Mechanics. The Euclidean functional integral

is equivalent to the partition function of the corresponding statistical system and by

that, it is possible to take advantage of the whole toolkit of condensed matter physics, in

particular Monte Carlo simulations.

In the following a short overview is given about how QCD can be formulated on the

lattice. Different approaches to the simulation of fermions on the lattice are outlined and

Wilson fermions and Neuberger fermions for chiral fermions on the lattice are introduced.

In the end some essential techniques for numerical simulations are described like the

inversion of the fermion matrix and a deeper investigation of the Neuberger operator.

4
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2.1 Lattice QCD

The Euclidean action of QCD SQCD in the continuum can be divided into the action for

the gauge fields SG and the fermionic part SF. In a common formulation the action reads

SG =
∫

d4x

{
− 1

2g0
Tr (FµνFµν)

}
where g0 denotes the gauge coupling and

SF =
∫

d4x
∑

f=u,d,s,...

ψf (γµDµ +mf )ψf .

The covariant derivative is defined through Dµ = ∂µ +Aµ. The field strength tensor then

reads

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] , A†µ = −Aµ.

However, for the rest of this work only the fermionic part of the action will be discussed

and the gauge fields will be regarded as background fields. Details of the dynamics of

the gauge fields are not crucial for the rest of this work.

For the discretization of the theory the hyper-cubic lattice ΛE is introduced as the set of

discrete space-time points, i.e.

ΛE =
{
x ∈ R4 | x0/a = 1, . . . , T ; xi/a = 1, . . . , L, i = 1, 2, 3

}
.

Any space-time point is an integer multiple of the lattice spacing a and the total number

of lattice sites is T × L3. The fermionic degrees of freedom will sit on the lattice sites

itself, later it will be convenient to identify the corresponding links between the sites

with the gauge fields.

To see the regularization properties of the lattice the dual lattice Λ∗E which is related to

the Euclidean lattice ΛE via a Fourier transformation, is taken into account. It is defined

by

Λ∗E =
{
p ∈ R4 | p0 =

2π
aT

n0; pi =
2π
aL

ni, i = 1, 2, 3
}
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ψ(x) ψ(x+ aµ̂)

Uµ(x)

Figure 2.1: A two-dimensional extract of a lattice is shown to demonstrate various

important elements. Filled dots are the lattice sites and are identified with the

fermionic degrees of freedom, the links between lattice sites are identified with the

gauge variables.

where n0 = −T/2,−T/2 + 1, . . . , T/2 − 1 and ni = −L/2, L/2 + 1, . . . , L/2 − 1. This

has two implications: the momenta p0 and pi are quantized in units of 2π/T and 2π/L,

respectively, and a momentum cutoff has been introduced because the momenta are

limited by

−π
a
< pµ ≤

π

a
.

To find a discretized version of the covariant derivative Dµ required in the presence of

the gauge fields, first of all we consider the corresponding lattice derivatives dµ for the

partial derivative ∂µ in the continuum. Usually the first order difference quotient will be

used and can be written on the lattice as

dµφ(x) :=
1
a

(
φ(x+ aµ̂)− φ(x)

)
“forward” derivative,

d∗µφ(x) :=
1
a

(
φ(x)− φ(x− aµ̂)

)
“backward” derivative.

Here and for the rest of this work µ̂ denotes a unit vector in direction of µ. In the limit

a→ 0 it is easy to show that both formulations give the correct partial derivative ∂µ.
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x x+ aµ̂

Uµ(x)

U †µ(x+ aµ̂)

Figure 2.2: The link variable Uµ(x) sits on the lattice site with index x and points

into direction of lattice site x+ aµ̂. The same link variable can be obtained from

the lattice site with index x+ aµ̂ with the inverse direction.

Before it is possible to write down a discretized version of the fermionic action SF, the

notion of a lattice gauge field in the non-Abelian case has to be discussed. The familiar

transformation law for the gauge fields in the continuum,

Aµ(x)→ g(x)Aµ(x)g(x)−1 + g(x)∂µg(x)−1, g(x) ∈ SU(3),

no longer holds exactly when ∂µ is replaced by its discrete version dµ defined above.

In the presence of a background gauge field a quark moving from point y to x picks up a

non-Abelian phase factor

U(x, y) = P.O. exp
{
−
∫ x

y
dzµAµ(z)

}
where “P.O.” denotes path ordering, as a consequence of the non-Abelian nature of the

gauge field. As the gauge potential Aµ is an element of the Lie algebra of SU(3), the

parallel transporter U(x, y) is an element of the gauge group itself. On the lattice the

link variables are defined as the parallel transporter between neighboring lattice sites x

and x+ aµ̂

U(x, x+ aµ̂) ≡ Uµ(x) and U(x+ aµ̂, x) = U(x, x+ aµ̂)−1.

Now it is possible to obtain a consistent and manifestly gauge invariant discretization of

QCD, if the gauge degrees of freedom are identified with the link variables Uµ(x) which

transform like

Uµ(x)→ g(x)Uµ(x)g(x+ aµ̂)−1, g(x), g(x+ aµ̂) ∈ SU(3).
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2.2 Lattice actions

Now the focus will be on the problem to discretize of the fermionic action SF. The quark

and antiquark fields ψ(x) and ψ(x) are associated with the lattice sites and transform

under the gauge group as

ψ(x)→ g(x)ψ(x), ψ(x)→ ψ(x)g(x)−1.

With the transformation properties of the link variables it is straightforward to write

down a discretized version of the covariant derivative

∇µψ(x) ≡ 1
a

(Uµ(x)ψ(x+ aµ̂)− ψ(x)) ,

∇∗µψ(x) ≡ 1
a

(
ψ(x)− Uµ(x− aµ̂)−1ψ(x− aµ̂)

)
where ∇µ and ∇∗µ denote the “forward” and “backward” derivatives, respectively, as in

the case of the partial derivative. For the construction of a discretized action one should

note that there is certain degree of freedom because the lattice action is not unique. For

the discretized expression it is only required that it reproduces the continuum result as

the lattice spacing a is taken to zero. It is always possible to add a term to the discretized

action which formally vanishes as a → 0. As shown later, it is possible to exploit this

fact to tune the lattice formulation, e.g. for a better rate of convergence.

For the massless Dirac operator D there are four basic conditions conditions the discretized

version should satisfy.

(a) The lattice Dirac operator D is local. In particular, the absence of long-ranged in-

teraction is a basic property of any quantum field theory which describes elementary

particles.

(b) The Fourier transformation of D is of the form D̃(p) = iγµpµ + O(ap2). This

ensures the correct continuum behaviour of the quark-gluon interaction.
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(c) The Fourier transformation D̃(p) is invertible for p 6= 0. This property makes sure

that the lattice Dirac operator gives the correct fermion spectrum. Fermion masses

are associated with the poles of D̃(p) and in the continuum, poles only occur at

vanishing four-momentum.

(d) The lattice Dirac operator satisfies γ5D + Dγ5 = 0. This relation expresses

invariance under chiral transformation in the massless case.

The most simple discretization of the massless lattice Dirac operator can be written as

Ddisc =
1
2
γµ
(
∇µ +∇∗µ

)
.

Often this definition is referred as a “näıve” discretization. This term can understood by

the Fourier transform of Ddisc which is given by

D̃disc(x) = iγµ
1
a

sin(apµ) = iγµpµ +O(a2).

While the Taylor expansion shows that the condition (b) above is satisfied, the occurrence

of sin(apµ) implies that D̃disc vanishes not only at pµ = 0, but also at pµ = π/a for

µ = 0, . . . , 3, thus violating condition (c). The massless propagator D̃disc(p), therefore,

has 24 = 16 poles giving a 16-fold degeneracy of the fermion spectrum. This problem

is called fermion doubling and it is closely linked to the issue of chiral symmetry on

the lattice. In [NN81] it was shown that the conditions (a)–(d) can not be fulfilled

simultaneously. This fact is known as the Nielsen-Ninomiya No-Go theorem. Since

locality and condition (b) are too important to give up this implies that either (c) or (d)

must be violated.

There are a few methods to address the discrepancy between the correct fermion spectrum

and the preservation of chiral symmetry and a short introduction of the most popular

methods will be given in the next paragraphs.
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2.3 Wilson fermions

As the indicated by the name, Kenneth Wilson[Wil74] introduced a first solution to

lift the degeneracy completely. Unfortunately, the price to pay for this accomplishment

was to break chiral symmetry explicitly. However, for most applications in lattice QCD,

explicit breaking of chiral symmetry is not a serious obstacle.

As seen above, it is permitted to add a term to Ddisc that vanishes in the continuum

limit a → 0. This degree of freedom makes it possible to find a term that pushes the

masses of the unwanted doubler states to the cutoff scale at any non-zero value of the

lattice spacing. The Wilson-Dirac operator DW can be written as

DW =
1
2
γµ
(
∇µ +∇∗µ

)
+ ar∇µ∇∗µ

where r is a free parameter called Wilson parameter which is usually set to one. For the

spectrum of the Wilson-Dirac operator it is necessary to calculate the Fourier transform

of DW which is given by

D̃W(p) = iγµ
1
a

sin(apµ) +
2r
a

sin2
(apµ

2

)
.

The poles at pµ = π/a are shifted by a term proportional to r/a which is of order of

the cutoff for r = O(1). It can be shown in numerical simulations that the degeneracy

is indeed lifted completely. However, Wilson fermions have a number of unwanted

features: as a result of the counterterm proportional to ar, the Wilson fermion action

differs from the classical action in the continuum by terms of order a. By contrast, the

leading discretization effects of the näıve action are only O(a2), therefore, the Wilson

fermion formulation will have a reduced rate of convergence towards the continuum limit.

Furthermore, the Wilson term results in an explicit breaking of chiral symmetry, since

the massless theory is no longer invariant under global axial rotations

ψ(x)→ eiαγ5ψ(x), ψ(x)→ ψ(x) eiαγ5 .

It is straightforward to see that this is not a symmetry of the Wilson action and that

DW does not anti-commute with γ5.
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For the rate of convergence to the continuum limit, a special program has been employed,

the “O(a) improvement” by Symanzik[Sym83] which is a systematic approach to remove

lattice artifacts order by order in the lattice spacing. In a nutshell the improvement

amounts to extending the renormalization procedure of a field theory to the level of

irrelevant operators, i.e. operators that formally vanish as a→ 0. In this sense suitable

counterterms are added which for any non-zero value of a produce a cancellation of the

cutoff effects at a given order. How this is realized explicitly for the Wilson fermion

action can be seen in [SW85]. However, the rate of convergence will not be discussed in

this work and an O(a)-improved Wilson-Dirac operator will not be used.

The massive Wilson-Dirac operator Q for a quark with a bare mass of m0 is then given

by Q = DW +m0. The operator can be rewritten so that it is better suited for numerical

analysis if the so-called hopping parameter κ is introduced. Then the Wilson fermion

action can rewritten in terms of this parameter rather than m0.

The action can be written as

SW
F ≡

∑
x∈ΛE

ψ(x)Qψ(x)

=
∑
x∈ΛE

{
ψ(x)ψ(x)− κ

3∑
µ=0

(
ψ(x) (1− γµ)Uµ(x)ψ(x+ aµ̂) (2.1)

+ ψ(x− aµ̂) (1 + γµ)Uµ(x− aµ̂)−1ψ(x)
)}
.

As mentioned already above, the Wilson parameter r is set to 1. The hopping parameter

is related to the bare mass m0 via κ−1 = 2am0 + 8.

From Eq. (2.1) the Wilson-Dirac operator Q ≡ DW +m0 can be read off and with the

definition U−µ(x) ≡ U−1
µ (x − aµ̂) and γ−µ ≡ −γµ it is possible to write it in a most

compact way

Qψ(x) = ψ(x)− κ
±3∑

µ=±0

Uµ(x)(1− γµ)ψ(x+ aµ̂),
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Matrix-form of the Wilson-Dirac operator Often the application of the Wilson-

Dirac operator can be interpreted as a sparse matrix-vector multiplication such as

ψx = Qxyψy. In that case, the spinor fields at each lattice site are just appended to one

large column vector, i.e. ψx ≡ ψ(x). The Wilson-Dirac operator is expressed by the

hopping matrix M which is defined by

Qxy = δxy − κMxy

where the matrix elements Mxy of the hopping matrix are given by

Mxy =
±3∑

µ=±0

Uµ(x) (1 + γµ) δx+µ̂,y.

It must be pointed out that Uµ(x) and γµ are itself matrices which have color indices and

Dirac indices, respectively. These indices have been and will be suppressed for the rest of

this work. The matrices Q and M are square matrices with dimension 4 · 3 · T × L3 in

each direction, the spinor field ψx is a vector with length 4 · 3 · T × L3.

2.4 Staggered fermions

Another method to solve the fermion doubling problem at least partially are the so-called

staggered fermions [KS75, BSK76].

The spurious fermions states in the fermion propagator for the näıve discretization are

distributed over different non-zero corners of the first Brillouin zone of the lattice, the

unit box of the dual lattice Λ∗E . In the free theory, fermion doubling is just an unwanted

feature because one wants to describe the physical fermion species only. For interacting

theories, however, the interesting question is, if the fermion doubling can be avoided in

the continuum where those doublers, in principle, could be pair-produced.

In contrast to Wilson’s approach, one way to deal with the problem is to interpret extra

fermions as new physical “flavours”. The basic idea is to assign only a single fermion

field component to every lattice site which reduced the doublers from 16 to 4. This
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is somewhat remarkable in the sense that this approach is a non-local description for

fermions as the four fermion components for one single spinor sit on different lattice sites.

However, it is not a direct violation of condition (a). One can imagine that the lattice is

divided into blocks on four points and each block in the continuum limit goes to a single

point. With this technique it is possible to reduce the number of degrees of freedom by a

factor of four.

A simple distribution of the spinor components is not sufficient to define the fermion

action, since the Dirac matrices mix different spinor components. The staggered fermion

action is obtained after performing a spin diagonalization in spinor space which decouples

the individual components. The actual calculation for this can be found in [MM94]. The

staggered fermion action reads

Sstagg
F =

∑
x∈ΛE

3∑
α=0

{
m0χa(x)χa(x)

+K
3∑

µ=0

ηµ(x) [χα(x)χα(x+ aµ̂)− χα(x+ aµ̂)χα(x)]
}
,

In that definition χα and χα denote one-component Grassmann variables. The spin

diagonalization has replaced the Dirac matrices γµ by a real phase factor ηµ(x) which is

given by

η0(x) = 1, ηi(x) = (−1)n0+···+ni−1 , ni = xi/a.

The action is decomposed into four identical pieces and in order to occupy all 16 corners

of a four-dimensional hypercube with one-component Grassmann variables one needs

four Dirac spinors. By that, one still obtains a four-fold degeneracy of staggered fermions

which are commonly referred to as “tastes”, in order to distinguish them from physical

flavours. The formulation above can be re-expressed in terms of the spin-taste basis

from which it can be seen that the taste symmetry is broken, except one axial generator.

Therefore, the staggered fermion approach preserves a U(1)⊗ U(1) subgroup of chiral

symmetry.
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2.5 Chiral fermions

One way to evade the Nielsen-Ninomiya theorem is to relax condition (d) as suggested in

[GW82] in favour of

γ5D +Dγ5 = aDγ5D.

The so-called Ginsparg-Wilson relation implies an exact symmetry of the associated

action[Lüs98] with infinitesimal variations proportional to

δψ = γ5 (1− aD)ψ, δψ = ψγ5.

Moreover, this symmetry reproduces the correct chiral anomaly in the flavour singlet

case and therefore, all properties of the correct chiral behaviour in the lattice theory.

Domain wall fermions are one particular construction that satisfies the Gisparg-Wilson

relation and preserve chiral symmetry in the continuum limit[Kap92, FS95]. The basic

idea is, to introduce an extra fifth dimension and couple the fermions to a mass defect

in that extra dimension. For clarifiction, let x, y denote the coordinates in the four-

dimensional space-time and s, t the coordinates in the fifth dimension, which has a finite

length of N5. The gauge field can be chosen to be trivial in this fifth dimension and the

Dirac operator has the general structure

Ddwf(x, s; y, t) = D‖(x, y)δst + δ(x− y)D⊥st

where D‖(x, y) denotes the Wilson-Dirac operator but with a negative mass term. The

operator D⊥st couples the fermions in the fifth dimension and contains the physical bare

quark mass. It can be shown that for vanishing bare mass m0 = 0 and in the limit

N5 →∞ there are no fermion doublers and, more importantly, chiral modes of opposite

chirality are trapped in the four-dimensional domain walls s = 1 and s = N5.

For numerical simulations of domain wall fermions N5 has a finite value and the decoupling

of the chiral modes is not exact. However, the suppression of chiral symmetry breaking

effects can be expected to be exponential which has been confirmed in several simulations.
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That way the domain wall formulation of QCD offers a method to realize chiral symmetry

in the continuum at the expense of simulation a five-dimensional theory.

Another non-trivial solution to the Ginsparg-Wilson relation was found with the Neuberger

operator[Neu98a, Neu98b] which is defined as

DN =
1
a

(
1− A√

A†A

)
, A = 1 + s− aDW, a =

a

1 + s

where DW is the massless Wilson-Dirac operator and |s| < 1 is a tunable parameter.

With Q = −γ5A the Neuberger operator can be rewritten in the compact form

DN =
1
a

(1 + γ5 sign(Q)) .

Due to the occurrence of the square root in the definition and the sign function two

problems arise. First, the application of DN in a computer program is very expensive in

term of computational costs. This is because the sign function of the matrix Q has to be

implemented for instance using polynomial approximation[GHLW03].

The second issue is the question, if DN satisfies condition (a), that means, if it is a

local operator. Before it is possible to decide this, it is necessary to be aware of a

good definition for locality. As mentioned above, locality is the absence of long-ranged

interactions between fields in a quantum field theory. Then strict locality for which only

fields in a local neighborhood of a given lattice site are coupled, can be defined. There

exists a cutoff length ξ for which two fields φ(x) and φ(y) do not interact if ξ < |x− y|.

Strict locality is often a too rigorous requirement for a quantum field theory. A more

relaxed condition is the following: if D(x, y) denotes a generic lattice Dirac operator which

couples fields at sites x and y, a sufficient condition for locality of D is the exponential

suppression of non-local interactions, i.e.

‖D(x, y)‖ ≤ e−γ|x−y|/a

where |x− y| is the distance between the sites and ‖ · ‖ is a suitable defined matrix norm.

It is shown in [HJL99] that the Neuberger operator DN is local in the above sense, if the

physical lattice spacing is not larger than a certain value.
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2.6 Numerical simulations

The goal of numerical simulations in lattice quantum field theory is to estimate the

expectation values of some functions A[ϕ] of the field variables [ϕ] ≡ {ϕα(x)}. Here

ϕα(x) denotes a real field component with index α at lattice site x.

We can express this expectation value with the functional integrals as

〈A〉 = Z−1

∫
[dϕ]A[ϕ] e−S[ϕ], Z =

∫
[dϕ] e−S[ϕ]

where S[ϕ] is the lattice action. Usually, the fermionic part in S[ϕ] is integrated out

with the usual techniques and the fermionic action is written as the so-called quark

determinant via

〈A〉 = Z−1

∫
[dU ]Ã[U ] det(Dlat) e−SG[U ]

where the integration over the gauge fields U ≡ {Uµ(x)} remains. Ã denotes the

representation of A in the effective theory where the fermionic quark fields have been

integrated out. Dlat denotes a generic, massive lattice Dirac operator, for instance, the

Wilson-Dirac operator Dlat = DW +m0.

The number of integration variables in

[dϕ] ≡
∏
x,α

dϕxα

can easily be of the order of 106 and more and it is obvious that the only possibility to

evaluate the functional integral is to use Monte Carlo integration.

Numerical simulations are a two step procedure. In the first step one has to generate a

set of gauge configuration. Thereafter, the second step is to evaluate expectation values

with on this set.

A configuration in the set of gauge configurations represents the collection of all link

variables on the lattice

{Uµ(x) | x ∈ ΛE , µ = 0, . . . , 3}.
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A collection of an infinite number of configurations is called an ensemble.

The weight factor

W = det(Dlat) exp(−SG[U ])

makes sure that the integrand is strongly peaked around those configurations for which

W is large. Therefore, it is possible to replace the ensemble with a finite sample of gauge

configurations which is dominated by those configurations for which W is large.

A sample is generally produced by an updating process. Each step in the updating

process generates a new configuration {Uµ(x)}i+1 from an old configuration {Uµ(x)}i.

The probability for this transition is a function of the statistical weights of the two

configurations, Wi and Wi+1 respectively.

Then in the end to make the algorithm exact again, an accept-reject step is performed

which assures that each configuration can be reached with the updating process. Oth-

erwise, the updating algorithm would automatically converge in the most probable

configuration and it would not be possible to cover the whole configuration space.

The quark determinant det(Dlat) can be written as

〈A〉 = Z−1

∫
[dU ]A[U ] e−Seff [U ]

where the effective gauge action is introduced

Seff [U ] ≡ SG[U ]− log det(Dlat[U ]) = SG[U ]− Tr log(Dlat[U ]).

The quark determinant can also be written as a functional integral over an auxilliary

complex scalar field φ. We have, namely,

det(D†D) ∝
∫

[dφ†dφ] exp
(
φ†(D†D)−1φ

)
.

This formulation can be used for example in QCD with two degenerate flavours for the

calculation of the quark determinant. To evaluate the functional integral stochastically,
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one generates the pseudofermion field φ and applies the inverse of the lattice Dirac

operator.

In dynamical numerical simulations the evaluation of the inverse quark determinant can

easily account for 80% of the computational costs. Therefore, it is necessary to have an

efficient implementation for the application of the lattice Dirac operator suitable to work

in iterative inversion algorithms.

We can see that the evaluation of the inverse fermionic matrix (D†D)−1 is a crucial point

for numeric simulations. The main difficulty for fermionic theories is, that the quark

determinant in the effective action is non-local. This makes the numerical evaluation of

the transition probabilities in the Monte Carlo updating process rather slow.

In the beginning of numerical simulations in the 1980s, the available computer power was

not sufficient enough to include the quark determinant. Instead, the so-called quenched

approximation was used. For quenched simulations the quark determinant was set to

a constant, i.e. det(Dlat) = 1 which implies that the effects of virtual quark loops are

entirely suppressed. The quenched approximation is based on the assumption that most

of the non-perturbative contributions are carried by the gauge field.

For several quantities, such as the masses of the lightest hadrons, the error for using

a quenched simulation amounts to just 10% – 15% [B+98, A+00]. However, it is clear

that dynamical quark effects must be taken into account in order to arrive at reliable,

non-perturbative predictions with a total accuracy at the percent level.

2.7 Fermion matrix inversion

The inversion of the fermion matrix occurs at two crucial points in a lattice simulation.

Firstly, for dynamical fermions we have seen that the inverse of the fermion matrix

appears for computation of the quark determinant. Secondly, for the computation of

masses of the simulated fermions it is necessary to know the fermion propagator which is

basically just the inverse lattice Dirac operator.
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There are several algorithms[GSZ90, Fro03, Gre97] for the inversion of a generic operator

A, that is, to find the solution vector x for the equation

Ax = b. (2.2)

I will give a quick overview about different techniques to motivate why the crucial part

to write efficient simulation code is to optimize the implementation of the lattice Dirac

operator for optimal performance.

For our special problem, the operator A would be the hermitian lattice Dirac operator

A = D which in the case of the Wilson-Dirac operator can be written in terms of the

hopping matrix as D = I − κM . The source b is the pseudofermion field φ and x

corresponds to the solution vector for the initial equation x = A−1b.

The most simple iterative method to solve this equation is the Jacobi iteration which is

defined

x0 ≡ b, xi+1 = b+ κMxi, i ≥ 0.

The solution is given by x = limi→∞ xi, if the limit exists. The convergence is guaranteed,

if the absolute value of the largest eigenvalue of κM is less than 1.

Another iterative scheme is the minimal residue iteration. In general the residue after i

iteration steps is defined by

ri ≡ b−Axi. (2.3)

The iteration starts from an initial guess x0 for the solution, and then for i = 0, 1, 2, . . .

one calculates

xi+1 = xi +
(Ari, ri)
|Ari|2

ri

which implies

ri+1 = ri −
(Ari, ri)
|Ari|2

Ari.
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Here and for the rest of this work (·, ·) denotes the usual inner product of two vectors

and | · | the norm. The iteration is stopped if ri = 0 when x is the exact solution, or if

the absolute value of the residue |ri| is at least smaller than some given small value δ.

We can see that for each step in the iteration a multiplication of A is necessary which

takes most of the computational expense.

The most popular iterative method for the inversion of the fermion matrix is the conjugate

gradient iteration[PTVF92]. One may show that the solution to Eq. (2.2) minimizes the

function

q(z) = (b, z)− (z,Az)

and that the minimum is non-degenerate[She94].

The conjugate gradient algorithm starts from some arbitrary initial guess x0 for the

solution x and then constructs a sequence of vectors xi, i = 0, 1, . . ., such as qi = q(xi)

is monotonically decreasing. Given xi and a search direction pi the next vector xi+1 is

determined through

xi+1 = xi + αipi

where αi is chosen such that qi+1 ≡ q(xi+1) becomes as small as possible. The search

directions can be found from the gradient g(z) of the quadratic form q(z)

g(z) = b−Az

which is equivalent to the residue ri in Eq. (2.3). The gradient gi = g(xi) points to the

steepest descent at xi. One could choose pi = gi for the search direction, however, a

better choice is given by

p0 = g0, pi+1 = gi+1 + βipi, i ≥ 0

where βi is determined through

(pi, Api+1) = 0.
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Explicit expressions for the coefficients αi and βi can be found in [KS96] but are of no

further interest here.

The algorithm stops when the current vector for the search direction pi vanishes. From

the definition above, this is possible, if and only if the gradient gi vanishes, from which it

is clear that xi = x, i.e. the exact solution of the linear system has been found. However,

in practice it is required that the residue r2
i is smaller than some small value ε2. With

this stopping criterion it can be assured that the solution is found up to a precision of ε

despite any rounding errors introduced in the algorithm.

2.8 Neuberger operator

Not only for the inversion of the lattice Dirac operator an efficient implementation

is necessary, but also for the investigation of chiral fermions, for example using the

Neuberger operator.

The Neuberger operator can be written as a function of the massless Wilson-Dirac

operator. The definition involves the sign-function which is essentially the step function

of the argument and has to approximated since its definition as an infinite polynomial

can not be realised as a computer program.

Chebychev approximation of sign(Q) Each time the Neuberger operator is applied

to a fermion field η on the lattice, one needs to calculate the action

sign(Q)η.

For numerical stability[PTVF92], Chebychev polynomials are chosen for the polynomial

approximation of the sign-function of the operator Q. The Chebychev polynomials Tn

are defined[BS91] by

Tn(x) = cos(n arccosx)
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and the first few are explicitly given by

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x.

Chebychev polynomials are orthogonal in the interval [−1, 1]

∫ 1

−1
dx
Ti(x)Tj(x)√

1− x2
=


0 i 6= j

π/2 i = j 6= 0

π i = j = 0

and Tn has exactly one maximum with Tn(xmax) = 1 and one minimum with Tn(xmin) =

−1. Because of that, the Chebychev polynomials are very useful in polynomial approxi-

mations of functions.

The task is to find an approximation of sign(Q)η to a specified precision. We are looking

for a polynomial P (y) of degree n that minimizes the deviation

δ = max
ε≤y≤1

|h(y)|, h(y) ≡ 1−√yP (y)

for a given ε > 0. In the interval
√
ε ≤ |x| ≤ 1 the function xP (x) approximates sign(x)

uniformly with a maximal deviation of δ. A polynomial approximation that minimize

the maximal relative error is referred as minmax polynomial. Existence and uniqueness

for a minmax polynomial can be shown, if the function that is to be approximated, does

not vanish.

Using Chebychev polynomials a general Ansatz is made such as

Pn,ε(y) =
n∑
k=0

ckTk(z), z =
2y − 1− ε

1− ε

and the coefficients ck have to be adjusted so that the deviation δ is minimized. De-

tails about the actual implementation to find the minmax polynomial can be found in
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[GHLW03]. The sign-function then will be approximated by

sign(Q) ≈ XPn,ε(X2), X ≡ Q/||Q||.

If ε is chosen so that Q2 ≥ ε||Q||2, the error in this formula is an operator with norm

less than or equal to δ. In other words, the approximation error is always bounded by

δ|η|, uniformly in the field η to which the operator is applied.

The most elegant method to evaluate the polynomial approximation

f(x) ≈
N∑
k=0

ckFk(x)

is to use Clenshaw’s recurrence formula, if the base functions Fk(x) obey the recurrence

relation

Fk+1(x) = α(k, x)Fk(x) + β(k, x)Fk−1(x).

For the special case of the Chebychev polynomials the functions α and β are given by

α(x, k) = 2x β(x, k) = −1.

Define the quantities yk for each k = N,N − 1, . . . by the recurrence

yk = α(k, x)yk+1 + β(k, x)yk+2 + ck,

with the initial values yN+2 = yN+1 = 0. If the definition of yk is solved for ck and the

sum in the approximation is written explicitly, the only surviving terms are given by

f(x) = β(1, x)F0(x)y2 + F1(x)y1 + F0(x)c0.

Therefore, in order to evaluate the approximation it is only necessary to know the first

two polynomials. Then it is sufficient to make one pass down the yk’s with the definition

until y2 and y1 are calculated, and then apply the recurrence formula and get the desired

answer.

In case of Chebychev polynomials this translates to

dj = 2xdj+1 − dj+2 + cj , j = n− 1, n− 2, . . .
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with the initial values dn+1 = dn = 0. Then the approximated function can be evaluated

by

f(x) ≡ d0 = xd1 − d2 +
1
2
c0.

Low-mode projection In most practical cases the operator Q2 can have some ex-

ceptionally low eigenvalues which which can negatively impact the rate of convergence

properties of the inversion algorithms. In that case, the straightforward approach men-

tioned above is not possible and it is necessary and far more efficient to separate the few

lowest modes and treat them exactly. This should be done in such a way that the error

of the total approximation still remains under control.

The spectrum of Q in the vicinity of the origin can be reliable determined by the Ritz

functional of Q2. This technique has the advantage that it also yields to an approximation

of the associated eigenvectors.

In general terms, a linear operator A acts on a complex vector space V of dimension N .

It can be assumed that V is equipped with a positive definite scalar product (·, ·) and

that

(v,Aw) = (Av,w) ∀ v, w ∈ V,

i.e. A is a Hermitian operator on V . Then there exists an orthonormal basis vi,

i = 0, 1, . . . , N − 1, of eigenvectors such that

Avi = λivi.

Without loss of generality the eigenvalues can be assumed to be ordered such as

λ0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λN−1.

For the low-mode projection only the l lowest eigenvalues of A are important. It is safe

to expect that these eigenvalues λk, k = 0, 1, . . . , l are separated from zero and from the

rest of the spectrum of A by a distance greater than %.
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0 λ0 λ1 . . . λl λl+1 . . . λN−1

% %

Figure 2.3: An example for the spectrum of the linear operator A. The operator

A is supposed to be positive definite and the low-lying eigenvalues are separated

from zero and from the rest of the spectrum of A by a distance of %.

Now the Ritz functional is defined by

µ(z) =
(z,Az)
(z, z)

which has to be minimized for all non-zero vectors z ∈ V . The minimum is attained if z

lies in the subspace corresponding to the lowest eigenvalue λ0 and the minimum of the

Ritz functional is precisely equal to λ0.

To find the minimum of the Ritz functional a conjugate gradient method is used. Again,

a sequence of vectors xi, i ≥ 0 is constructed

xi+1 = xi + αipi,

where pi are the search directions for the conjugate gradient as explained above. The

parameter αi is tuned such that µi+1 ≡ µ(xi+1) is minimized.

The gradient of the Ritz functional µ(z) is given by

g(z) =
[A− µ(z)] z

(z, z)
.

As before we set gi ≡ g(xi). The gradient satisfies

(xi, gi) = 0

because the Ritz functional is invariant under scale transformation, i.e. µ(az) ≡ µ(z).

This implies that the search directions pi should be chosen such that

(xi, pi) = 0.
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The recurrence for the conjugate gradient is defined as above

p0 = g0

pi+1 = gi+1 + βi

[
pi − xi+1 (xi+1, pi)

(xi+1, xi+1)

]
, i ≤ 0

where βi is given by

βi =
(gi+1, gi+1)

(gi, gi)
.

To understand the convergence of the algorithm the regularity of the algorithm is defined

such that the algorithm is regular at i if xi is non-vanishing and if one of the following

conditions are met

(a) gi = pi = 0 and the algorithm terminates.

(b) gi and pi do not vanish and the absolute minimum µi+1 is attained for some finite

value of αi.

It can be proven, that if the algorithm is regular at i, and if it does not terminate at

this point, it is also regular at i+ 1. With the initial condition p0 = g0 the algorithm is

regular at i = 0.

In the sense of regularity the algorithm proceeds smoothly until it terminates which is the

case if gi = 0. From the definition of the gradient one can see that xi is an eigenvector of

A which means the algorithm does stop if and only if an exact eigenvalue is found.

However, in practice the algorithm is stopped, if some criterion is satisfied. The usual

choice is to stop the algorithm when

|ĝi| < ω,

where ω is some fixed value. Here, ĝi is defined as the gradient of the normalized value

x̂i ≡ xi/|xi|.
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The stopping value ω also plays the role for the error estimation. If z is a unit vector in

V and if the stopping criterion |g(z)| < ω is met, then one can prove that there exists

an eigenvalue λ to A such that |ρ− µ(z)| < ω. This allows to control the error on the

computed eigenvalues in a most direct and reliable way. In particular, the accumulation

of rounding errors during the recursion is completely irrelevant: once the algorithm stops,

the error is known since the stopping criterion is met in the last step. It is also possible

to specify a relative error by choosing ω to be proportional to the current value of the

Ritz functional.

Once the Ritz functional is minimized to a certain precision the vector x̂i can be expected

to have converged towards the eigenvector v0. Wether this is really true will not be

important because only the eigenvalues are of interest and these will be obtained with

controlled errors. The eigenvector to the next eigenvalue λ1 lies in the orthogonal subspace

to x̂i of V , where x̂i is the last vector constructed before the minimization of the Ritz

functional was stopped.

Let wi = x̂i then V1 is the subspace of V orthogonal to w1. The corresponding projector

P1 is given by

P1z = z − w1 (w1, z)

and A1 = P1AP1 is a linear operator in V1. The lowest eigenvalue of A1 may now be

determined by applying the algorithm above with the simple substitutions V → V1 and

A→ A1 in all formulae. In particular, the initial vector x̂0 must be contained in V1 and

the gradients must be computed with the matrix A1 instead of A.

When the algorithm stops one has found a vector w2 which is an approximation to the

eigenvectors v2 of A. This procedure can be iterated by minimizing the Ritz functional in

the orthogonal subspace to w1, w2, and so on. In this way a sequence w0, w1, w2, . . . , wn

of orthonormal vectors is obtained such that

Pk−1Awk = µ(wk)wk + rk, k = 1, . . . , l,
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where the residue |rk| < ω and it is convenient to define projectors to the orthogonal

subspace to eigenvalues with positive and negative eigenvalues λi such that

P+z = z −
∑
λk>0

wk (wk, z)

P−z = z −
∑
λk<0

wk (wk, z)

Similar it is possible to define the projectors (P±)exact which projects the orthogonal to

the subspace spanned by the exact eigenvectors vi if we substitute wi → vi.

Now the question arises how accurately the computed projectors P± approximate the

exact projectors (P±)exact. The answer depends on the size of the residues

%k = || (Q− λk)wk||

and also on the distance between the eigenvalues of Q. Rather than to estimate the

deviation of the individual eigenvectors, what is interesting is the deviation of the

projectors and therefore the distance dk of λk from the exact spectrum of Q in the

subspace orthogonal to the range of (P+)exact if λk > 0 or (P−)exact if λk < 0. The quality

of the approximation is then controlled by the parameter

κ2
± =

∑
±λk>0

%2
k/d

2
k.

It can be proven, that the inequality

||P± − (P±)exact|| ≤
κ±(1 + 2κ±)

1− 2κ±(1 + 2κ±)

holds[GHLW03]. It is noteworthy that for practical uses κ± � 1.

Once the low-lying eigenvalues and eigenvectors have been computed it is possible to

substitute the sign-function by

sign(Q) ' P+ − P− + (1− P+ − P−)XPn,ε(X2), X ≡ Q/||Q||,
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where ε is set to a value equal to or slightly less than the smallest eigenvalue of Q2/||Q||2.

The associated approximation D̃N of the Neuberger operator then satisfies

||D̃N −DN|| ≤
1
a

(1 + s− 1
2
am) {2 (κ+ + κ−) + δ}

up to term proportional to κ±δ and κ2
±.

The program to compute the projectors and replace the Neuberger operator DN by its

approximation D̃N is straightforward. The number of low modes to be included in the

projectors should be determined dynamically in such a way that the spectral distance

from the other mode is not very small by accident. The parameters κ± can be estimated

without difficulties and the minimization of the Ritz functional is stopped when the

desired level of precision is reached.



Chapter 3

Compute Unified Device

Architecture

Since the introduction of hardware transform and lighting (T&L) with the NVIDIA

GeForce 256 (NVIDIA Corporation, 1999), a lot has changed in the world of graphics

computing.

In the following I will show a brief overview of the development of graphics processing

units (GPU) in the past ten years and how it came that it is now possible to solve

problems with the help of a GPUs which are not necessarily tied to computer graphics.

After that, I will give a short technical explanation about the shader units—the core

hardware elements for GPUs—of the NVIDIA G80 chip set and summarize the CUDA

programming model. In the end, I will talk about what is necessary for CUDA programs

to achieve optimal performance.

For the reader who is not that familiar in the field of computer graphics, I try to give a

short description for the many technical terms in this chapter. A glossary can be found

in the appendix.

30
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3.1 Historical development

The two most important parts in the art of computer graphics are transform and lighting.

Transform is the task of converting three-dimensional coordinates of a virtual scene to

the two-dimensional view of the screen. Lighting is the task of taking light objects in a

virtual scene and calculating the resulting color of surrounding objects as the light falls

upon them.

By the time being, both tasks where accomplished on the CPU in software, either by

the program itself or by the display driver. But with scenes growing in complexity

memory-intensive rendering could not be performed in real-time anymore since CPUs are

generally optimized for low latency computations. Both tasks, however, involve massive

applications of matrix-vector operations. For transformations to the rendering plane, it

is necessary to apply the projection matrix to each vertex in the scene and for lighting

calculation the angle between the direction of the light and the normals of the faces

plays an important role. Matrix-vector operations can be implemented in hardware easily

and since every calculation was independent of others both tasks could be massively

parallelized.

NVIDIA was among the first manufactures of graphics processing units to introduce

hardware T&L with the GeForce 256 chip set which would take calculations for transform

and lighting from the CPU and serve as a coprocessor to the host system for those

computations. First benchmarks showed an enhancement in performance up to 50%.

There are two standard graphics programming interfaces that are used in most commercial

applications: DirectX (Microsoft 1995) and OpenGL (Silicon Graphics Inc., 1992). While

OpenGL focuses on a stable API which does not change very often, Microsoft releases

new versions of DirectX bound tightly to GPU release schedules. Over the time DirectX

more and more defined a certain feature set which hardware vendors had to implement

in their products. As a result, it has become very convenient to classify GPUs by the

DirectX version they support.
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Hardware T&L became an essential feature with the release of DirectX 7.0. Both leading

vendors at that time —NVIDIA and ATI— released products with full DirectX 7.0

compliance with the NVIDIA GeForce 2 (NVIDIA Corporation, 2000) and the ATI

Radeon 7000 series (ATI Technologies, 2000). By the end of 2001, hardware T&L was

integrated in every chip set.

Despite the growing compute power of graphics processors the hardware was not yet

suited for general purpose computations. The GPU was not programmable beyond

advanced texture blending capabilities and calculation precision was limited to eight bits

per channel.

The next step towards the current hardware technology was taken with the definition of

programmable shaders in DirectX 8.0 and the implementation with the NVIDIA GeForce 3

(NVIDIA Corporation, 2001). Shader architecture replaced the former fixed-function

rendering pipeline with a highly flexible programming pipeline. A shader program is a

small set of software instructions intentionally designed to achieve coloring on a per-pixel

basis. The application of pixel shaders range from applying a lighting value to the

scene to complex operations like bump mapping, shadows, specular highlights and other

dynamical effects.

For each specific class of application dedicated types of shaders existed in the beginning.

Besides pixel shaders, we have already learned about, another type is a vertex shader

responsible for operations on each vertex in the three-dimensional scene. The purpose

of this shader is to transform three-dimensional world coordinates to two-dimensional

on-screen coordinates. Vertex shaders can manipulate properties such as position, depth

component or color of a given vertex, but it is not able to create new vertices. Later

this was possible with the introduction of geometry shaders which could add and remove

vertices from the rendered mesh to add volumetric detail to an existing mesh that would

be to expensive to process on the CPU.

Shader programs act independently on a large dataset with a given transformation which

is a crucial prerequisite for efficient parallel processing. To exploit parallelism further,

shader hardware was constructed in multiple pipelines.
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The shading kernel was mostly written in assembler until higher level languages like Cg,

HLSL or OpenGL’s GLSL were developed. General purpose problems had still to be

“translated” to a graphics language and then fed to the shaders.

With DirectX 9.0 and the NVIDIA G80 chip set (NVIDIA Coorporation, 2007) the door

was opened for the current generation of graphics processing units. It introduced the

unified shading model which overcame the distinction between different shader types.

Furthermore, shader programs were extended to enable data-dependent branching and

full floating point precision throughout the graphics pipeline.

The graphics processor changed from a hardware to display vertices and lighting on the

screen to a flexible, self-balanced shading architecture with a decoupled and threaded

data processing.

3.2 Shader architecture

The core of the G80 chip set is a homogeneous array of floating point processors. Each

processor is a scalar arithmetic logical unit (ALU) with FP32 precision and rounding

properties that conform to the IEEE754 standard[P7585].

This array is grouped in clusters of 16 scalar processors together with an own scheduler,

a register file, special function units, a unit for data address and setup and the texture

unit. Those scalar processors are further organised into two pairs of 8, called a streaming

multiprocessor. The scheduler is able to run the same instruction on each multiprocessor

across a number of cycles, depending on the work.

The whole cluster can be viewed as 8-way MIMD (multiple-instruction multiple-data)

setup of 16-way SIMD (single-instruction multiple-data) scalar processor clusters. In

the end, each thread gets mapped to one scalar processor core and each scalar thread

executes independently with its own instruction address and register state. NVIDIA

gives this architecture its name, SIMT (single-instruction multiple-thread). The key

difference to SIMD is that SIMD vector organizations expose the SIMD width to the
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Figure 3.1: Simplified illustration of the shader core architecture of the NVIDIA

G80 chip set. Up to 8 pairs of streaming multiprocessors are arranged on the

chip, each consisting of (1) a instruction scheduler and the register file, (2) 16

scalar processors and (3) the texture fetching unit and the texture cache. Each

multiprocessor has access to the (4) global memory.

software, whereas SIMT instructions specify the execution and branching behavior of a

single thread. That way the programmer is able to write thread-level parallel code for

independent, scalar threads, as well as data-parallel code for coordinated threads. For

correctness it is safe to ignore the vector width, but it is necessary to keep it in mind for

optimal performance.

Scalability plays an important role in the design of the hardware. The program must be

insensitive to the number of multiprocessors, and a programmer should be able to write

one program for any number of multiprocessors which runs on differently sized GPUs

without recompiling.

Threads within a block get scheduled in groups of parallel threads called warps. The

warp size, similar to the vector width in a SIMD architecture, for the G80 chipset is 32.

Individual threads within a warp get executed physically at the same time and start

together at the same program address but are free to branch and execute independently.

Every instruction issue time, the scheduler selects a warp that is ready to execute and
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issues the next instruction to the active threads of a warp. Sometimes the notion of a

half-warp is used, a half-warp is simply the first or the last 16 threads in a warp.

Full efficiency is realized when all threads in a warp can execute a common instruction

path. If threads in a warp diverge because of a data-dependent conditional branch, the

warp serially executes each path of the branch disabling threads that are not on that path

until all paths are complete and the threads converge back to the same execution path.

Branch divergence can only occur within a warp as different warps execute independently.

The multiprocessor can independently create, manage and execute concurrent threads with

zero scheduling overhead. Context switching is basically free at every cycle. Hardware

allocates resources—thread slot, registers and shared memory—and a block does not run

until enough resources are available. Threads are dynamically allocated to do the work

which is currently needed, the goal is, to keep the scalar processors as busy as possible.

The strategy behind this is to hide memory latencies with computation through context

switching which means that parallelism is necessary for performance.

Each multiprocessor has access to its own pool of each of the four types of on-chip

memory besides several layers of L1 and L2 caches but only those four are explicitly

exposed and controllable by the user. In short, those four memory pools consist of

• a register file of 32-bit wide floating point registers,

• a shared memory which provides low latency temporary storage and is important

for inter-thread communication,

• a read-only constant cache that speeds up reads from the constant memory space

which is a read-only region in the device memory

• and a read-only texture cache that speeds up reads from the texture memory space

which is a read-only region in the device memory.

Shared memory, constant cache and texture cache are shared among the scalar cores

within the same multiprocessor. Additionally, each multiprocessor has access to an
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off-chip local memory to reduce the usage of register and read-write access to global

device memory. Access to both memory spaces are not cached and latencies are around

two orders of magnitude higher than latencies for shared memory.

Each multiprocessor performs a texture data fetch via a texture unit which provides certain

sampling abilities like filtering. Threads which fetch data can execute asynchronously to

threads on the cluster which perform work, allowing the hardware to hide fetch and filter

latency as much as possible.

The rest of the chips pipeline is to leverage the shader cores and to present the computed

results on the screen. Data from the host CPU gets send to the thread setup units

which keep the shader cores as busy as possible with meaningful, non-wasteful work,

sorting, organising, generating and presenting data to be worked on. They also implement

some pre-shading optimisations to save computation power on work that will never be

displayed. A global thread controller takes over, determining the work to be done in any

given cycle before dispatching to the shader cluster and their own individual schedulers.

After the data is being processed by the shader cores, it will be passed to raster operation

units at the very back end of the pipeline. Raster units are responsible for reading and

writing depth and stencil information and doing alpha blending and testing. The final

data being processed will be handed over to the display logic and finally displayed on the

screen.

These parts of the pipeline are not used for general purpose computing on the GPU and

because of that, this will not be discussed further for the rest of this work.

3.3 The programming model

CUDA is designed to transparently scale the available parallelism in the number of

multiprocessors just as graphics applications transparently scale their parallelism to

the wide varying number of cores. A program must be insensitive to the number of

multiprocessor cores and should run on any sized GPU without recompiling. In the
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following, I will explain, how this goal of scalable parallelism is implemented and how

the programming model maps to the hardware described above.

Execution model The CUDA programming model is based on layers of parallelism

of different granularity. A problem to be solved is divided into a series of sequential

shader programs which in the CUDA terminology will be called kernels. Each kernel is

executed by a number of computing parallel blocks and each block decomposes into a

number of computing parallel threads. This hierarchy along with shared memory and

barrier synchronizations are simply exposed to the programmer and provide fine-grained

data parallelism and thread parallelism nested within coarse-grained data parallelism

and task parallelism. These abstractions guide the programmer to partition the problem

into sub-problems that can be solved independently in parallel and then into finer pieces

that can be solved cooperatively in parallel.

There are two possibilities to write CUDA programs: the CUDA driver API, a low-level

C API which provides functions to load kernels as modules of CUDA binary code, get

information about and launch them. The binary code is obtained by compiling kernels

written in C. The other method is using the CUDA runtime a minimal extension to the

C language. These extensions allow programmers to define kernels as special C functions

and provide new syntax to specify the thread geometry of the shader programs.

CUDA comes along with a tool chain to compile and translate shader programs and link

them together with the generic C host code.

The runtime API is built on top of the CUDA driver API. Initialization, context and

module management are all implicit and the resulting code is more compact. The use of

the CUDA driver API requires more code and is harder to program and debug, but it

offers a better level of control and is language independent since it handles binary code

only.

Both, the runtime API and the driver API provide functions to allocate and deallocate

device memory, transfer data between host memory and device memory, manage systems

with multiple devices and so forth.
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I decided to choose the CUDA runtime which gives me the possibility to concentrate

on the actual physical problem without being distracted by the larger amount of device

management which is unavoidable with the CUDA driver API. In the following I will

restrict my explanation to the CUDA runtime.

CUDA’s programming model assumes that CUDA threads execute on a physically

separate device that operates as a coprocessor to the host running the generic C program.

In most cases kernels execute on a GPU and the rest of the C program executes on the

CPU. Furthermore, both host and device maintain their own DRAM, referred to as host

memory and device memory, respectively. The host program manages device memory

through calls to functions, defined with the CUDA runtime.

Each hardware implementation comes with a specific set of features and hardware can

differ in its capabilities. Therefore, CUDA defines the compute capability of a device by

a major revision number and a minor revision number. Devices with the same major

revision number are of the same core architecture. The minor revision number corresponds

to incremental improvements to the core architecture. That way programmers can simply

define a minimal set of features a device has to support to run the written code. Compute

capabilities and relevant properties can be found in the appendix and in the programming

guide[NVI09].

Thread hierarchy Each CUDA thread that executes a kernel is given a unique thread

ID for the purpose of identification of threads inside a kernel function. Within a kernel

it is accessible through the built-in variable threadIdx. In order to provide a natural

way to invoke computations across elements in domains such as vectors, matrices or

fields, threadIdx is a three-component vector and threads can be identified using a

one-dimensional, two-dimensional or three-dimensional thread index. The index of a

thread and its thread ID can be given in a straightforward way: in a two-dimensional

block of size (Dx, Dy), the thread ID of a thread of index (x, y) is (x+ yDx). Likewise,

in a three-dimensional block with size (Dx, Dy, Dz), the thread ID of a thread with

index (x, y, z) is (x+ yDx + zDxDy).
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On current GPUs up to 512 threads form a one-dimensional, two-dimensional or three-

dimensional thread block. If there are more threads than that multiple blocks are grouped

together in an one-dimensional or two-dimensional grid. Similar to the thread ID a block

within the grid can be identified by a one-dimensional or two-dimensional block ID. The

block ID is accessible through the built-in variable blockIdx.

Since thread blocks are required to execute independently, it must be possible to execute

them in any order, in parallel or in series. This independence requirement allows the

hardware to schedule thread blocks in any order across any number of cores. The number

of thread blocks in a grid is typically dictated by the size of the data being processed, it

should greatly exceed the number of processors in the device to fully utilize the hardware.

Kernel invocation We have already encountered the key element for the CUDA

runtime, kernels. A kernel defines the actual code, processed by the shader cores. A

kernel is a special C function that gets executed N times in parallel by N different CUDA

threads, as opposed to general C functions which get only once executed. A kernel is

defined by using the declaration specifier __global__ and the number of CUDA threads

for each call is specified using a new syntax

__global__ void func(float *parm, ...)

{

// kernel code

}

// somewhere in the code, invoke the kernel function

dim3 Dg, Db;

func <<< Dg, Db >>> (parm1, ...);

The special parameters Dg and Db specify the thread hierarchy as described above. dim3

is a three-dimensional vector and can hold the dimensions of the grid and the blocks,

respectively.
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The kernel gets executed asynchronously and making it possible to overlap program code

on the host with code on the device. If it is necessary to synchronize host and device,

this is possible with an explicit call to cudaThreadSynchonize(). Certain operations

that depend on the GPU to have finished the kernel computation like memory copies

perform a synchronization implicitly.

Memory hierarchy In agreement with the memory layout of a multiprocessor, each

CUDA thread can access data from multiple memory spaces during their execution.

For intermediate results each thread has a private set of registers from the register file.

Registers are not shared between threads and are not dynamically indexable. The compiler

is optimized to reuse aggressively registers in order to keep the overall register usage at a

minimum. Unlike SSE, in CUDA there is no way to assign registers by hand. Depending

on the hardware revision, there are 8192 registers (16384 on 1.3 hardware). Each can

store a 32-bit variable, giving 32KB (64KB) memory per multiprocessor. Accessing a

register introduces no additional penalty per instruction, but a delay can occur due to

register read-after-write dependencies and register bank conflicts. Read-after-write delays

can be safely ignored, if there are at least 192 active threads per multiprocessor. The

scheduler schedules instructions as optimally as possible to hide bank conflicts. Best

results are achieved, if the block size is a multiple of 64.

Each CUDA thread has access to shared memory, visible to all threads within the

same block. It has also the same lifetime as a block: once a block finishes, shared

memory gets discarded. Current generation hardware provides 16KB shared memory per

multiprocessor. Access to shared memory can be as fast as registers for optimal access

patterns.

All CUDA threads have access to global device memory. Global device memory is not

cached and for optimal bandwidth special access patterns, coalescing rules need to be

fulfilled. Coalescing is a very important part since the difference between uncoalesced

and coalesced access to global device memory can easily be around an order of magnitude.

Accessing global device memory introduces an additional latency of 400 to 600 cycles
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Registers (r/w) 32K

1-2 cycles

Shared memory (r/w) 16KB Texture cache (r) 8KB

Constant cache (r) 8KB

Global memory (r/w) 512MB - 4GB

400-600 cycles

Host memory

PCI bus latency

Figure 3.2: Hierarchical overview over the memory spaces available on the GPU.

Memory spaces are ordered by access latency from the kernel from low to high

latency times. For detailed description see the text.

which can be hidden by the thread scheduler, if there are sufficient enough arithmetic

instructions that can be issued while waiting for the memory access to complete.

Because of their great importance to overall performance, optimizing access patterns to

shared and global memory will be covered in more detail below.

Additionally there exist two read-only memory spaces accessible by all CUDA threads:

constant memory space and texture memory space. Both memory spaces are cached, so

a access to them costs one memory read from device memory only in case of a cache miss.

If all threads read from the same address in constant cache, data will be broadcasted

and the access is as fast as reading from a register. The cost scales linearly with the

number of different addresses read by all threads. To benefit from the texture memory, it

is necessary to bind a region in device memory as a texture.

A texture can be one-dimensional linear memory or a so called CUDA array. CUDA

arrays are opaque memory layouts optimized for texture fetching. They can be one-

dimensional, two-dimensional or three-dimensional. A texture element, short texel, can

be one of the built-in data types CUDA introduces which have 1, 2 or 4 components that

may be signed or unsigned 8-, 16-, 32-bit integer, 16- or 32-bit float. Texture cache is
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optimized for 2D spatial locality and threads reading texture addresses that are close

together will achieve best performance. The total amount of constant memory is 64KB

with 8KB cache per multiprocessor. The cache size of texture memory is up to 8KB per

multiprocessor.

3.4 Getting optimal performance

In the following, I will give a brief overview how to optimize CUDA code based on several

strategies. An optimal programming pattern that emphasizes the different layers of

memory should be kept in mind. Each thread should perform the following steps:

(a) Load data from device memory to shared memory.

(b) Synchronize all threads in a block to guarantee that each thread can safely access

locations in shared memory written by different threads.

(c) Perform computations on the data in shared memory.

(d) Synchronize again all threads in a block, in order to make sure that shared memory

has been updated with the results.

(e) Write results back to device memory.

It is not mandatory that each problem can be mapped to this optimal pattern. However,

small modifications are required for those problems and the rest of the discussion persists.

Access patterns to global memory To achieve optimal performance for accesses to

global memory, it is necessary to fulfill special access patterns for memory requests.

For global memory coalescing rules apply which consists of two statements. Firstly, the

device is capable of reading 32-, 64- or 128-bit words from global memory into registers

in a single instruction. An assignment such as
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__device__ type device[32];

type data = device[threadIdx.x];

will be compiled into a single load instruction, if and if only sizeof(type) is equal to

1, 2 or 4 and variables of type type are aligned to sizeof(type). This requirement is

automatically fulfilled for built-in data types like float2 or float4.

For structures, size and alignment requirements can be enforced by the compiler using

alignment specifiers as __align__(8) or __align__(16). For structures larger than 16

bytes, the compiler generates several load instructions. To ensure that it generates the

minimum number of instructions, such structures should be defined with __align__(16).

Secondly, global memory bandwidth is used most efficiently, if simultaneous memory

accesses of threads in the same half-warp can be coalesced into one or two memory

transactions of 32, 64 or 128 bytes. This is possible if all threads of a half-warp satisfy

the following conditions:

• Threads must access either 32-bit words which will result in a single 64-byte memory

transaction, or 64-bit words which will result in a single 128-bit memory transaction,

or 128-bit words which will result in two 128-bit memory transactions.

• All 16 words have to lie in the same segment of size, equal to the memory transaction

size (or twice in case of 128-bit words).

• Threads must access words in sequence, that is, the kth threads in a warp must

access the kth element in a block of memory being read.

Not all threads of a warp need to participate in the memory access. If there is divergence

within a warp, the memory access is predicated.

If a half-warp does not fulfill all requirements above, a separate memory transaction is

issued for each thread and throughput is significantly reduced by a factor of up to 16.

Coalesced 64-bit access delivers slightly lower bandwidth than coalesced 32-bit access
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address 124 128 132 136 140 · · · 184 188 192

ID 15 0 1 2 3 · · · 14 15 0

Figure 3.3: Example of coalesced access to global memory. All threads in a half-

warp read one memory word in sequential order and the memory access is aligned

to 32 byte and only a single memory instruction is issued. Coalescing would also be

possible for 64 and 128 byte accesses.

address 124 128 132 136 140 · · · 184 188 192

ID 15 0 1 2 3 · · · 14 15 0

Figure 3.4: Example of coalesced access to global memory. Although not all threads

in the half-warp participate in the memory access, a single memory instruction is

issued because the memory access can be predicated.

and coalesced 128-bit access delivers noticeably lower bandwidth than 32-bit coalesced

access.

If id is the thread ID as described above, a common access pattern follows the form

BaseAddress + id

where BaseAddress is of type type*. To get memory coalescing, type must meet the size

and alignment requirements. If type is a structure larger than 16 bytes, it is necessary

to split it into several structures which meet the requirements. Data should be laid out

in memory as a list of several arrays of these structures instead of a single array of type

type*. One often refers to structure of arrays (SoA) instead of array of structures (AoS).



CHAPTER 3. COMPUTE UNIFIED DEVICE ARCHITECTURE 45

address 124 128 132 136 140 · · · 184 188 192

ID 15 0 1 2 3 · · · 14 15 0

Figure 3.5: Example of uncoalesced memory access to global memory. Threads in

the half-warp access global memory in random order which results in the maximum

of 16 memory instructions.

Most of the time, threads need data from different positions in global memory and

coalesced access is not possible directly. After all, it is often possible to use shared

memory to allow a coalesced access if it is used as a caching layer. Each thread can read

data coalesced into shared memory and then this data can be redistributed among the

threads. After the necessary calculations have been completed, again each thread stores

back the result to global memory in a coalesced way.

If memory requests do not follow the access patterns global memory requires to get

optimal performance and coalescing can not be achieved even through shared memory,

cached texture memory can help to improve total bandwidth and latency, if there is

some locality in the texture fetches. However, it is necessary to emphasize that only

read accesses can benefit from texture memory as only reading from texture memory is

cached.

The coalescing rules have been slightly simplified for recent hardware. Threads do not

need to read data from global memory sequentially as long as each half-warp accesses

address words in the same 64-bit segment. It is possible to have a random access pattern

within the memory segment and even to have multiple threads read the same address.

This relaxation makes access to global memory a lot better to handle for programmers,

however, I have not yet optimized the code for newer coalescing rules.

Examples of coalesced memory access to global memory are illustrated in Fig. (3.3) and

(3.4). A memory access which does not satisfy requirements for coalescing access is given
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Bank 15 1 2 3 4 · · · 14 15 0

ID 15 0 1 2 3 · · · 14 15 0

Figure 3.6: Example of access to shared memory without bank conflicts. Each

thread in the half-warp accesses a different memory bank.

in Fig. (3.5).

Access patterns to shared memory As with global memory special access patterns

need to be fulfilled to achieve optimal performance, even though shared memory is much

faster than global memory.

Shared memory is divided into 16 memory banks which can be accessed simultaneously.

Memory read or write requests made of n addresses that fall in n distinct memory banks

can be serviced simultaneously, yielding an effective bandwidth that is n times higher

then the bandwidth of a single bank.

If two addresses fall in the same memory bank, there is a bank conflict and the access

has to be serialized. The hardware splits a request with bank conflicts into as many

separate requests as needed, decreasing effective memory bandwidth by a factor equal to

the number of separate requests. If the number of separate memory requests is n, the

original request is said to cause a n-way bank conflict.

A request to shared memory by a warp is split into one request for the upper half-warp

and one request for the lower half-warp. By definition, there can not be a bank conflict

between threads belonging to different half-warps.

In order to use shared memory efficiently and to avoid bank conflicts, it is important to

know, how memory addresses map to banks. Each memory bank holds a 32-bit word

and successive 32-bit words are assigned to successive banks. In G80, we have m = 16

memory banks. Usually a warp accesses an array shared[] in shared memory like



CHAPTER 3. COMPUTE UNIFIED DEVICE ARCHITECTURE 47

Bank 15 0 1 2 3 · · · 14 15 0

ID 15 0 1 2 3 · · · 14 15 0

Figure 3.7: Example of access to shared memory without bank conflicts. Although

the access is randomly distributed, all threads in the half-warp access a different

memory bank.

Bank 15 1 2 3 4 · · · 14 15 0

ID 15 0 1 2 3 · · · 14 15 0

Figure 3.8: Example of access to shared memory with bank conflicts. Memory

banks 3 and 14 get accessed multiple times by threads in the half-warp and therefore

need to be serialized. However, both memory requests can be combined in a single

broadcast, resulting in a two-way bank conflict.

shared[BaseIndex + s * id]

where id is the thread ID like above and s is some stride. Two threads id and id + n

access the same bank, whenever s ·n is a multiple of m/d where d is the greatest common

divisor of m and s. Therefore, there can be no bank conflict, if and if only half the warp

size is less than or equal to m/d. For hardware with compute capability the size of a

half-warp is equal to the number of shared memory banks. As a consequence, there will

be no bank conflict, if the stride s is an odd number.

Bank conflicts will be further reduced, if several threads of a warp request an address

within the same 32-bit word. Shared memory features a broadcast mechanism where a

32-bit word can be broadcast to several threads simultaneously. If all threads read an

address within the same 32-bit word, the access is conflict-free.
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In Fig. (3.6) and (3.7) memory accesses to shared memory without bank conflicts are

shown. A memory access with a two-way bank conflict is given in Fig. (3.8).

Instruction throughput Each instruction takes a finite number of clock cycles to be

completed. Therefore, it is necessary to optimize instruction count to achieve an optimal

instruction throughput. Throughputs will be given in number of operations per clock

cycle per multiprocessor. An operation is the execution of an instruction by the whole

warp. For a warp size of 32, an operation consists of 32 instructions. If T is the number

of operations per clock cycle for a given instruction, its instruction throughput is one

instruction every 32/T clock cycles.

In the following, only single-precision (FP32) will be assumed. A short discussion about

double-precision (FP64) will be given below.

For basic arithmetic instructions like add, multiply and multiply-add (mad) the instruction

throughput is 8 operations per clock cycle, division is 0.88 operations per clock cycle,

but there exists a less precise version __fdividef() with almost twice the throughput.

For reciprocal and reciprocal square the throughput is 2 operations per clock cycle.

Square root is implemented as a reciprocal square root followed by a reciprocal. Its

throughput is 1 operation per clock cycle.

Special functions like sin, cos, exp will be treated differently. Two paths for the evaluation

exists dependent on the magnitude of the argument. For small arguments a fast path

will be taken with a throughput of one operation per clock cycle. This path will also

be taken for the functions __sinf(), __cosf() and __expf() which are, however, less

precise for large arguments. For large arguments a slow path is executed which consists

of lengthy computations to achieve correct results over the entire argument range. Also,

the slow path requires more registers and local memory to store intermediate results than

the fast path. At the end, throughput for the slow path is one order of magnitude lower

than for the fast path.
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The throughput for integer add is 8 operations per clock cycle, for 32-bit integer mul-

tiplication it is 2 operations per clock cycle. Integer division and modulo operations

are costly and should be avoided and replaced by bitwise operations, if possible. The

compiler will translate (i/n) to (i >> log2(n)) and (i%n) to (i&(n-1)) if n is a power

of 2.

For min, max, cmp and similar operations the throughput is 8 operations per clock cycle,

as for any bitwise operation and type conversions.

Flow-Control As with any SIMD architecture flow-control statements can significantly

impact the effective instruction throughput in a negative way by causing warps to diverge,

that is, to follow different execution paths. Different execution paths have to be serialized,

increasing the total instructions executed for each warp.

If the control flow depends on the thread ID to achieve optimal performance, the

controlling condition should be written such that it minimizes divergent warps. This

is possible because the distribution of warps across the block is deterministic. If the

controlling condition only depends on id/WSIZE where WSIZE is the warp size, no warp

divergences occur since the controlling condition is perfectly aligned with the warps.

The compiler may optimize control statements like

if (condition)

...

and

switch (condition)

case value:

...

as it may unroll loops by using branch predications instead. In these cases no warp can

ever diverge. With branch predications none of the instructions whose execution depends
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on the controlling condition get skipped. Instead, each of them is associated with a

per-thread condition code—called predicate—that is set to true or false based on the

initial controlling condition. While all instructions get scheduled, only those with a true

predicate get executed. Instructions with a false predicate do not write results and do

not read addresses or read operands.

The compiler uses some heuristics to decide, when it replaces a control statement with

a predication. This is based on the number of instructions controlled by the control

statement and how likely the control statement produces divergent warps.

General optimization strategies To achieve optimal performance for a given algo-

rithm, one should follow three simple strategies:

• Maximization of parallel execution.

• Optimization of memory usage to achieve maximum memory bandwidth.

• Optimization of instruction usage to achieve maximum instruction bandwidth.

For the first strategy —to maximize parallel execution— it is necessary to structure the

algorithm in a way that exposes as much data parallelism as possible. If at some point in

the algorithm parallelism is broken, because threads need to synchronize and share data

between each other, there are two possibilities. Either these threads belong to the same

block in which case they should use the synchronization barrier and share data through

shared memory within the same kernel call, or they belong to different blocks, in which

case they must share data through global memory, using two separate kernel calls.

Once the parallelism of the algorithm has been exposed, it needs to be mapped to

the hardware as efficiently as possible. This is done by carefully choosing the optimal

execution configuration for each kernel invocation. Since the amount of registers and

shared memory available is shared per multiprocessor, those become the crucial factor.

The total number of registers needed is basically R×T where R is the number of registers
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required for each kernel and T is the number of threads per block. The total amount of

shared memory for each block is simply the sum of statically allocated shared memory,

dynamically allocated shared memory and, because parameters like device pointers get

passed to the kernel function through shared memory, the total size of the parameters to

the kernel function.

More threads per block are usually better for efficient scheduling, but the more threads

per block, the fewer registers are available per thread. However, there should be a

minimum of 64 threads per block and should be chosen, only if there are multiple active

blocks per multiprocessor. The block size should be a multiple of the warp size, for

reasons discussed above a multiple of 64 is better.

The total amount of blocks per grid should be chosen to maximize the utilization

of the available computing resources. There should be at least as many blocks as

multiprocessors there are on the device. Running only one block per multiprocessor will

force the multiprocessor to idle during thread synchronizations and also during memory

reads, if there are not enough threads per block to hide the load latency. Usually two

or more active blocks per multiprocessors allow an overlap between waiting blocks and

running blocks. For this, the amount of registers and shared memory must be low enough

to allow more than one active block per multiprocessor.

As a rule of thumb the more blocks stream in a pipelined fashion through the device, the

better any overhead can be hidden. It is recommended to have at least 100 blocks available

per grid, to be sure, that the application will scale across several device generations an

order of 1000 blocks should be sufficient.

It is often not clear a priori which suitable configuration should be chosen and a good

way is to parametrize the application in the number of threads per block and the amount

of shared memory. Benchmarks with different configurations can then yield the optimal

configuration for maximum performance.

Parallelism on a higher level can be exposed explicitly by the concurrent execution of

tasks. Several functions execute asynchronously and return control to the host thread
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before the device has completed the task. Among those functions are kernel functions

itself and functions related to data transfer. It is possible to overlap those functions with

calculations on the host, to maximize efficiency.

Optimizing memory usage starts with minimizing data transfers with low bandwidth.

Bandwidth of data transfer between host DRAM and device is around an order of

magnitude lower than for data transfer between global memory and device. Sometimes,

the best optimization is to avoid any data transfer in the first place by recomputing data

instead wherever needed. Data should be transfered in large chunks to fully utilize the

available PCI bandwidth. For smaller data transfers, PCI latency plays a bigger role,

which is in the order of 400 – 600 ns. To achieve optimal performance for data transfers,

page-locked memory should be used, which enables direct memory access to the allocated

memory regions.

Double-precision calculations Double-precision calculations (FP64) are supported

for devices with compute capability 1.3. The GeForce GTX 280 for example, has one

dedicated unit for double-precision computations. The rest of the shader core is still

running in single-precision. In consequence, this means 1/8 of the total peak performance

is available for 64-bit floating-point calculations.

However, the FP64 ALU is still notable in its abilities. It is capable of a double-

precision multiply-and-add (MAD) operation in a single clock and supports 32-bit integer

computation with no clock penalty which is not available for other double-precision

processors already available such as any x86 or Cell.

The MAD operation of the FP64 ALU is intended to accelerate software support for

specials and divides, where possible. At the time this work was written, 64-bit calculations

on the GPU are not yet comparable to calculations on the CPU, but in the future NVIDIA

intends to give support for double-precision at peak performance within their cards.



Chapter 4

Implementation

For the actual implementation of the Wilson-Dirac operator and the Neuberger operator, I

was guided by the CPU implementation (Lüscher, 2001) and recent work on implementing

a lattice Dirac operator on the GPU [E+07] and [BBB+08].

This implementation was optimized for a NVIDIA GeForce 8800GT which is hardware

with compute capability 1.1. The GeForce 8800GT has 14 multiprocessors running at

1.5 GHz clock speed and a physical memory of 512 MB at 900 MHz. Its theoretical peak

performance is 504 GFlops/s and the peak memory bandwidth is 57.6 GB/s.

For comparison, I had the opportunity to test the code on a NVIDIA GeForce GTX

280 which is a card with compute capability 1.3. However, I did not optimize for this

hardware. The GTX 280 has 30 multiprocessors at 1.3 GHz clock speed and 1 GB

physical memory at 1.1 GHz. Its theoretical peak performance is 933 GFlops/s and

141.7 GB/s peak memory bandwidth.

First of all, I will give some thoughts about the the general problem of the Wilson-Dirac

operator such as the memory requirements for various elements and try to identify

possible bottlenecks. Then the actual implementation of the Wilson-Dirac operator and

the Neuberger operator will be described.

53
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4.1 Preliminary considerations

The minimal independent unit for the calculation of the Hermitian Wilson-Dirac operator

Q is the computation of one result spinor field φ′(x) = Qφ(x) at the lattice site x. The

work of [IBP08] showed that it is possible to parallelize at each computed direction of the

Wilson-Dirac operator, but the amount of extra effort necessary to eliminate flow-control

is not justified by the advantage of this approach.

To recapitulate, with an appropriate rescaling of the spinor fields, the massive, γ5-

Hermitian Wilson-Dirac operator is given by

Qφ(x) = γ5

(
(4 +m0)φ(x)−

±3∑
µ=±0

Uµ(x)(1 + γµ)φ(x+ µ)
)
.

We can now count the necessary amount of work and memory at each lattice site and,

therefore, for each thread. We need to know local storage constraints to find possible

thread configurations for the kernel function and construct data layouts which allow for

optimal data access.

The spinor field φ(x) is an object with three color and four spin components and requires

24 floats per lattice site to store. The gauge field Uµ(x) is a 3× 3 matrix with complex

entries, giving 18 floats to store per link. Later we will see that the number of independent

entries can be reduces via constraints from the fact that Uµ(x) is an element of the gauge

group SU(3).

At each step in the kernel, we need to store the resulting spinor φ′(x) which can be used

to accumulate intermediate results of each direction µ. To compute this intermediate

result we need to load and store in local memory one spinor field φ(x±µ) at the neighbor

site and a gauge field Uµ(x) and U †µ(x− µ) accordingly. This would require at least 66

float variables or 264 byte to be held in local memory available to each thread at all time.

This amount of memory needs to be stored in the accessible local memory like shared

memory and the register file to give a reasonable performance. For shared memory we
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have 16384 byte available per thread block. As for the register file, 8192 registers are

available and each is capable of holding a 32-bit word which results in 65536 byte.

If we target the suggested 192 active threads per multiprocessor, we are able to store

about 64 float variables or 256 byte per thread which would not be sufficient for our

computation.

However, the explicit form of the chiral representation for the Dirac matrices γµ we have

chosen, shows that we have taken into account redundant information. In the chiral

representation the Dirac matrices are given as

γµ =

 0 eµ

(eµ)† 0

 ,

where e0 = I2×2 is the identity matrix in two dimensions and ei, i = 1, 2, 3, are 2 × 2

matrices which can be chosen proportional to the Pauli matrices. If we now take a look

at the term (1− sγµ)φ, s = ±1, we can explicitly give the result in terms of the spinor

components of φ for each µ = {0, 1, 2, 3}.

It turns out that this combination projects the full spinor φ into a half-spinor , with only

half of the components independent. This half-spinor requires just 12 float and since the

form of the Dirac matrices is known at each time we can project the spinor field φ(x± µ)

at the neighbor site directly into a half-spinor.

This reduces the amount of local memory necessary from the original 66 float variables

to 54 float variables which would fit with previous considerations.

Data layout For an optimal data layout we need to take a look at the data being

loaded and stored in each thread. For each direction we have seen that we need to load

the spinor field φ(x ± µ) and the gauge field Uµ(x) or U †µ(x − µ). The fact that we

load data from the neighboring site of the lattice and that this data is distributed in

memory more or less randomly depending on the indexing of the lookup table, makes

the use of the texture cache mandatory. After having computed each direction, we need
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to store the resulting vector φ′(x). This means, we have to fulfill coalescing rules for

the spinor fields by all means, even if we load the spinor fields through the texture unit.

Otherwise, we would suffer from large penalties for the memory bandwidth as we have

seen in Chap. (3.4).

The spinor field with 24 float variables can be stored into 6 variables of type float4 which

is a 4-component vector. If we align those 6 variables next to each other linear in memory

it would require to load and store the spinor fields through shared memory to be able to

form an access pattern, suited for coalesced memory transactions. However, we can see

that this is not possible with the target number of active threads per multiprocessor of

192. We need to store 24 ∗ 4 = 96 byte for each spinor which gives 96 ∗ 192 = 18432 byte

necessary which is slightly above the amount of shared memory available.

For our target size, it is not possible to have the spinor fields grouped closely together in

memory and still access them in a way that allows for coalesced memory transactions.

This means, we need to break up the data structures and rearrange them in a way which

is efficient for the hardware to access. Instead of an array of structures we need to design

a structure of arrays.

For the gauge fields it is essentially the same except that we always just load gauge fields

without the need to store any. If we could rely on the texture cache, we would not be

dependent on coalesced memory access at all. The 18 float variables fit into 5 variables of

type float4. The spare two float variables could be used for further information which

is not the case in my implementation though.

The right metric We need to be clear what the optimization goal is. If the kernel

will be compute-bound, when there is a high instruction count per data, then we should

try to maximize GFlop/s. If our kernel is memory-bound and data access is the limiting

factor, then we should try to maximize for effective bandwidth.

For recent generation GPUs, we find a ratio of computing power to memory bandwidth of

around 10:1, e.g. the for the GeForce GTX 280 we have stated above a peak performance
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of 933 GFlop/s and the peak memory bandwidth of about 141.7 GB/s. For an optimal

utilization of the GPU we therefore should have ten floating-point operations per byte of

memory we need to load.

The resulting spinor field φ′(x) of the Wilson-Dirac operator requires the original spinor

field φ(x) as well as the neighboring spinor fields φ(x+ µ) at all positive directions and

φ(x− µ) at all negative directions. As a subtotal, this gives (1 + 4 + 4) ∗ 24 = 216 float

values or 864 byte for the spinor fields. Additionally, the gauge fields at each connecting

link is required. This gives another 8 ∗ 18 = 144 float values or 576 byte memory. As a

total we need 1440 byte per lattice site.

To compute the resulting spinor field φ′(x), we project the spinor into half-spinor as

stated above. This will just cost 12 floating-point operations per direction giving 96

operations total. Both components of those half-spinors will be multiplied by the complex

3× 3 matrix Uµ(x) or U †µ(x− µ) respectively. Each multiplication costs 66 operations

per direction, giving 66 ∗ 8 ∗ 2 = 1056 operations and so 1152 operations total. In order

to accumulate each intermediate result, we have 24 operations for each term in the

sum which is an additional count of 8 ∗ 24 = 192 operations. For the diagonal term

proportional to the original spinor field φ(x) and the multiplication with γ5 we need 24

operations both which gives a total of 1392 floating-point operations per lattice site.

Consequently, this gives around one floating-point operation per byte loaded which is

typical for bandwidth-optimal problems. Therefore, we should strive for peak bandwidth

and take this metric into account, if we evaluate the performance for our implementation.

However, I will always give the achieved GFlop/s as a reference to allow a comparison

with other projects.

The GeForce 8800GT in the test system has a 256-bit memory interface at a memory

clock of 900 MHz. The optimal peak bandwidth we can expect, is therefore 57.6 GB/s.

In practical benchmarks, however, only around 40 GB/s could be reached as a peak

performance.
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SU(3) reconstruction We have seen that the kernel for the application of the Wilson-

Dirac operator is bound by the memory bandwidth. Therefore, it would be preferable, if

we could save the amount of data to be loaded.

We know that the matrices Uµ are elements of the gauge group G which is in our case

the special unitary group SU(3). An element U ∈ SU(3) can be represented by complex

3× 3 matrices with the properties

UU † = 1, detU = +1.

In general, we need 18 real values to parametrize the matrix, and if we write the matrix

explicitly as

U =


a1 b1 c1

a2 b2 c2

a3 b3 c3

 , ai, bi, ci ∈ C,

we can interpret each column as a complex vector with 3 components, e.g. a = (a1 a2 a3)T .

However, the defining properties for SU(3) give 4 constraints for orthogonality and 6

constraints for normality which all eliminate one degree of freedom.

Therefore, it is possible to parametrize an SU(3) matrix with two vectors a and b and

drop the last column from the general form above. This vector can be reconstructed

simply by the cross product c = a × b since if |a|2 = 1 and |b|2 = 1 then |c|2 = 1 as

required.

For the vectors a and b we need to store 12 float values which fit in 3 variables of type

float4. This would reduce the amount of memory required to load at each direction by a

factor 1.6. The missing elements could be reconstructed on-the-fly for the explicit matrix-

vector multiplication and the additional work which is necessary for this reconstruction,

should be hidden behind memory loads which still dominate the time spent in the kernel.

As noted above, we can take this one step further and just use the minimal amount of

numbers to parametrize the gauge fields. There are several possibilities to do so, I have
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investigated a method based on [Bro88]. As parameters we can choose 8 angles, 3 angles

give the value and 5 angles are for the phases of the matrix elements. An explicit form

for the matrix elements are also given in the appendix.

These 8 parameters can be stored in two variables of type float4. This would further

reduce the amount of memory required for the gauge field by another factor of 1.5.

This parametrization, however, has some drawbacks. The amount of work for the

reconstruction is much larger, due to the massive use of trigonometric functions which are

quite expensive on the GPU. The second problem is that the mapping from the angles

in which we parametrize and the actual matrices they describe, is not easily invertible.

At some day it would be desirable to use real data for the gauge fields and then it is

necessary to convert this data from the layout it is saved which is usually the explicit

form to the data layout we use here.

4.2 Data layout

Now we can talk about the actual data layout I used. With the discussion above we

can employ a simple but efficient system for the layout of the spinor and gauge fields

the Wilson-Dirac operator will act on. We need to keep in mind that we have to mirror

each data set on the device as well as on the host due to the heterogeneous programming

model.

One way to rearrange the components of the spinor fields is to group components of

different Dirac indices together. The first two float4 variables would hold real and

imaginary parts for the first color components of the Dirac spinor. The index x, y, z, w

of each variable defines the Dirac index itself. That way we can independently compute

the components of the projected half-spinor later and the compiler would be free to

rearrange the load instructions for best overlap with calculations.

We want to keep several copies of the spinor fields as working fields for necessity and

for practical reasons. The maximal number of those working fields is defined by the
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MAX_NO_FIELDS constant. The actual set of spinor fields then is defined on the host as a

three-dimensional array of pointers to float4 variables,

float4 *ps[MAX_NO_FIELDS][6][VOLUME];

in which VOLUME = L*L*L*T is the number of lattice sites. Then the spinor field φ(x) in

the working set k would be given by

float4 *psk = ps[k][i][x];

with i ∈ {0, 1, 2, 3, 4, 5}. Furthermore, we can identify real and imaginary parts by the

index i, we access the real part for i = even and the imaginary part for i = odd. The

Dirac index is given as above as the component of psk.

For the device memory layout it is recommended only to use linear memory so we need

to index calculations ourself. On the device the spinor fields are merely one-dimensional

arrays of pointers to variables of type float4,

float4 *ds[MAX_NO_FIELDS];

with MAX_NO_FIELDS as above. It is reasonable to keep multiple working sets of spinor

fields on the device, as we want to do multiple operations on those fields. This would

require a slow data transfer from host to device between each operation otherwise.

On the device the spinor field φ(x) of the working set k is given by

float4 *dsk = ds[k] + i * VOLUME + x;

with i ∈ {0, 1, 2, 3, 4, 5}. Again, the Dirac index is given by the component of dsk.

For many operations like data transfer between host and device or texture binding, it is

necessary to know the base address of the working fields and the length of each field in

memory. The base address is simply the address of the first entry for the working fields—

ps[k][0][0]—which will be stored for quick reference. The length of each working field

is 6 * VOLUME * sizeof(float4).
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The gauge fields are arranged quite similarly. However, there is no need to regroup them

for coalesced memory access as we rely on the texture cache entirely in this case. With

each lattice site we can affiliate four links and therefore, four gauge fields, one for every

direction µ = 0, 1, 2, 3. Since we regard the gauge field as a background field we only need

to store one copy and it is not necessary to keep any working fields for them. Then on

the host, the gauge fields are grouped together in a three-dimensional array of pointers

to variables of type float4,

float4 *pu[VOLUME][4][d];

d = 2 or 3 depending on which parametrization we choose. If we choose column recon-

struction, it is preferable if we can independently access different components of each

vector. We can assign one float4 for each complex component of both vectors. The

components are then identified by the last index d. For the parametrization through

angles, we are free to distribute each of them to both float4 variables.

On the device the gauge fields are kept in a linear array of pointers to float4 as it is the

case for the spinor fields. We also have to calculate our indices ourselves in the following

way. The gauge field Uµ(x) at lattice site x in direction µ is given by

float4 *u = ds[x * 4 * 3 + mu * 3 + d];

and d as above. Then (*u).x and (*u).y are real and imaginary part of the first vector

and (*u).z and (*u).w of the second vector respectively.

Lookup tables We have seen that we need to access the neighboring lattice sites x±µ

of the site x in direction µ. If the spinor and gauge fields are arranged linearly in memory,

then we need to know the index of those neighboring sites, so we can access the spinor

and gauge fields residing there.

Probably the most efficient way to solve this is using a predefined lookup table where we

save the index of the neighboring sites in each direction for each lattice site. The index

is just a single integer value for which the texture cache is very efficient. This means,
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Figure 4.1: Left: The lattice sites are indexed in sequential order. It is easy to

see that there are huge jumps for the memory addresses of adjacent lattice sites

in the spatial direction. Right: Lattice sites get grouped into blocks. Inside the

blocks, sites are indexed in sequential order. Huge jumps only occur between sites

of different blocks.

we don’t need to take care of aligning the lookup table itself in memory to guarantee

optimal access patterns.

We just define two-dimensional arrays of integers for both positive and negative directions

int iup[VOLUME][4];

int idn[VOLUME][4];

and two linear arrays of pointers to integer variables on the device where we need to take

care of the index calculation.

There is a certain degree of freedom how to calculate the lookup table. We have not yet

chosen a scheme to map the four-dimensional lattice coordinates x0, x1, x2 and x3 to an

one-dimensional parameter space.

There is a multitude of possibilities to do so, of which the näıve indexing is the most

simple one. For näıve indexing, we just count each lattice site dimension by dimension

and assign the counter to the site. The index i of a site with coordinates x0, x1, x2 and
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Figure 4.2: An even/odd-indexed lattice. Black dots are even lattice sites, white

dots are odd lattice sites. From that scheme it is clear that even lattice sites are

surrounded by odd sites only, and vice versa. That way, jumps for the memory

addresses can be avoided almost completely.

x3 on a lattice with a spatial extent of L and T for the time direction is given as

i = x0L
3 + x1L

2 + x2L+ x3.

The orientation of the lattice is arbitrary and should not have any impact.

We can use this degree of freedom to choose the lookup table to support the texture

cache for optimal performance. As we remember the texture cache is optimized for

two-dimensional spatial localization which means we should try to avoid huge jumps of

the memory address.

We can group lattice sites into blocks and assign each lattice site in each block a continuous

index. That way, a jump in memory access which could have impact on the performance

of the texture cache could only occur, if sites sitting on the border of such a block need

to access sites outside the block. The size of the block is a free parameter and can be

tuned for optimal performance.

Another often used index scheme is even/odd-indexing. This technique comes from the

preconditioning of linear systems and can be used in a conjugate gradient solver for the

Wilson-Dirac operator to reduce the number of iterations. For even/odd-indexing we
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define two sets of lattice sites. A lattice site will be called even if x0 +x1 +x2 +x3 = even

and odd otherwise. We then store the first all the even sites in memory and afterwards all

odd sites. Suppose that x is a even lattice site. That way, it is clear that all neighboring

sites are odd sites and memory access is limited to that memory region.

4.3 The Wilson-Dirac kernel

With the discussion above, we can now outline the actual kernel which computes the

action of the Wilson-Dirac operator Q on a working spinor field φk and stores the result

into the working spinor field φl.

We assume that the initial spinor field φ, the gauge fields Uµ and the lookup tables

already reside on the device and that the textures for the gauge field and the lookup

tables are already bound and accessible through texture fetches. The texture for the

input working field φk needs to be bound right before the call to the kernel function.

The task for the kernel functions is straightforward. First of all, we identify our threads

by their thread ID and compute for which lattice site x we do the calculations. For the

accumulation of the resulting spinor field φ′(x), we need to access allocated memory

very often. It is a good idea to have this spinor field stored in registers to prevent long

latencies and guarantee optimal performance.

We then process the expression of the Wilson-Dirac operator term by term. We will start

with the diagonal part which provides an initialization for the resulting spinor field. We

perform the texture fetches for all components of the spinor φ(x), multiply them by the

mass term and store the result to registers.

For each direction µ we first fetch the index of the nearest neighbor of x in direction

µ. Then we fetch the spinor field φ(x ± µ) and directly project it to the half-spinor

which will be stored into registers. For the gauge field we fetch the parameters for our

chosen parametrization and reconstruct the full 3× 3 matrix which we will afterwards

multiply with the two Dirac components of the projected half-spinor. Both steps can be
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combined to reduce the instruction count. The last step is to accumulate the result for

each direction to the output spinor field.

Finally we multiply with −0.5γ5 and store the result to global memory.

Tricks and tweaks Besides the general strategies for performance optimizations I

described in the previous chapter, it is necessary to take a few things into account.

It is noteworthy that we have no explicit control over the registers file from the source

code, like it is the case for example in SSE. We can not declare variables to reside in

registers only and not get flushed out to local memory as we can not disallow the use of

registers. The reason behind this is, that the compiler usually is in a better position to

judge what goes into registers. This works well for most kernel functions, especially, if

the kernel has only few instructions. As shader functions usually are small programs, the

compiler is optimized for this type of code.

The compiler is optimized in order to reuse registers aggressively. However the compiler

also reorders instructions to hide the latencies of memory accesses. This reordering

can sometimes introduce internal dependencies on intermediate results which prevent

the compiler from freeing registers. I have made the experience that especially for a

high instruction count this effect increases. NVIDIA, of course, does not give detailed

information about the algorithms the compiler uses.

There are a few options to influence the compiler’s optimization decisions. One thing

is to reuse local variables, if intermediate results are not used anymore. That way the

compiler translates the code to instructions which use registers in-place and does not

explicitly allocate new ones. More important is, to use scoping of variables and declare

temporary variables, needed for calculations inside blocks separated by curly braces.



CHAPTER 4. IMPLEMENTATION 66

__global__ void

kernel(parameter)

{

{

int value;

value = something();

}

// value has lost its scope

}

If the variables lose their definition scope the compiler drops the corresponding register

and it is more likely that it will be reused instead of the allocation of a new register.

4.4 The Neuberger operator

Now that we have a working and efficient implementation of the Wilson-Dirac operator

working entirely on the GPU we can go on and integrate this implementation in a program

which applies the Neuberger operator DN to the spinor field ψ(x).

The implementation of the Neuberger operator contains two distinct parts. First, the

evaluation of the minmax polynomial for the approximation of the sign-function via

Clenshaw recurrence which is basically only vector-vector addition and the multiplication

of a vector with a scalar. The other part is the calculation of the low-lying eigenvalues and

eigenmodes of the Wilson-Dirac operator through the minimization of the Ritz functional

as described in the first chapter. The calculations involve a lot of linear algebra operations

such as scalar products and norms of the spinor fields which need to be implemented on

the GPU as well.

For the following discussion we assume the spinor fields to be arranged in large column

vectors as mentioned in Chap. (2.3).
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For two different spinor fields ψk and ψl, we define the site-wise operations

c ψk ≡ c(ψk)x ∀x ∈ ΛE , c ∈ C

ψk + ψl ≡ (ψk)x + (ψl)x ∀x ∈ ΛE .

The application of the Wilson-Dirac operator Q is defined as a matrix-vector operation

Qψk ≡ (Qψk)x =
∑
y∈ΛE

Qxy(ψk)y ∀x ∈ ΛE .

Evaluation of the minimax polynomial As we have seen in the first chapter we

need to calculate the approximation

sign(Q) ≈ XPn,ε(X2) X = Q/||Q||

with

Pn,ε(y) =
n∑
k=0

ckTk(z) z =
2y − 1− ε

1− ε

and Tk(z) the Chebychev polynomials.

We assume that we have found an approximation of the sign-function to a certain precision.

Since this is not a time-critical component of the algorithm we can use the C host code

available and further assume that the coefficients ck of the minimax polynomial will be

stored in an global array

float *cf

on the host.

We need to define some parameters for the Clenshaw recurrence such that

float r1 = 4.0f / (norm * norm * (1.0f - eps));

float r2 = -2.0f * (1.0f + eps) / (1.0f - eps);

float r3 = 1.0f / norm;
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where norm is the operator norm ||Q|| of the Wilson-Dirac operator and eps is the

precision ε of the polynomial approximation of the sign-function.

Since we need to access those parameters in each thread it is worthwhile to store them in

the constant memory of the device in order to benefit from the constant cache. Similarly,

this could be done for the coefficients ck as well since the access patterns is the same.

However, it is not possible to dynamically allocate constant memory on the device and

one of the goals was to have a dynamical, error-given approximation of the sign-function

in which the degree of the polynomial is not predetermined. This is not a problem on the

other hand as we can exploit texture memory which gives the same caching behaviour

for this access pattern.

The actual evaluation code is a multistep algorithm. The first step includes the initializa-

tion of the Clenshaw recurrence, then at each subsequent step we make one iteration for

the the auxillary coefficients yk. The last step consists of the mass term for the Neuberger

operator.

As usual the function for the Neuberger operator takes two index parameters k and

l as the source and the result spinor fields and applies the Neuberger operator such

that ψl = DNψk. For the whole calculation we need three working fields which will be

assumed to have been allocated and reserved for the Neuberger operator. Those working

fields will be indexed by iw1, iw2 and iw3 and will have no further meaning in the end

except the storage of intermediate results. For the rest of this discussion we assume

iw1 = 1; iw2 = 2; iw3 = 3;

for simplicity.

In the first step of the algorithm we need to initialize the recurrence formula and

implement the first two iterations by hand. For that we calculate ψ3 = Q2ψk. Then the

first intermediate result will be

ψ2 = aψ3 + bψk = aQ2ψk + bψk
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where the coefficients a and b are given by

a =
4cn

(1− ε)||Q||3
and b =

1
||Q||

(
−2cn

1 + ε

1− ε
+ cn−1

)
.

With the definition for z as above, it is straightforward to see that

ψ2 = (2zcn + cn−1)
ψk
||Q||

.

If we were about to stop the recurrence right here, e.g. in the case n = 1 then we would

be missing a factor of 1/2. This comes from the definition of the recurrence and can be

introduced in a redefinition of the coefficients a→ a/2 and b→ b/2. Then we find that

for the case n = 1

ψ2 =
(
T1(z)c1 + T0(z)c0

) ψk
||Q||

.

The next part of the first step completes the initialization for the recurrence and is similar

to the first part. Again, we define some coefficients

a ≡ r1 =
4

||Q||2(1− ε)
, b ≡ r2 = −2

1 + ε

1− ε

and

c = r3(cn−2 − cn) =
1
||Q||

(cn−2 − cn)

as well as the input working fields

ψ2 = (2zcn + cn−1)
ψk
||Q||

and ψ3 = (2zcn + cn−1)
Q2ψk
||Q||

.

Then the next intermediate result will be

ψ1 = aψ3 + bψ2 + cψk

which is in the same manner as above equivalent to

ψ1 =
(
(4z2 − 1)cn + 2zcn−1 + cn−2

) ψk
||Q||



CHAPTER 4. IMPLEMENTATION 70

which, for the case n = 2, can be written such as

ψ1 =
(
T2(z)c2 + T1(z)c1 + T0(z)c0

) ψk
||Q||

.

For that last result, we have to introduce the missing factor 1/2 again in the definition of

the coefficients.

Now that the initial conditions for the Clenshaw recurrence have been set, we can jump

to the actual iteration. We step down the polynomial degree and execute one iteration

every step j = n− 3, n− 4, . . . , 0. The coefficients we need in every step are

a ≡ r1, b ≡ r2 and c =
cn−j
||Q||

,

as well as the working fields

ψ1 =
(
(4z2 − 1)cn + 2zcn−1 + cn−2

) ψ′2
||Q||

ψ2 = (2zcn + cn−1)
ψ′1
||Q||

ψ3 =
(
(4z2 − 1)cn + 2zcn−1 + cn−2

) Q2ψ′1
||Q||

.

Then the intermediate result for the step j is given by

ψ2 = aψ3 + bψ1 − ψ2 + cψk.

Here, ψ′i denotes the spinor field from one step earlier. After we have completed one

iteration we swap the working fields ψ1 ↔ ψ2 and start over again. That way, we

ping-pong between the two working fields ψ1 and ψ2 for the iteration of the Clenshaw

recurrence.

For the last iteration of the recurrence at j = 0 we need to take into account the factor

1/2 for our coefficients such as a = r1/2 and b = r2/2. With that we can again put

everything together and see that

ψ2 =
(
(4z3 − 3z)cn + (2z2 − 1)cn−1 + zcn−2 + cn−3

) ψk
||Q||



CHAPTER 4. IMPLEMENTATION 71

and again, if if this would be the last iteration for n = 3, we can write

ψ2 =
(
T3(z)c3 + T2(z)c2 + T1(z)c1 + T0(z)c0

) ψk
||Q||

.

After the main iteration is complete we apply one last time the Wilson-Dirac operator

to the accumulated intermediate result residing in ψ1 because the approximation of the

sign-function involves one explicit application of the Wilson-Dirac operator.

If we have computed any exceptional low-lying eigenmodes of the Wilson-Dirac operator,

which will be discussed later on, we can now further replace the sign-function by the

precalculated projectors to those eigenstates. The result spinor field for the replaced

Neuberger operator is supposed to reside in ψ3 at the end.

The final step for the Neuberger operator is the calculation of the mass term and

multiplications with γ5. For that, we need two coefficients

a = −(1− s)−m/2

b = −(1− s) +m/2

and then calculate

ψl = aψ3 + bγ5ψk

where ψl is the resulting spinor field for the application of the Neuberger operator.

4.5 Low-mode projection

The simple addition and multiplication by scalar coefficients are tasks which are embar-

rassingly parallel because the operation can be performed component-wise and there is no

exchange of information necessary between threads. For the computation of exceptional

low-lying eigenmodes and the projectors to those states we need some more linear algebra

functions such as scalar products, norms and the orthogonal projection of spinors.
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The goal is to have the whole projection algorithm running entirely on the GPU. This

means, we need to find efficient parallel algorithms for those linear algebra tasks.

For the scalar products and norms we can use what is called a reduction which is a

special case of a so-called prefix sums or scan operation. Suppose we have an array of N

elements

[a0, a1, . . . , aN−1] .

Then the prefix sum of this array for the binary operator ⊕ is defined by the result

[a0, (a0 ⊕ a1) , . . . , (a0 ⊕ a1 ⊕ · · · ⊕ aN−1)] .

For the scalar product of ψk and ψl we need to calculate

(ψk, ψl) =
∑
x∈ΛE

(ψk)x(ψ∗l )x.

We can now do a two-step calculation suitable for parallelized computation to calculate

the scalar product of the two spinor fields ψl and ψk. First, we need to calculate the

intermediate spinor field ψm such as

(ψm)x = (ψl )x(ψ∗k)x ∀x ∈ ΛE .

If we now apply a prefix sum with addition for the binary operation, we can obtain the

wanted scalar product from the last element in the resulting array. If we have the scalar

product of two spinor fields, the norm squared is by the definition of the norm of a vector

in a vector space just the scalar product of the spinor with itself, i.e.

||ψ|| ≡ (ψ,ψ) .

An extensive analysis about an efficient implementation of prefix sums in CUDA can be

found in [Har08].

There is one drawback we can not avoid for this kind of calculation. Since the host

program controls the algorithm for the minimization of the Ritz functional, we need to
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ψl

ψk

ψ⊥

Figure 4.3: The spinor fields can be considered as vectors in a vector space V .

Then ψ⊥ is the projection of ψk onto the orthogonal subspace to ψl.

get the information about the residuals and, consequently, about the scalar products

and norms of spinor fields to the host program. This result, which is mostly a complex

number, needs to be transfered via the PCI bus. Because the amount of data is small,

the main penalty in performance is the PCI latency when we copy the result of the scalar

product or norm operation back to the host. In the future, we could benefit from a recent

feature of the CUDA toolkit, called mapped memory. It is possible to map page-locked

host memory into the device’s address space so it can be accessed from kernels directly.

This allows us to avoid an explicit memory transfer and leave the communication entirely

to the driver, which should result in a better utilization of the PCI transfer speed and

latency hiding. However, I was not able to test mapped memory at the time of writing

but I expect a gain in performance with this feature in further code optimizations.

With the parallel implementation of the scalar product, the orthogonal projection of ψk

onto the spinor ψl

ψ⊥ = ψk − ψl (ψk, ψl)

can again be implemented embarrassingly parallel and performed component-wise.

With the relevant parts working entirely on the GPU, the algorithm strictly follows the

original implementation by Lüscher. Because the algorithm was designed with 64-bit

precision in mind and on the GPU only 32-bit precision is available at full speed, we

need to tune the convergence parameters of the algorithm.



Chapter 5

Results

As noted earlier, the results for the implementation of the Wilson-Dirac operator and

the Neuberger operater were obtained on a NVIDIA GeForce 8800GT and a NVIDIA

GeForce GTX 280. The former GPU was hosted on a system based on an Intel Core2Duo

running at 2.13 GHz with 4 GB memory. On that system also the benchmarks for the

CPU were run. The core hardware features of both GPUs are listed in Tab. (5.1).

5.1 Correctness

Of course, after all tuning for performance, the programs and algorithms should always

give the intended results. To ensure this behaviour, for each important task I wrote a

unit check that compares the obtained result from the written code with some predefined

result.

There are multiple options what exactly to check for correctness. For the Wilson-Dirac

and the Neuberger operator I checked if the operators are Hermitian or γ5-Hermitian,

respectively, and if both operators are gauge invariant. For the Neuberger operator it

is necessary to check that the implementation fulfills the Ginsparg-Wilson relation. I

also had the opportunity to check my results against the results obtained from the CPU
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Device 8800 GT GTX 280

Memory 512 MB 1024 MB

Memory interface width 256-bit 512-bit

Nr. of cores 112 240

Processor clock 1500 MHz 1296 MHz

Memory clock 900 MHz 1107 MHz

Peak performance 504 GFLOP/s 933 GFLOP/s

Memory bandwidth 57.6 GB/s 141.7 GB/s

Compute capability 1.1 1.3

Table 5.1: Key features of the used hardware. Both GPUs are from NVIDIA’s

consumer series GeForce and are hosted on systems based on Intel Core2Duo with 4

GB memory.

version of the code. For simpler tasks like linear algebra functions predefined inputs

where used and the result could be compared directly.

All checks where performed up to machine precision for 32-bit. Because of different

implementation for the IEEE754 standard for floating-point arithmetics we do not obtain

the exact result from the CPU and the GPU. However, in all cases, the results for each

unit check is correct up to O(10−7) which is the limit of 32-bit floating point calculations.

5.2 Benchmarks

To benchmark the application of the Wilson-Dirac operator, I used five different, randomly

initialized input spinor and gauge fields and took the average for 64 applications to each

input spinor field. Because of the different input values, I can safely ignore caching

effects and the average over several applications helps to avoid outliers. The benchmark

is performed for different typical lattice sizes.
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Intel Core2Duo 8800GT GTX 280
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Figure 5.1: The execution runtime per lattice site of the Wilson-Dirac operator

for different lattice volumes. Compared to the CPU implementation, the GPU

implementation around 12 times faster for the NVIDIA 8800GT and around 22 time

faster for the NVIDIA GTX 280. One noteworthy details is, that there is almost no

volume dependence for the GPU implementation.

The execution time measured is normalized to the volume T × L3 of the lattice to give

the execution time per lattice site tD for the Wilson-Dirac operator. The time is in the

order of micro seconds and the smaller the value, the faster the execution was performed.

The result for the execution time per lattice site for the Wilson-Dirac operator is visualized

in Fig. 5.1 for the original CPU implementation and for two different GPUs, to NVIDIA

GeForce 8800GT and the NVIDIA GeForce GTX 280.

From the execution time tD we can deduce the achieved floating point operations per

second and, more important, by the sustained memory bandwidth. We have seen, that



CHAPTER 5. RESULTS 77

Intel Core2Duo 8800GT GTX 280
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Figure 5.2: Effective floating-point operations per second for the Wilson-Dirac

operator. The reconstruction of the gauge fields is not taken into account as the

work necessary is not mandatory.

we perform 1392 Flop at each lattice site for the Wilson-Dirac operator and we need to

access 1440 byte memory for the calculations.

A comparison in the execution time for the two investigated reconstruction schemes

for the gauge fields can be seen in Fig. 5.3. I have chosen a lattice size of 164 for the

benchmarks and again around 250 applications of the operator to eliminate outliers. For

the lookup tables, the index scheme as described in Chapter 4.2, I could not measure any

significant differences in performance. The texture cache does a very good job when it

comes to provide maximum memory bandwidth and at least for the problem investigated

here, it was not possible to support the internal algorithms any further.

For the Neuberger operator, I averaged the execution time over 250 applications to avoid

outliers. However, I did not use different input spinor fields because with the necessity
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Figure 5.3: Comparison of the two different reconstruction schemes used for the

gauge fields. Näıvely, we would expect the angle reconstruction to be faster by a

factor of 1.5. However, the maximum gain in performance is around 20% which

could be related to the underestimated work necessary to reconstruct the matrix

elements with trigonometric functions.

of auxiliary working fields for the calculation of the Neuberger operator the amount of

memory on the GPU would not be sufficient to allocate multiple input fields. This is the

same argument why I could not take any benchmark results for the 324 lattice on the

GeForce 8800GT.

The execution time is again normalized to the volume of the lattice as well as the degree

of the polynomial approximation.

To benchmark the low-mode projection, I measured the total execution time the algorithm

takes to converge. I used 10 different configurations I generated at runtime and calculated

the low-lying eigenmodes on those configurations. The execution time was averaged

over those ten measurements and normalized to the lattice volume and the number of

eigenmodes found. This benchmark was performed on different lattice sizes up to 164,
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Figure 5.4: Execution runtime of the Neuberger operator without low-modes. On

the y-axis the runtime of the evaluation for the Chebychev polynomial approximation

of sign(Q)η in the Neuberger operator is shown. The runtime is normalized to the

lattice volume and the degree of the approximating polynomial.

the amount of memory on the GPU did not allow to benchmark larger volumes.

In Fig. (5.6) the impact of different optimization methods on the performance of the

Wilson-Dirac operator is shown in a symbolic way. The given times have been taken at

different stages in development and the changes highlighted do not have to be the only

relevant changes in the code.

I have started with the most simple, näıve version of the Wilson-Dirac operator running

on the GPU which just parallelizes the outer loop over the lattice sites. The next bar,

“alignment”, is obtained, if the predefined data structures are given alignment information

as described in Chapter 3.4. This step helps the compiler to optimize memory access to

global memory. Similar to this is the step labeled “data layout” in which the data layout

was changed to allow fully coalesced access to memory. As anticipated, this step gave a



CHAPTER 5. RESULTS 80

Intel Core2Duo 8800GT GTX 280

[ms]

0

1

2

3

4

5

44 12× 43 84 164

Figure 5.5: Calculation of the low-lying eigenvalues of the Wilson-Dirac operator.

On the y-axis it is shown the runtime to calculate the low-lying eigenvalues and

eigenmodes of the Wilson-Dirac operator. The time is normalized to the lattice

volume and the number of eigenvalues found.

large improvement in performance because the Wilson-Dirac kernel is heavily dependent

on memory access and the difference in performance for coalesced and non-coalesced

access is huge. The use of textures also gave a significant speedup because the effect of

the lookup tables which gave almost random access patterns could be almost completely

suppressed. The reconstruction for the gauge fields reduces the total memory loads for

the kernel and therefore gives a significant speedup. The bar labeled “miscellaneous”

summarizes all other optimizations like unrolling of calculations and the grouping of

source code to save registers and so on.
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Figure 5.6: A symbolic synopsis of the progress and the impact of different

optimization methods on the performance of the Wilson-Dirac operator. The lattice

size was set to 164. For a detailed explanation see the text.

5.3 Conclusions and outlook

In this work I have shown an efficient implementation of the Wilson-Dirac operator

on graphics processing units. I also integrated this into the Neuberger operator and

implemented an algorithm to calculate the low-lying eigenvalues of the Wilson-Dirac

operator.

We can see, the GPU implementation compared to the CPU is around the factor 12

faster for the NVIDIA GeForce 8800GT and 22 for the GeForce GTX 280. This speedup

is obtained for a wide range of lattice volumes. Prior results[BBB+08] show that this

speedup is conserved for even larger lattice volumes. This has to be shown in the future

for the implementation shown in this work.
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Because of the large ratio of computing power to memory bandwidth of around 10:1 for

the current generation GPUs and the problems in lattice QCD which are usually memory

bound, the essential thing is to optimize for memory bandwidth. We have seen, that

the effort to reconstruct SU(3) matrices at runtime gives promising results although the

reconstruction schemes investigated do not give the improvement in performance initially

indicated. In the future, optimal reconstruction schemes have to be investigated.

With the implementation of the Neuberger operator it could be shown that the speedup

of the Wilson-Dirac operator on the GPU can be conserved in a larger framework. We

can see, that the speedup for both the GeForce 8800GT and the GeForce GTX 280 is

around the same value than for the Wilson-Dirac operator.

Interestingly, the volume dependence for the Neuberger operator is different for the GPU

as the execution time per lattice site and degree of the polynomial approximation slightly

reduces for large volumes as opposed to the CPU implementation. If this trend can be

confirmed for even larger lattice volumes has to be shown in the future.

For the calculation of the low-lying eigenvalues of the Wilson-Dirac operator, a speedup

of around the factor 4 for the GeForce GTX 280 could be obtained which gives a lot

of space for further improvements. Especially, a lot more effort has to be put into the

optimization of the linear algebra operations. Also, new CUDA features like mapped

memory have to be taken into account to reduce ineffective communications from host to

device which is the clear bottleneck for the current algorithm.

All in all, problems of lattice QCD calculations can be mapped very efficiently to graphics

processing units. Although programs have to be optimized for the hardware and GPUs

are not as flexible as the CPU, the heterogeneous interplay between both could be used

in the future to improve programs for lattice QCD computations with complex code

running on the CPU and code exposing parallelism running on the GPU.



Appendix A

Projection to half-spinors

The components of the projected spinor

φ = (1− sγµ)ψ

with s = ±1, µ = 1, . . . , 4 can be given explicitly. In the following ψk and φk denote the

kth Dirac component of the corresponding spinor.

s = +1, µ = 0 s = −1, µ = 0

φ1 = ψ1 + ψ3 φ1 = ψ1 − ψ3

φ2 = ψ2 + ψ4 φ2 = ψ2 − ψ4

φ3 = φ1 φ3 = −φ1

φ4 = φ2 φ4 = −φ2
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s = +1, µ = 1 s = −1, µ = 1

φ1 = ψ1 + iψ4 φ1 = ψ1 − iψ4

φ2 = ψ2 + iψ3 φ2 = ψ2 − iψ3

φ3 = −iφ2 φ3 = iφ2

φ4 = −iφ1 φ4 = iφ1

s = +1, µ = 2 s = −1, µ = 2

φ1 = ψ1 + ψ4 φ1 = ψ1 − ψ4

φ2 = ψ2 − ψ3 φ2 = ψ2 + ψ3

φ3 = −φ2 φ3 = φ2

φ4 = φ1 φ4 = −φ1

s = +1, µ = 3 s = −1, µ = 3

φ1 = ψ1 + iψ3 φ1 = ψ1 − iψ3

φ2 = ψ2 − iψ4 φ2 = ψ2 + iψ4

φ3 = −iφ1 φ3 = iφ1

φ4 = iφ2 φ4 = −iφ2



Appendix B

Matrix elements in the angle

representation

For the representation of the gauge field through 8 angles, the matrix elements to be

reconstructed for the whole SU(3)-matrix can be given explicitly [Bro88].

With the paremeters 0 ≤ θ1, θ2, θ3 ≤ π/2, 0 ≤ φ1, . . . , φ5 ≤ 2π the explicit form of the

matrix elements uij is given such as

u11 = cos θ1 cos θ2 eiφ1 ,

u12 = sin θ1 eiφ3 ,

u13 = cos θ1 sin θ2 eiφ4 ,

u21 = sin θ2 sin θ3 e−iφ4−iφ5 − sin θ1 cos θ2 cos θ3 eiφ1+iφ2−iφ3 ,

u22 = cos θ1 cos θ3 eiφ2 ,

u23 = − cos θ2 sin θ3 e−iφ1−iφ5 − sin θ1 sin θ2 cos θ3 eiφ2−iφ3+iφ4 ,

u31 = − sin θ1 cos θ2 sin θ3 eiφ1−iφ3+iφ5 − sin θ2 cos θ3 eiφ2−iφ4 ,

u32 = cos θ1 sin θ3 eiφ5 ,

u33 = cos θ2 cos θ3 eiφ1−iφ2 − sin θ1 sin θ2 sin θ3 e−iφ3+iφ4+iφ5 .
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Compute capabilities

NVIDIA cards are divided into groups with the same hardware properties called compute

capabilities. Cards with the same compute capabilities do have the same key properties.

This methods makes it easy for programmers to optimize for certain hardware generations.

Specifications for compute capability 1.0

• The maximum number of threads per block is 512;

• The maximum size of each dimension of a grid of thread blocks is 65535;

• The number of registers per multiprocessor is 8192;

• The amount of shared memory per multiprocessor is 16KB;

• The total amount of constant memory is 64KB;

• The cache size for constant memory is 8KB per multiprocessor;

• The cache size for texture memory is between 6KB and 8KB per multiprocessor;

• The maximum number of active threads per multiprocessor is 768.
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Specifications for compute capability 1.2

• The number of registers per multiprocessor is 16384;

• The maximum number of active threads per multiprocessor is 1024.

Specifications for compute capability 1.3

• Support for double-precision floating-point computation.

Compute capability 1.1 does introduce atomic functions on 32-bit words in global memory

which where not relevant for this work here.

A complete definition of the compute capabilities and further hardware specifications

can be found in [NVI09].



Appendix D

Glossary

A short overview of the technical terms occurred is given in this chapter. For a deeper

explanation the reader should refer to [OSW+05].

Bump mapping Bump mapping is a technique to give the illusion of irregularities

of the surface of an object without increasing the complexity of the object itself.

Therefore, the informations of normal vectors for the light calculation will be stored

in a texture mapped to this object. Surface elevation information is stored in a

so-called heightmap and can be used to generate realistic shadows.

Lighting Lighting calculations are also called shading and are based on simplified models

for the local illumination of objects in a scene. The most basic model is called

Phong shading and includes three parts: ambient shading calculates the ambient

reflection of all points in the scene, diffuse shading is the amount of diffuse or

Lambertian reflection from incoming light such as from lights inside the scene and

specular shading calculates the specular reflection which are small intense specular

highlights of objects.

Projection matrix The projection matrix gives the coordinate transformation from

the scene to the rendering plane. The three-dimensional volume of the displayed
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scene will be mapped to the two-dimensional rendering plane. Depth information

will be stored for further processing in special buffers.

Rendering The rendering process translates the three-dimensional data in the scene into

a two-dimensional image. The rendering process will be implemented in a pipelined

fashion and usually contains modeling transformations, lighting, projection to the

rendering plane, clipping of unseen parts of the scene and display of the result.

Rendering plane The rendering plane is a two-dimensional region and the target of

the rendering process. Usually, the rendering plane is a part of the screen itself but

it can also be some two-dimensional memory region for off-screen rendering.

RGBA RGBA stands for Red Green Blue Alpha and is the usual format to specify

colors in computer graphics. The red, green and blue component gives the ratio

of the corresponding color, the alpha component contains information about the

translucency of the total color and makes it possible to define transparent object.

Scene A scene is the collection of virtual objects to be visualized together with lights

for illumination and the camera which represents the viewpoint. The scene usually

contains the corresponding parameters of the objects presented like color, material,

surface, type of lights and camera.

Texture Textures are one-, two- or three-dimensional images objects in the scene are

overlaid with to enhance the degree of details without increasing the complexity of

the scene.

Texture blending Modern rendering pipelines can handle and combine several textures

at once to give an object different material properties. This is called texture

blending. A colored wall of bricks is a good example where texture blending could

be used. Different textures will be used for the structure of the bricks itself, for the

global coloring and for created shadows with bump mapping for example. On a

basic level, textures will be pixel-wise combined with a binary operator like addition

or multiplication to achieve various effects.
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