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INTRODUCTION AND
THEORETICAL FOUNDATIONS






The main motivation for working in chiral
dynamics is that it is fun...

— Heinrich Leutwyler [1]

MOTIVATION AND OVERVIEW

The strong interaction is one of the four fundamental forces in physics
known today, besides gravitation, the weak interaction, and electro-
magnetism. It was firstly postulated as a short-ranged counterforce to
explain the stability of nuclei as bound states of neutrons and protons
since the latter are subject to electromagnetic repulsion due to their
positive charge. Later, it was discovered in scattering experiments that
nucleons are not fundamental particles but consist of point-like quarks
and gluons [2, 3, 4]. In fact, quarks had already been discussed as hy-
pothetical particles to explain the observed particle spectrum prior to
their experimental discovery [s5, 6]. Besides the leptons and the gauge
bosons of electroweak theory, quarks and gluons are constituents of
the Standard Model of particle physics and are therein described by an
SU(3) gauge theory called quantum chromodynamics (QCD) [7, 8, 9].
It bears its name from the analogy to quantum electrodynamics (QED)
that quarks interact with each other through gluons representing the
gauge bosons. In contrast to QED, quarks carry three different color
charges and the eight gluons themselves are color-charged. Due to the
latter, three- and four-vertex gluon self-interactions arise.

QCD exhibits two intriguing features. So far, no free isolated quarks
have been observed experimentally, although they are the constituents
of matter. Only color-neutral bound states of quarks, so-called hadrons,
seem to appear in nature. It is still an open question of high interest
how to derive this phenomenon known as color confinement from QCD
[10]. The second remarkable phenomenon, called asymptotic freedom,
might be related to confinement [7, 10, 11]. It states that the running
coupling constant g of QCD decreases for increasing energies. This
implies that a perturbative treatment as an expansion in g is feasible and
successfully describes experiments for energies higher than A ~ 1GeV.
On the other hand, the coupling g diverges for lower energies, which
corresponds roughly speaking to larger distances, and thus could explain
confinement.

Hence, in the low-energy regime, a perturbative treatment is meaning-
less and an analytical solution of QCD is yet unknown. Therefore, one
could resort to a numerical approach called Lattice QCD, which is cur-
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rently limited by available computing power. Another option—pursued
in this work—is an effective field theory (EFT) where the degrees of free-
dom are not gluons and quarks anymore but pions, kaons, vector mesons
and baryons, i.e. the low-energy degrees of freedom of the strong interac-
tion. This approximation to the fundamental theory can be formulated
as a quantum field theory, if Lorentz invariance and the cluster-decom-
position principle hold. The cluster-decomposition principle states that
sufficiently separated experiments do not influence each other [12]. Fur-
thermore, the most general Lagrangian is only required to be consistent
with the assumed symmetries of the underlying theory [13]. In general,
this implies that the corresponding Lagrangian contains an infinite num-
ber of interaction terms, each accompanied by an unknown low-energy
constant (LEC). Note that if one had solved the fundamental theory;,
one could calculate these LECs in principle. However, in order to give
the effective theory predictive power, two concepts are necessary. First,
the results of an EFT are obtained as a perturbative series in g/A up
to a certain order, where g denotes a small quantity such as the pion
mass or momentum. This renders the EFT only applicable for energies
sufficiently below the intrinsic scale A, otherwise the series would not
make any sense. Second, only terms in the Lagrangian which contribute
in this finite series of small quantities are taken into account. Thus, one
is left with a finite number of unknown LECs, which can be determined
by comparison with experimental data if the fundamental theory is
unknown. Since the LECs are independent of the particular physical
process from which they have been determined, one can describe several
physical processes with the same set of LECs, at least up to a certain
accuracy.

In the case of chiral perturbation theory (ChPT), which is an effective
field theory for Goldstone bosons only,' these concepts work reasonably
well [14]. There exists a correspondence between the number of loops
of a Feynman diagram and its lowest possible chiral order. In this sense,
one can systematically neglect contributions of higher order. This so-
called power counting scheme was firstly developed by Weinberg [15]
and has been successfully used for various calculations. Though, there
are two subtleties concerning this concept. First, due to the arbitrary
negative mass dimension of the LECs, an EFT is not renormalizable

In this work, the term ChPT is distinguished from the term chiral effective field theory.
The latter includes heavy degrees of freedom such as vector mesons. Moreover, the
term Goldstone bosons is used for pions and additional kaons if the flavor symmetry
is irrelevant in the particular context.
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in the traditional sense, i.e. divergences stemming from loop integrals
cannot be absorbed in a finite number of coupling constants. Never-
theless, this problem is simply overcome by requiring renormalizability
for an EFT in a modern sense, i.e. appearing divergences are absorbed
only up to the finite order of the calculation [12]. Second, the question
arises whether the series in the small quantities converges. Naively, one
would expect a correction factor of g/ A for the next order not taken
into account. In ChPT, where the order of g is given by the pion mass
and A ~ 1GeV, this rough estimate of about 20 % seems accurate.

The inclusion of heavy degrees of freedom such as nucleons and
vector mesons is obviously desirable, since it extends the applicability
of an EFT in two ways. Not only the energy regime is increased but
also a wider range of hadronic processes can be described. On the
other hand, it introduces several novel problems, which have been firstly
encountered in the case of nucleons [16]. In the chiral limit, in which
the masses of the light quarks and thus the masses of the Goldstone
bosons vanish, the nucleon mass stays finite. Thereby, one introduces an
intrinsic large scale in the theory, which is the main reason that a simple
power counting as in ChPT fails. It follows that diagrams containing
heavy degrees of freedom contribute to a lower chiral order than a naively
adapted power counting would imply. Nevertheless, one can recover
power counting by the price of a more complicated renormalization
scheme. Basically, the parameters of a Lagrangian are redefined by finite
quantities in order to absorb the power-counting-violating terms of
the diagrams. Several manifestly Lorentz-invariant renormalization
schemes have been developed to cover this issue. In this work, the
commonly used infrared regularization [17] in its reformulated version of
[18] is employed. Moreover, if heavy degrees of freedom are included, the
convergence of the expansion in small quantities is worse in comparison
to ChPT, even after renormalization. For example, some quantities in
the nucleon sector receive large higher-order corrections, which renders
the validity of the series expansion questionable.

This thesis deals with describing strongly interacting spin-one par-
ticles, so-called vector mesons, in the low-energy regime up to 1GeV.
They were postulated in the late 1950’ in order to explain the charge
distribution of protons and neutrons [24] and were discovered as res-
onances in various scattering experiments from 1961 to 1963 [25]. In
this work, mainly the lightest vector mesons are considered: the three

2 Note that in ChPT the series is given in powers of (q/A)?.
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Name I Y JPG Reference
p(770) 1 1 9]
w(780) 0 1= [20]
$(1020) 0 17 [21, 22]

K*(890) 1/2 <1 17 [23]

Table 1.1: Firstly discovered vector mesons (mass in MeV) with their isospin I,
hypercharge Y, and Poincaré transformation properties J©
G-parity if applicable.

including

isovectorial mesons p*, p°, p~ and the isoscalar meson w, see table 1.1.
Since the neutral p° has the same properties as the photon except for
its mass, the inclusion of vector mesons typically improves the calcu-
lation of electromagnetic form factors [26, 27]. In particular, their g?
dependence is better described since the quantity ¢? is a measure for
the mass of the virtual photon. This is reflected in the vector meson
dominance model, where the interaction of the photon with a hadron is
mostly determined by the direct photon-rho coupling [25].

In comparison to nucleons, the inclusion of vector mesons as heavy
degrees of freedom is further complicated by their decay to pions. This
leads to diagrams which exhibit a power-counting-violating imaginary
part, which must be compensated by imaginary counter-terms. Fur-
thermore, unstable particles could be implemented in a quantum field
theory with a complex mass [28]. Calculations using such a complex
mass renormalization scheme have been performed, e.g. for the mass of
the rho meson [29]. It leads to the question whether the unitarity of the S-
matrix is violated or not by this renormalization scheme order by order.
Additionally, the construction of Lorentz-invariant scalars for vector
meson fields usually introduces more degrees of freedom than physically
meaningful. Hence, constraints are necessary to reduce the number of
degrees of freedom to the physical number. However, these constraints
must be conserved in time, which represents a self-consistency condi-
tion. This reasoning implies additional relations among the introduced
LECs in general, e.g. the well-known KSREF relation can be derived with
the help of such a constraint analysis [30].

This work is organized as follows. In chapter 2, the basic concepts
of QCD with an emphasis on symmetries are presented in order to
motivate the construction of ChPT. Furthermore, ChPT is extended to
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include vector mesons, which is then denoted as a chiral effective field
theory. In chapter 3, some aspects of power counting and reformulated
infrared regularization are briefly highlighted. Finally, the methods
of a constraint analysis on a classical level are described in chapter 4,
complemented by considering the free antisymmetric tensor model as
an example. In the second part, an already existing self-consistency
calculation of a general EFT for vector particles is extended to the SU(3)
sector in chapter 5, which is the only part of this work dealing with flavor
SU(3). Next, the quantization of an effective field theory is investigated
for three massive vector particles using the antisymmetric tensor field
formalism including a constraint analysis in chapter 6. Finally, the
magnetic moment of the rho meson is calculated using a chiral effective
field theory incorporating pions, rho- and omega-mesons in chapter 7.
The findings are summarized and conclusions are drawn in chapter 8.






QCD AND CHIRAL EFFECTIVE FIELD THEORY

In this chapter, the well-established quantum field theory describing
the strong interaction, quantum chromodynamics (QCD), is presented.
In the so-called chiral limit, it reveals symmetries which motivate an
effective field theory, chiral perturbation theory (ChPT). It can be ex-
tended to a chiral effective field theory, which includes heavy degrees of
freedom, such as vector mesons. This introduction is loosely based on

[31, 32, 33].
21 QUANTUM CHROMODYNAMICS
As already mentioned, the strong interaction can be described by an

SU(3) gauge theory called quantum chromodynamics (QCD). The full
QCD Lagrangian is given by [34, 35]

6
- . 1 v

Lacp =Y, 4r(iy*Dy—my)qs - > Tr(gwg” ) , (2.1)

=1
where

qr1

9r = | 912 (2.2)
qr.3

is the Dirac spinor quark field written down as a color triplet for each
of the six quark flavors f, usually denoted up (u), down (d), strange (s),
charm (c), bottom (b) and top (t). In addition, the quantity*

/\a
.A‘u = AZ 7 (2.3)

represents the eight gluon gauge fields and its field strength tensor is
given by

Ae As
gyv = gﬁv? = (a‘qu - aVAZ - gfabCAIbl'Af’>7 ' (24)

1 See section A.1 on page 95 for the notation used.



10

QCD AND CHIRAL EFFECTIVE FIELD THEORY

Flavor = Charge Mass

up 2/3  (1.7-3.3)MeV
down -1/3 (4.1-5.8) MeV
strange -1/3 (101 £ 29) MeV
charm 2/3 (127 £0.09) GeV
bottom -1/3  (4.19+0.18) GeV
top 2/3  (172.0 +1.3) GeV

Table 2.1: Quark masses and their charge in units of e for each flavor. The
masses are heavily model dependent due to the experimental fact
that quarks cannot be observed as free particles but only by indirect
measurements of color singlet states. Values are taken from [36].

Finally, one finds

D,q5= (9, +igA,)qy (2.5)

as the covariant derivative, which transforms as the object it acts on by
definition. Note that the coupling constant g is independent of the quark
flavor.

As indicated earlier, the Lagrangian is constructed such that it is
invariant under a local SU(3) gauge transformation of the quark fields
in color space, i.e.

q5(x) = q5(x) = exp(—iG“(x)g)qf(x) = U(x)qy(x)

(2.6a)
and EQCD - ﬁé)CD = EQCD . (26b)

This implies the transformation of the gauge fields to read
Ay~ AL = UAU" + éayUUT (2.7)

and it renders both parts of the Lagrangian in equation (2.1) indepen-
dently invariant. Note that in contrast to quantum electrodynamics, the
Lagrangian contains three-vertex and four-vertex interactions between
the gluon fields. This key feature of quantum chromodynamics stems
from the fact that the underlying gauge group SU(3) is non-abelian.



2.1 QUANTUM CHROMODYNAMICS

There exists an accidental global symmetry due to the numerical
values of the so-called current quark masses, see table 2.1. One can
divide the six quark flavors into the , light“ quarks up, down, strange,
and into the ,,heavy“ quarks charm, bottom, and top. The splitting scale
of about 1GeV is justified by the mass of the lightest? strongly interacting
particles, i.e. the rho meson with a mass of 770 MeV, and by the scale
of spontaneous symmetry breaking 47F ~ 1170 MeV. This leads to a
Lagrangian approximately describing low-energy processes of the strong
interaction

- 1 ,
Laco = 2o 4riy*Dudy = 5 Tr(GuwG"), (2.8)
f=u,d,s

where the light quark masses are set to zero and the heavy quarks are
omitted in comparison to equation (2.1). This approximation is called
chiral limit. By introducing the projection operators,

1 1
PR:E(1+y5) and PL:E(I—)/S), (2.9)

which project the quark fields g onto their right-handed q}ff = Prgy and

left-handed qJLc = Pqs components, respectively, the Lagrangian can be
rewritten as

ﬁ%CD = ; 21 (q'?iy”D#q? + q';iy!‘DMq]L() - %Tr(gwg/w) . (2.10)
Since the covariant derivative D, is flavor independent, it follows that
L cp is invariant under a transformation associated with a U(3)g x
U(3), symmetry group in flavor space, which is isomorphic to the sym-
metry group SU(3)r x SU(3)L x U(1)y x U(1)4. Here and henceforth,
the basis3 V = R+ L and A = R — L with well-defined parity +1 and -1,
respectively, is used. Naively, one would expect 2 x 8 + 2 = 18 conserved
currents according to Noether’s theorem [37]. However, an anomaly in
QCD due to quantum corrections breaks the conservation of the singlet
axial-vector current associated with U(1)4 [38, 39, 40], so that QCD in
the chiral limit possesses the symmetry group

SU(3)r x SU(3)L x U()y, (2.11)

The pseudoscalar pions and kaons are regarded as pseudo-Goldstone bosons and are
therefore treated specially, see section 2.2.

Note that this notation is rather symbolic, in some cases a prefactor 1/2 or 1/\/2 is
inserted by convention.

11
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where the subgroup G = SU(3)r xSU(3)y, is often referred to as the chiral
group. The conservation of the singlet vector current associated with
U(1)v corresponds to the conservation of baryon number B observed
in experiments. Therefore, one divides hadrons into mesons with B = 0
and baryons with B = 1.

2.2 CHIRAL EFFECTIVE FIELD THEORY

In the scope of this thesis, it is sufficient to restrict the following con-
siderations to the case of a global G = SU(2)g x SU(2) symmetry, i.e.
only the up and down quarks are regarded as light, which is a far better
approximation than including the strange quark.

Spontaneous Symmetry Breaking

According to the approximate symmetry of QCD in equation (2.11), one
would expect that observed particle states in a certain mass region can be
arranged approximately in irreducible multiplets of SU(2) with positive
and negative parity. However, one finds at the lowest mass scale multi-
plets with positive parity only, e.g. the baryon doublet, and rather light
pseudoscalar pions. This leads to the conclusion that the chiral group
G =SU(2)gr x SU(2), with ng = 6 generators is spontaneously broken
to the subgroup H = SU(2)y with ng = 3 generators. Spontaneous
symmetry breaking means that, although the Hamiltonian is invariant
under G, its physically realized ground state is only invariant under a
subgroup H of G. In this case, Goldstone’s theorem [41, 42] requires
the appearance of ng — ny = 3 massless and spinless particles. These
particles are identified with the pions, whose finite mass is attributed to
the explicit breaking of chiral symmetry due to the finite masses of the
light quarks. Note that the symmetry of the system is determined by the
ground state and not by the Hamiltonian, owing to Coleman’s theorem

[43].

Ward Identities and Local Chiral Invariance

Vacuum expectation values of time-ordered products of operators, so-
called Green’s functions, are connected to the physical scattering ampli-
tudes according to the Lehmann-Symanzik-Zimmermann (LSZ) formal-
ism [44, 45]. Thereby, they represent the crucial link between theory and
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experimental data in a quantum field theory. The aforementioned global
chiral symmetry leads to relations among different Green’s functions if
promoted to a local one. This was firstly discovered in QED with respect
to a U(1) symmetry and these relations are thus denoted shortly as Ward
identities [46, 47, 48]. Note that chiral Ward identities are still useful in
a modified form if the underlying chiral symmetry is explicitly broken,
i.e. in the physical case of non-vanishing quark masses [49].

Green’s functions can be obtained elegantly by functional derivatives
with respect to external fields in the path integral formalism. To that
end, the SU(2)-adapted Lagrangian in equation (2.10) is extended by
such external fields, which couple to the vector-, axial-vector-, scalar-
and pseudoscalar quark currents as follows:

- 1 (s
L=Lcp+Lex = EOQCDJrqyy(v”Jrgvé)wsa”)q—q(s—zysp)q. (2.12)

The color-neutral external fields acting in flavor space are defined with
the help of the Pauli matrices* as

u 2 Ti u u Ty
v :ZE‘G" Vi = ToVy» @ :Zzai,
i=1 i=1
(2.13)
3 3
S=ZT,S,, P:ZTipi-

Note that the vector current possesses an isovectorial and isoscalar part.5
The original QCD Lagrangian with finite quark masses can be obtained
by setting s = diag(m,, m,) and v = a = p = 0. Finally, the generating
functional Z is given by

exp(iZ[v, a,s, p]) = (0|T exp|i f d4x£ext(x)]‘O>(Chiralhmit). (2.14)

This functional represents the crucial link between QCD in the low-
energy limit and effective field theories for the strong interaction.

The definition is given in equation (A.5) on page 95.

The isoscalar vector current plays an important role in the SU(2) sector and is hence
included explicitly. The isoscalar axial-vector current has an anomaly and is hence
omitted [14, 50].

13
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Furthermore, the Lagrangian £ in equation (2.12) is invariant under a
local chiral transformation if the external currents behave as

(V¥ +a*) > Ve(v¥ +a* ) Vi + i Vot Vi,
(v¢—a*) > V(v¥ - a")VT +iV 0"V,
(s+ip) (s+zp)
(s=ip) = Vi(s—ip) W

where (Vi(x), Vi(x)) € G = SU(2)g x SU(2);.. Promoting the global
chiral symmetry to a local one serves two purposes. First, in absence of
anomalies, the chiral Ward identities are equivalent to the invariance
of the generating functional under a local chiral transformation, i.e.
the effective Lagrangian reproducing the Green’s functions resulting
from equation (2.14) is invariant under a local chiral transformation.
This imposes strong constraints on the construction of an effective field
theory [51]. Second, local invariance allows for a coupling of the ef-
fective degrees of freedom to external gauge fields. For example, the
electromagnetic four-vector potential A# is implemented as

(2.15)

e e
Vig = —EA” , V= —§T3A”. (2.16)

Weinberg’s Power Counting

As already indicated, an effective Lagrangian contains an infinite num-
ber of interaction terms and, hence, an infinite number of Feynman
diagrams contribute to a physical process even up to one-loop level.
Therefore, a power counting scheme, which assigns to each diagram a
so-called chiral order D, is necessary. In the case of pions, this scheme is
called Weinberg’s power counting [15] and allows for neglecting higher-
order contributions in a systematic way. Consequently, the interaction
terms of a Lagrangian are ordered by the number of derivatives® and
powers of pion masses,

£:£2+£4+£6+---- (2.17)

As explained later, only even orders £,, occur. In particular, the chiral
order D is defined by the behavior of the invariant amplitude M(p, m,)

6 The derivatives can act on pion fields as well as on external ones. Of course, the latter
are also assigned a chiral order which needs to be considered.
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corresponding to some diagram under a linear rescaling of the external
pion momenta, p; — tp;, and a quadratic rescaling’ of the quark masses,
my — t2myg, as

M(p, myg) > M(tp,*my) = t° M(p, my) . (2.18)

The chiral order is then given by

D=2+ 2(n—-1)Np, + 2Ny
n=0

- (2.19)
= 4Np, - 2N1 + ) 2nN,,,
n=0

where N,, is the number of vertices from £,,, Ny the number of loop
integrations and Ny the number of internal pion lines. Referring to
equation (2.19), a loop integration counts as D = 4, an internal pion
propagator as D = -2 and a vertex from £,, as D = 2n. In conclusion,
the importance of diagrams decreases with increasing chiral order D,
which is directly proportional to the number of loops. Thus, by taking
only diagrams into account up to a certain maximum chiral order, one
approximates the invariant amplitude in a consistent way.

If vector mesons as heavy degrees of freedom are included and appear
as external particles, the power counting scheme is necessarily extended
and needs to be accompanied with a suitable renormalization scheme.
This complicates matters significantly, as detailed in chapter 3.

Chiral Perturbation Theory

The next step is to construct an effective Lagrangian following [53, 54].
The pion fields 7+, 7%, 7~ are represented by an unimodular unitary 2 x 2
matrix,

NGY

(2.20)

i3 3 0 +
U(x) = exp(% > Taﬂa(x)) , with ) 7,7, = ( 7 Van ) ,
a=1 a=1

where F is associated with the pion decay constant in the chiral limit.
The local chiral transformation of U is implemented as a non-linear
realization,

U(x) » V,U(x)V, (2.21)

7 'This rescaling can be motivated by the Gell-Mann, Oakes, and Renner relations [52].

15
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where (Vi(x), Vi(x)) € G = SU(2)g x SU(2)1.. Note that the ground
state, represented by U = 1, is only invariant if Vx = Vi, which corre-
sponds to the subgroup H = SU(2)y as desired. The covariant derivative,
which transforms as U itself, is defined as

D,U=0,U~-ir,U~+iUl,, (2.22)

where the external currents r, = v, + a, and [, = v, — a, transform
consistently according to equation (2.15). Eventually, the quantity

X =2B(s +ip) (2.23)

represents the scalar and pseudoscalar sources transforming as U. The
constant B is related to the quark condensate (§g), = —2F*B in the chiral
limit. The chiral order of the building blocks in equations (2.21) to (2.23)
is given by

U~0(q"), D,U~0O(q), x~0O(q*). (2.24)

Finally, the effective Lagrangian implementing local chiral invariance,
spontaneous symmetry breaking and explicit breaking by the non-van-
ishing quark masses up to order two reads [14]

L, = FZZTr[D”U(D" U)T] + FZZ Tr()(UJr + UXT> . (2.25)

Other possible terms are excluded due to Hermiticity as well as parity
and charge conjugation invariance. Note that the pion mass at leading
order is given by M? = 2B, where 1 = (m,, + m,)/2 is the average of
the current quark masses [14]. By example of equation (2.25), only even
chiral orders can appear in ChPT due to Lorentz invariance, since all
Lorentz indices need to be fully contracted. Furthermore, F and B are
the only LECs up to order two.
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2.3 INCLUSION OF VECTOR MESONS

In this section, the mere construction of a leading-order effective Lagran-
gian describing spin-one particles is presented, whereas the difficulties
concerning power counting are addressed in chapter 3.

Heavy degrees of freedom, such as vector mesons, are also termed
resonances reminding of their short lifetime. In principle, such reso-
nances are already implicitly included in chiral perturbation theory by
the numerical values of the LECs. This can be illustrated by expanding
the propagator of the resonance with heavy mass My as

;z—ilh(q—z)ﬁt(q—z)zﬂ..], (2.26)
¢-My M| M/ ‘Mg

where the Lorentz structure is omitted for simplicity. Consequently, the
contributions are absorbed order by order in the corresponding LECs. In
contrast, the explicit inclusion of resonances replaces the finite expansion
in equation (2.26) by its exact expression, which can be advantageous.
This is denoted as resummation of higher-order terms and an example
concerning nucleon form factors is given in [26].

Phenomenological Lagrangians including the interaction of vector
mesons have already been discussed in the late 1960’s [55, 56, 57]. Fur-
thermore, it has been known for a long time that vector mesons play
an important role in low-energy hadron physics, e.g. in the successful
description of the pion form factor in terms of the vector meson dom-
inance model, see [58, 59] for a review. Their experimental properties
are given in table 1.1 on page 6. Thus, the approximation that both reso-
nances included here possess the same mass, M = M, ~ M,, is valid
within the accuracy of this work. In the framework of a chiral effective
theory, several ways of implementing vector mesons exist [60]. Here, the
Lorentz vector field representation is chosen for the description of rho
and omega mesons. Additionally, only external vector currents are taken
into account, i.e. a# = 0 and r# = [# = y#, In this case, it is convenient to
introduce the following additional building blocks:

1
e =u'xut +uyx'u, T,= E[zﬂayu +uduut - i(uv,u+ uv,,uT)] ,
u, =iu'(D,U)u", T, =09,,-0I,+[[,L],

F* =9ty =o',  fI =uF"u" + u'FPy,

(2.27)
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where u is defined as the square root of U, u? = U. Their chiral order is
given as usual by

x«~0(q%), T,~0(q"), u,~0(q'),

) Y (2.28)
L,~0(q*), F*~0(q%), fI'~0(qg%).

The building blocks in equation (2.27) transform with the exception of
I, homogeneously, e.g.

U, — KuHKT, (2.29)

with respect to the so-called compensator

K(Vi, Vi, U) = (\/VRUVL)_IVR\/E, (2.30)

which is unitary, K = K~'. Note that I, transforms inhomogeneously
as

I, > KIL,K"-9,KK' (2.31)

and thus cannot be used separately in the construction of the Lagrangian.
Next, the rho mesons—combined as an isotriplet—are represented by
an SU(2)-valued Lorentz vector, which leads to the building blocks

yu oy Tay
e R (2.32)
Viy=V,V, -V, V, with V,V,=9,V,+[T,,V,].

These transform homogeneously according to equation (2.29). At this
point, the most general Lagrangian for rho mesons with mass M, rele-
vant to the magnetic moment can be written as

£=—%ﬁ(%HNU+{N@+QTKXJMTHO@VO
+4igy Tr(V,V,v*VY) + 2 Te(V, V) Te(VE V)
+2g Te(V,V#) Te(V, V) + id, Tr(V,,, T*)
+ fr Te(Vi fEY) +igon Te( VL Vo fE) + .0

(2.33)

where ¢, o, g1, 82> dx» fv» §o» are unknown LECs. Here, the relevant
linear terms in V,, have been taken from [61]. Furthermore, terms with
LECs having higher negative mass dimensions have been assumed to
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be suppressed by the intrinsic scale A. Regarding interactions of vector
fields only, the Lagrangian is equivalent to the hidden-gauge formalism
[59]. However, it is still an open question how to construct a consistent
Lagrangian with interactions among pions and more than one vector
field. In this sense, the term proportional to g,. should be regarded as a
first attempt to address this issue.

In [62], it was shown that starting from the most general Lagrangian
for three massive vector particles one is led to a locally SU(2) invariant
theory with an additional mass term by requiring global U(1) invariance,
self-consistency, and renormalizability . This simplifies the Lagrangian
in equation (2.33) with respect to the LECs gy, g1, £, and they can be re-
expressed by a single LEC g. Additionally, employing a field redefinition

i
Vi=pu—=-T (2.34)
4
and using the KSRF relation [63, 64]
M} =2¢°F?, (2.35)

rho meson fields are transformed into the so-called Weinberg parame-
trization [57], which yields the Lagrangian in a form where renormal-
izability has been shown [30]. Note that the fields p# transform inho-
mogeneously with respect to the compensator. Eventually, taking the
isosinglet omega meson w, with mass M, into account,? the Lagrangian
reads

1 v
L= = Tr(pup™) + ide Tr(pyuT™) + fr Tr(pun f17)
. M} + e Tr(x+)/4

Tr| (gpu - iT) (gp* ~ 1)

2
g (2.36)
+ ié Tr[(gp# - il“#)(gpv - zTV) fv]
1 v Mi' F v o
- Zwﬂvw” + Ta)ﬂw” + ngpﬂeymlgw Tr(p 5u”) ,
where
3
T
A N1
' ; 27 (2.37)
. 2.37
Puv = aﬂpv - avp/t —18 [PwPV] >
Wyy = 0,0, — 0, W), .

8 This interaction term can be found in [29]. However, there is a factor F missing in the
Lagrangian L, in order to define the LEC g, with mass unit eV~".

19






POWER COUNTING AND REGULARIZATION

3.1 POWER COUNTING WITH VECTOR MESONS

Implementing a consistent power counting scheme including the vector
mesons as heavy degrees of freedom is a non-trivial task. They introduce
a mass scale M, ~ M, which is much larger than the pion mass M or
typical energies of processes described by ChPT. Furthermore, the vector
mesons as unstable particles should be implemented with a complex
mass, i.e. M} = (M, - il /2)?, where M, and Ty denote the pole mass
and width of the vector meson in the chiral limit, respectively. The
implementation of unstable particles in a renormalizable quantum field
theory was firstly discussed in [65]. There, it was shown that the S-matrix
connecting stable particles only is unitary and causal. In perturbative
calculations, one method of dealing with unstable particles is termed
complex-mass renormalization scheme [66] and it has been applied in
chiral effective field theories [29]. Recently, the perturbative unitarity
of the S-matrix in the complex-mass scheme has been shown at the
one-loop level [67].

Weinberg’s power counting relies on the fact that only light degrees
of freedom appear in loops and therefore the momentum integration
undergoes a soft cut-off [15]. This assumption does not hold anymore
if the theory contains vector mesons since then ,,hard“ poles at large
momenta contribute significantly. Hence, loop diagrams with a previ-
ously assigned order give contributions which have a lower order than
expected. Fortunately, it turns out that these contributions are analytic
in M? = 2B, i.e. in the quark mass expansion, as well as in the exter-
nal momenta [68]. Therefore, the so-called power-counting-violating
terms can be absorbed by the redefinition of the bare parameters of the
Lagrangian, e.g.

o=gr+0g=gr+&+0g-¢&. (3.1)
— Y~
=gr =6g

Here, the bare g, stays real whereas the renormalized part gr as well as
the counter-term part §g can be complex. Furthermore, the splitting in
equation (3.1) is not unique with respect to finite terms & as indicated
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and thus the splitting depends on the used renormalization scheme. In
conclusion, using an appropriate renormalization scheme enables us to
restore a consistent power counting including heavy degrees of freedom.

The extended power counting rules, which allow for assigning a chiral
order to each diagram, read as follows. First, the list of small quantities,
collectively denoted as g, needs to be extended by the expression K? —
MZ = O(q') if K is a large momentum since the resonance is regarded
as nearly on-shell, K? ~ M2. Next, it is necessary to investigate every
possible flux of the external momenta through each diagram. For each
given flux the order of vertices and propagators are determined and
summed up as detailed below. Finally, the lowest order resulting from
the various flux assignments is defined to be the chiral order of the
diagram. The order of the vertices can be read off the corresponding
Feynman rules taking into account the previously assigned flux of large
external momentum. Additionally, one considers that the pion mass
counts as O(q'), that the vector meson masses count as O(q°), and
that each loop integration counts as O(g*), as usual. The order of the
propagators for small and large momenta can be read off the following
table:

Momentum 7 p or w

Small 0(q2) 0(g°)

Large O0(q")  0(g™)
Table 3.1

This can be motivated by the following approximative considerations of
the typical pole structure of a propagator:

1 1

e a0
1 1
ke ke O0)
1 1 (3.2)
s s = 0(g),
R-M M2
1

_ -1
e O(q7') (see text above),
P
where k represents a small momentum and K a momentum with at least
one large component, say the zeroth, corresponding to the large mass of
a rho meson.
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3.2 REFORMULATED INFRARED REGULARIZATION

This section illustrates the calculation of the analytic subtraction terms
following [18]. They are necessary to renormalize the one-loop integrals
such that they satisfy the power counting. As an example, the following
one-loop scalar integral is considered,

drk 1

H=i 2m)" [(k - p)? = m? + i0* ][ k2 — M2 + i0* ]

, (3.3)

where m denotes the large mass of the resonance, M the small pion
mass and # the number of space-time dimensions. For example, this
integral appears in the calculation of the two-point function of the rho
meson with external momentum p. Here and henceforth, the method
of dimensional regularization, whose key feature is preserving the Ward
identities, is employed [69, 70]. Using the standard Feynman parametri-
zation formula [71]

1 ! dz
— / - (3-4)
a 0 [az+b(1-2)]
with a = (k - p)? — m? +i0* and b = k? — M? + i0*, interchanging
the order of integrations and carrying out the integration over d"k, the
integral in equation (3.3) reads

1 1 nf2—
H-= —WF(Z— nf2) /0 dz[A(z)] 2 2, (3.5)
where
A(z) =-p*(1-2)z+ m*z+ M*(1-z) - i0* (3.6)

and I'(z) is the well-known Gamma function. According to the infrared
(IR) regularization scheme of Becher and Leutwyler [17], the integral
H = I + R is divided into the IR singular part I and the regular part R
defined as

nf2-2

- _(M—I)n/zr(z -n/2) /Ooo dz[A(z)]"" 7, (3.7)
R- Wr(z —n2) [ dz{A2)]

n/2-2
. (3.8)

It can be shown that the IR singular part I obeys power counting and
that the IR regular part R is analytic in the square of the pion mass and
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external momenta. Therefore, one can simply replace the integral H by
its IR-regularized part

H®=H-R=1, (3.9)

considering that the part R can be compensated by redefined parameters
of the most general Lagrangian. Note that the splitting might introduce
additional divergences in I and R which cancel in the sum I + R. In
general, infinities are neglected according to the so-called MS renorma-
lization scheme, i.e. terms proportional to the infinite quantity

_ 161712 {- ! - %[ln(4ﬂ) e () +1]) (3.10)
are set to zero, arguing that they also can be absorbed in counter-terms of
the most general Lagrangian. The part R in equation (3.9) is also denoted
subtraction term since the regularized integral is obtained by subtracting
R from the original integral. Furthermore, the regular part R satisfies
the Ward identities separately from I and, hence, the IR regularization
preserves the symmetries of the theory.

In the original approach of Becher and Leutwyler [17], the crucial step
is to calculate the singular part I directly in order to obtain the regular-
ized integral, see also [68]. This turns out to be difficult in generalized
situations. However, the subtraction terms can also be obtained order
by order by expanding the integrand in equation (3.5) directly in small
Lorentz-invariant quantities, say M? and p? — m?, and interchanging
the series and the integration. It has been shown that this procedure is
equivalent to the original approach order by order, see [18] for details. In
the following, this approach is termed reformulated IR regularization.

In practical calculations, the reformulated procedure provides an
easier method of finding the renormalized version of the results. This
concerns the integration as well as the identification of R, e.g. in two-loop
calculations. After a standard Passarino-Veltman reduction [72, 73] in n
space-time dimensions, the scalar integrals containing only pion masses
and small momenta, such as the external photon momentum, are kept,
whereas integrals containing only large masses and external momenta
are discarded. This implies that diagrams with loops containing only
heavy degrees of freedom can be discarded directly. Next, integrals
which contain both scales are calculated in n dimensions as explained
above up to a sufficient order in the small invariant quantities. Finally,
the subtraction terms are obtained by the expansion around n = 4,
neglecting divergences according to MS scheme. Note that even after
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expressing the integrals in Feynman parametrization and expanding the
integrand, the analytic integration and subsequent expansion around
n = 4 might turn out to be a formidable problem. Additionally, due to
the Passarino-Veltman reduction, small quantities might appear in the
denominator as so-called Gram determinants, which necessitates the
calculation of subtraction terms with a higher order than the desired
accuracy of the results. These subtleties are detailed in chapter 7 by
means of an explicit example.
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4.1 PRELIMINARY REMARKS

The inclusion of massive particles with non-zero integer spin in an effec-
tive quantum field theory necessitates non-trivial considerations even
on a classical level. Naturally, one prefers to use objects with a well-
defined behavior under Lorentz transformations in order to construct
Lorentz-invariant Lagrangian densities £. For example, a four-vector
V., which is used to describe a spin-one particle, transforms under a
Lorentz transformation A as

V, - VH/ = A#vVv . (4.1)

Consequently, the building block V, V# is convenient for the construc-
tion of £ since it is invariant under A, i.e.

V,VE - VvE, (4.2)

However, a four-vector field V# has four degrees of freedom or an anti-
symmetric tensor field W#" has six degrees of freedom, but a spin-one
particle has only 2 x 1+1 = 3. Hence, one inevitably introduces more de-
grees of freedom than are physically realized. In canonical quantization,
this leads to the appearance of so-called primary constraints in deriving
the Hamiltonian density, i.e. equations of the form?

¢(V,1I) = 0, (4.3)

from which some of the velocities V are not solvable. Here, V denotes
the fields—neglecting the Lorentz structure—and IT = 9£/9V denotes
the corresponding canonically conjugated momenta. In equation (4.3),
the condition holds only after the evaluation of Poisson brackets. This is
termed a weak equation in Dirac’s sense [74]. There is a crucial differ-
ence between particles with and without mass. The former is the case
discussed here and thus the constraints in equation (4.3) belong to a

The irreducible 2§ +1 dimensional representations of SU(2) are interpreted as particles
with spin S.

Note that the Lorentz structure and internal indices are suppressed and therefore ¢,
can represent several non-equivalent expressions.
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system of so-called second-class constraints. For the latter, so-called
first-class constraints appear, which requires the introduction of addi-
tional constraints, i.e. gauge fixing terms. A well-known example for
the massless case is Maxwell’s theory for classical electrodynamics. In
[75], a thorough review of these issues is available.

Next, the non-solvable velocities are simply regarded as unknown
phase space functions z(V, IT) and the Hamiltonian density is obtained
by Legendre transformation,

Hi=¢iz+ M, (4.4)

where H depends on the particular form of £. The unknown functions z,
which can also be interpreted as generalized Lagrangian multipliers, can
eventually be determined by the physical requirement that the constraints
are conserved in time, i.e. the Poisson bracket of the Hamiltonian with
the constraint must vanish,

{Hi, ¢1} ={¢, 01} 2+ {H, 1} ~ 0, (4.5)

where H;) = [ d3xH 1. In general, the parameters a of the Lagrangian
specify the properties of the ,,matrix“ { ¢, ¢ }. Thus, the parameters
determine if the unknown functions z, interpreted as a ,vector*, can be
solved from the , linear system of equations in (4.5). In this manner, one
should keep in mind how many constraints are physically meaningful,
i.e. the number of constraints plus the number of physical degrees of free-
dom must equal the number of degrees of freedom? in the Hamiltonian
H, in short

(#DOF in ’H) - (#Constraints) = (#DOF ofparticles) . (4.6)

This reasoning can lead to different options for conditions among the
parameters a and further second-class constraints ¢, ¢s, ... can appear.
Of course, they themselves must fulfill the physical requirement of con-
servation in time, which might in turn lead to more conditions for the
parameters a. This procedure is illustrated as a cycle of the flowchart in
figure 4.1. There, the term ,depends on a“ exactly refers to the case if
the unknown functions z can only be solved for a certain choice of a.
Additionally, an example is provided in section 4.2, which also prepares
the concepts for the antisymmetric tensor model describing massive vec-
tor particles in chapter 6. In summary, the crucial result of a constraint
analysis is to impose conditions on the parameters a and thus to restrict
the variety of effective field theories to self-consistent ones.

That equals the number of fields plus the number of canonically conjugated momenta
in the Hamiltonian formalism.
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Formulate Lorentz-invariant Lagrangian
L(V, V) with parameters a.

!

Determine Hamiltonian #H (I, V)
by solving for V.

i Some V not solvable.

Introduce Lagrange multiplier z for
unknown V and primary constraints ¢.

/

Require Choose a.
conservation in Introduce
. €
time for ¢;. secondary
Solve for z. (tertiary, ...)
constraints ¢,
i (¢3> cee )
#DoF in H minus
#Constraints
equals #DoF of depends on a
particles?
iNo Yes
Non-physical Self-consistent
theory. theory.
Retry with other
choice for a.

Figure 4.1: Constraint analysis as a flowchart. The number of degrees of free-
dom is abbreviated with #DoF. The physical requirement that the
constraints are conserved in time is crucial for the resulting con-
ditions on the parameters a. The case that no primary constraints
appear is trivial. Note that one can obtain a non-physical theory
even though £ is the most general Lagrangian. Refer to section 4.1
for further explanation, especially for the option ,depends on a“
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4.2 CONSTRAINT ANALYSIS OF THE
FREE ANTISYMMETRIC TENSOR MODEL

As an example for the previous remarks, the Lagrangian density
L=a0"W,,0,W" + b0’ W,,0, W + c W, WH (4.7)

of an antisymmetric tensor field Wy, = —-W,,, is considered, analogous
to [76, app. A]. In the Hamiltonian formalism the particle is described by
six pairs of canonically conjugated variables (W,,, I1,,), hence twelve
degrees of freedom, which must be reduced to the six physical degrees
of freedom of a spin-one particle by six independent constraints. This
requirement leads to conditions for the parameters a, b, c.
Henceforth, a non-covariant formulation is employed for practical

reasons. This means explicitly that the Lagrangian is expressed in the
six fields

Wor, Woa, Wos, Wia, Wiz, W3 (4.8)

by exploiting the antisymmetry W,, = —W,,. This choice can be made
without loss of generality and leads to

L= a[WooWoo— Wo;'Wo;—Z(aiWioWoo—aiWijWOj)
+ 0 Wi Woj — 0, Wid Wik
+ b[WOOWoo — O Woo 0k Woo — Wio Wig + 0k Wigdk Wi
- WOjWOj + 0k Wook W, + W:JVV;] - akWijakWij]

+ C[WooWoo = WioWip — Wo; Wo; + VVijVVij]

a| ~ Wo; Woy + 2(9: Wiy Woj = 0; Wi Wor) + 9 Wi Woj
— 0 Wixdj Wik + 0;i Wi 0 Wik + 9; Wi 0 Wy — aiWkiajij]
+2b| = Wy W + O Woyde Woj + Wi Wiy — 05 Wiyde Wy
+2c[—W0jWOJ- + I/V,-jW,-j],
(4.9)

where Latin indices i, j, k range from 1 to 3. In the last step, the con-
vention was introduced that a factor W;; (including W;;) restricts any
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implicit sum involving i or j to i < j. This convention will be kept from
now on. As a result, the six canonically conjugated momenta read

HOj: aﬁ = —2(a+2b)W0j+2a(a,-VVij—ain,-), (4-103)
aWo,
oL . ..

Next, four cases of parameter choices need to be distinguished, of
which two are easily seen to be physically meaningless. These read:

b =0, a=-2b=0: This corresponds to a Lagrangian without a kinetic
term. All momenta vanish.

b+ 0, a + -2b: Here all velocities are solvable from equations (4.10a)
and (4.10b) and no constraints reduce the twelve degrees of free-
dom. Hence, not only a spin-one particle is described, which is
not desired here.

In the following sections both the remaining, physically meaningful

cases are discussed.

The Caseb=0,a+ -2b=0

From equation (4.10b) one obtains on the one hand, due to i < j, three
primary constraints

ﬂb%j =1I;; ~ 0, (4.11)
and from equation (4.10a) on the other hand three solvable velocities

1

W = Tlo; + 9; Wij — 9; Wj;. (4.12)

2a

The Hamiltonian density is found by a Legendre transformation to be
7‘[1 = HO]WOJ + H,]m] -L
1
= ﬁb}jzij - EHOjHOj —ad; Wp;i0;Wy; (4.13)
+ 20 Wo; Woj = Wi Wij)

where the solvable velocities have been replaced and unknown functions
z;j = W;j have been introduced.
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Next, these unknown functions should be determined iteratively by
the physical requirement that the Poisson bracket of the constraints and
the Hamiltonian function H; = [ d3xH, vanishes, i.e. that the constraints
are conserved in time. This leads to

{O1m (), Hi(1)} = 4c Wi (2, ¥)

+ 3 Tom(t, 7) - poi(t, 7) ~ 0, (4.14)

where the canonical equal-time commutation relations
{Wii(t, 7), i (£, %)} = 8166 (7 - X)), (4.152)
{Woi(t, 7), om (8, 2)} = 80 (5 - %), (4.15b)

have been used. As usual, all other Poisson brackets of the fields and mo-
menta vanish. Furthermore, Poisson brackets containing the unknown
functions {...,z;;} can be ignored since these are always factors of a

~weakly“ vanishing constraint.

From equation (4.14) three secondary constraints result, namely
Ol = 4 Wi + 01Tlop — O Tlor = 0, (4.16)

where the arguments of the functions are discarded here and henceforth
for clarity. Imposing conservation in time again yields

{(P%m, Hl} = 4C[Zlm - (alWOm — Om WOI)] ~ 0, (4.17)

so that the unknown functions can be determined to z;,, = 0; Wy, —
Om Woy if ¢ # 0. In the end, a self-consistent theory with 6 constraints
and 12 - 6 = 6 physical degrees of freedom is found as desired.

The Case b + 0, a = -2b

This case is analogously calculated to the one before, however, it is slightly
more complicated. Here, equation (4.10a) yields the three constraints

¢})J:HOJ+4b(8,VV,]—a,M7],) ~0, (418)
as well as equation (4.10b), which yields the three solvable velocities

. 1
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The Hamiltonian density reads via Legendre transformation
Hy = TIo;Wo; + I1;W;; - £
= §),20; + énijn,-j +2( Woy Wo; — Wiy W)
+ Zb(aiWOiajWOj — 0 Wojok Wo; + 0k Wijok Wi (4.20)
- aiVVikajok + aiWkiajVij + aiVVikajij
- 3;Wisd; Wiy )

where again three to be determined functions were introduced and the
constraints in equation (4.18) were identified.

The following Poisson brackets are calculated as usual, except for
the fact that an integration by parts is carried out with respect to the
integral of the Hamiltonian function H,; = f d*xH, if necessary. From
the conservation in time one obtains

{(/)})l, Hl} = 4b818,~W0,- - 4bak8k WOI + 4CW01 + anH,,l — anH,n
= ¢ ~ 0.

At this point the convention in use shall be stressed again, e.g. it holds for
I =1that ¥, d,I1,; = 0 in equation (4.21). Furthermore, one cannot
solve for the unknown functions and thus equation (4.21) represents
three more secondary constraints, as indicated in the second line of
equation (4.21).

In order to calculate the conservation in time of ¢, the intermediate
result

{Hnl, Hl} = 4CWnl - 4b(ana1‘/vll - anai‘/vli
—010; Wiy, + 010; Wy,; — 0k0x Wy

(4.21)

(422)
)

is useful, which finally leads to

{¢2), Hi} = 4b0,0,20; — 4b0x0xz01 + 4czo;

- 4C(an ‘/Vln - an Wnl) + 4banan(aim/li - ai‘/vil) . (4.23)

This differential equation (4.23) is solved by z¢; = 9, Wi, — 9, W,,;, since
0,Zo; = 0 holds in this choice. Moreover, the condition ¢ # 0 is necessary
to ensure invertibility of the differential operator in equation (4.23).

As in the previous case, one is led eventually to a self-consistent the-
ory with the correct number of degrees of freedom. In both the self-
consistent cases, the remaining non-vanishing parameter associated
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with a or b can be eliminated by an appropriate normalization of the
Lagrangian to obey the canonical commutation relations. Consequently,
it can be shown that the parameter ¢ # 0 is connected to the mass of
the free particle. Thus, it is crucial that a massive free particle has been
considered.



Part I1

APPLICATIONS AND CALCULATIONS






SU(3)-INVARIANT GENERAL LAGRANGIAN

In this chapter, a short excursion to the SU(3) sector is undertaken.
Mostly, the calculations have been carried out to implement the neces-
sary algorithms on a computer while still having a cross-check with the
very similar calculations in [62]. Here, an effective Lagrangian density
for eight vector particles with same mass M including only interactions
with dimensionless coupling constants g and h is considered, namely

£A :£2+£3+£4, (51)
where
1 M?
L, = —ZVIf’vV“’” + 7V,f yeu, (5.2a)
Ly =-gVeiviorve, (5.2b)
Ly =-haVEvIveEya, (5.2¢)

with the usual notation V¢, = 9,V,# — 9, V. All Latin indices of the
beginning of the alphabet range from 1 to 8. The aim of the following
is the derivation of a consistent theory with a global SU(3) invariance
assumed a priori. This theory could describe the vector mesons in
figure 5.1 on the next page, however, the global SU(3) invariance is
broken due to the larger mass of the strange quark in comparison with
the masses of the up- and down-quarks. The physical fields with well-
defined quantum numbers in figure 5.1 are related to the Cartesian fields
as usual [76],

5 pOINV2+ ws/ V6 p K**

YAV = p- —p° N2+ ws/6  K*°

-l K* K*° —20/\/6
(5.3)

1

S

2

Under a global infinitesimal SU(3) transformation the Cartesian fields
behave as

V; - VH“ + ebfh‘“ V; ) (5.4)

1 See also section A.1 on page 95 for the notation used.
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Y

Figure 5.1: The vector meson octet as physical fields in a diagram of isospin
three-component I3 versus hypercharge Y = B + S. The variable
S denotes the strangeness and the baryon number B vanishes for
mesons.

Inserting equation (5.4) in equation (5.2b), thereby obtaining £}, and
demanding 8L; = £} — L5 = 0 + O(€?), one finds constraints for the
coupling constants g**¢. These constraints can be used to parametrize
L5 with only two independent coupling constants y; and y,,

gabc — ylfubc + yzdubc . (5.5)

The explicit form of equation (5.5) is derived by contracting the SU(3)-in-
variant trace Tr(V, V39, V) of matrices V, = Vi#A* with Lorentz-invari-
ant tensors of suitable rank.? An analogous consideration for £, leads
to three independent coupling constants #;, 5, and 73 with

habcd _ ﬂlaac(sbd n ﬂzaah(scd + nsfahefcde , (5.6)

where other possible terms are equivalent due to the permutation sym-
metry of the Lorentz structure in equation (5.2¢).

The constraint analysis is carried out identically to [62, sec. III], since
the parameter range of the indices a, b, ¢, d is irrelevant there. In this
manner, the canonically conjugated momenta read

oL
7% = ~ - beca Vh c , .
0 Vs & Voo (5.7)
a oL a becayrbysc
= aV;* =Voi + gV Ve, (5.8)

2 Under the additional assumption that the resulting scalars should be even under
parity.
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and the three primary constraints are obtained as
¢¢ =78+ gPVEVE ~ 0. (5.9)

The Hamiltonian density 7, is constructed as in equation (4.4) on page 28
and conservation in time yields a linear system of equations

{8, Hy} = A"Z" + y* ~ 0, (5.10)

where y“ are eight z-independent phase space functions and the crucial
8 x 8 matrix is given by

Aub — (ghca + gcbu _ gacb _ gcub)Voc . (5.11)

Furthermore, to obtain the correct number of constraints, equation (5.10)
must not be solvable for z. This reasoning leads to three secondary
constraints

¢5=x"~0, (5.12)
which are also required to be conserved in time, i.e.

{¢9, H} = M%2b + Y9~ 0. (5.13)
Here, the crucial 8 x 8 matrix in equation (5.13) is given by

Mab — M26ab _ (gbca n gcba)aivic
_ (gacegbde _ 4I’lade)ViCVid (5.14)
_ (habcd + hacbd + hadcb)VOCVOd

and Y are some irrelevant functions. At this point it shall be emphasized
that [62] gives a shortened form of equation (5.14). There, the relation
only holds if the coupling constants obey the permutation conditions

habcd — hhcda hcdab — hdabc

— hcbad — hadch — hdcba — hbadc (5'15)

which, in particular, are not satisfied by the parameter choice in equa-
tion (5.6) and by the Yang-Mills parametrization

gahc — gfabc ,

habcd _ (5'16)

abe _cde

1
287
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No. Fields Factor in det M Inequality
1 0, VP=x 3M*-4yix? y3<0

2 Vo=x,  M2+4(m+n2)x? M+1220

Vi=y = 12(m +n2)y? Mm+n2<0

Table 5.1: Determinant of M in detail. For a given choice of fields all other fields
are set to zero. Here, only the relevant factors of the determinant are
displayed. Each step depends on the previous ones.

For example, consider the case a = b = 1and ¢ = d = 2 in equation (5.15),
i.e. h122 = h1221 whereas in equation (5.16) h1?2 = 0 but h1??! = —g2/4
holds. This appears also in section 6.2 for the four-field interaction.
It boils down to the fact that one is allowed to use the permutation
symmetry as in equation (5.15) only after implementing the a priori
assumed symmetry, e.g. global SU(3) or U(1).

In order to obtain a consistent theory, the parameters need to be
chosen such that the determinant of A vanishes and the determinant
of M is not equal to zero. Owing to the symmetry properties of f4b
and d?¢, it is easy to see that A%® = 0 and hence det A = 0 is obviously
satisfied. The analysis of det M@ # 0 is carried out using that det M
must not vanish for all fields. This is detailed in table 5.1 and one obtains

m=-%, and y,=0, (5.17)

besides several insignificant inequalities.

In order to carry out the renormalizability analysis, a general vector
particle model has been implemented in FeynArts, see also section B.1.
In this manner, the above derived relations for the coupling constants
are employed in completely arbitrary three- and four-particle Feynman
rules resulting from equations (5.2b) and (5.2¢). Since A" = 0 holds, the
infinite parts of the one-loop contribution to the four-vertex function
of V1VIVIV! must necessarily vanish. The relevant one-loop Feynman
diagrams are topologically the same as in figure 6.2 of the next chapter.
The calculation can be substantially simplified by neglecting terms which
contain p#’s as part of their Lorentz structure, since at tree level only g#



SU(3)-INVARIANT GENERAL LAGRANGIAN 41

structures appear. Finally, this reasoning leads to the necessary, but not
sufficient, condition

0 = 44817 — 967, (y2 - 4173) + 9(y2 — 4775)°

16 \2 (5.18)
= 9<yf —4n; - ?111) +19277,
which is equivalent to
yi=4n; and n,=0. (5.19)

Comparing equations (5.16) and (5.19), one is led from a globally SU(3)-
invariant theory to a locally SU(3)-invariant one concerning the inter-
action terms—also known as a Yang-Mills theory with an additional
mass term—only by requiring self-consistency of the constraints and
perturbative renormalizability.






MASSIVE VECTOR PARTICLES IN THE
ANTISYMMETRIC TENSOR MODEL

This chapter presents a detailed analysis of the antisymmetric tensor
model for three massive vector particles including the interaction terms
with coupling constants of mass unit eV' and eV°. First, all available
Lorentz structures relevant to three- and four-field interactions are de-
rived. Consequently, the U(1) invariance is employed to reduce the
number of free coupling constants. Next, a constraint analysis is used to
impose self-consistency on the coupling constants. Finally, conditions
for the renormalizability of the theory are calculated.

6.1 AVAILABLE LORENTZ STRUCTURES OF THE INTERACTION
TERMS

From the Lagrangian density of the free tensor model in equation (4.7)
on page 30 with mass unit eV* one derives' that the antisymmetric tensor
field W#” has mass unit eV. Using the fact that all Lorentz indices in the
interaction terms must be completely contracted, interaction terms with
coupling constants possessing mass unit eV'"", where n = 0,1,2,...,
can be constructed. In the following, all available Lorentz structures for
the cases n = 0, i.e. three fields, and » =1, i.e. four fields, are motivated.
Note that the derivative operator d,—with mass unit eV—needs not to
be taken into account since possible terms

(1) must contain an even number of derivatives,

(2) must not represent a total divergence, and

(3) must not be equal to the kinetic term.

The Case n = 0: Three Fields

A general interaction term has the form of a rank-six tensor

Weapryybapryreaps (6.1)

The parameters a and b in equation (4.7) are dimensionless in order to be consistent
with the fundamental commutation relations in canonical quantization.
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where a, b, ¢ € {1,2,3} denote the necessary internal indices for three
particles. This expression can be contracted with all Lorentz-invariant
rank-six tensors. These read—up to index permutations—

o1 8arpr8asps (6.2a)
and

€ prazfa8asps > (6.2b)

where (gqp) = diag(1, -1, -1, -1) denotes the metric tensor and €,4,s de-
notes the totally antisymmetric Levi-Civita symbol with the convention
€% = —¢gpp3 = 1. Thereby, all 6! = 720 index permutations of (6.2a) and
(6.2b) are contracted with expression (6.1), additionally introducing a
new coupling constant g#*¢ for each tuple (a, b, c).

This work has been carried out using a computer program, see sec-
tion B.2, and one obtains for the case (6.2a) the term

[:3 — _gabc Wuyv Wb ud WCV)L ) (6.3)
The resulting terms for the case (6.2b) read

€pyse we af WbayWC de , €pyse we af Wb yé WC‘XS ,

(6.4)
etxﬁSs w* af Wb yd ch €

However, these terms—which all are equivalent due to the suppressed
coupling constants g*’°—are discarded in the further discussion since
they are odd under parity transformation owing to the single Levi-Civita
symbol. The latter statement can be seen as follows: Under the symmetry

transformation parity P the fields behave as W#" 5 Wy, whereas the

e P . .
Levi-Civita symbol behaves as e*f1? — —€qpys- This results in a change
of sign, which shows the proposition.

The Case n = 1: Four Fields

A general interaction term has the form of a rank-eight tensor
WaaPL b azpaypreasps yprd aapa , (6.5)

with the same conventions as in the case n = 0. The invariant Lorentz ten-
sors (up to permutations) which do not lead to odd-parity interactions
read

Sai1p18azpr8as 3 8aspa (6.621)
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and
€aipraz s €as sy - (6.6b)

This time, 8! = 40320 permutations of Lorentz indices need to be
considered for each term, which results for the case (6.6a) in six different
terms:

aa b cydyard aa bySyarc d
WP we s werewe o, waekwerowe s we o, ]
Wuocﬁwbyéwc Wd ( 7a)
o ap >
Waocﬁwbay Wcﬂa Wdys , Waaﬁwbocy WC)}é‘wdﬁ@ , (6 7b)
au bydyprc d ’
WP WEroWe, W

Note that the three terms in (6.7a) are structurally equivalent if taking
the coupling constants into account, analogously to the terms in (6.4).
The same reasoning holds for the terms in (6.7b). Hence, only two struc-
turally independent interaction terms with arbitrary coupling constants
are obtained:

‘Ci — _hizbcd we af Wb yé Wcaﬁ Wdy5 , (6.88.)
Ei _ _hghcd we af Wh yé Wcocy Wdﬁé ) (68b)

In the case (6.6b), the same procedure yields eleven terms of which three
are structurally independent. Including arbitrary coupling constants,
these read

L3 = —hgbedeaPrduio e g Why s Wei we ., (6.8¢)
[,;1 — —hZthGaﬁYH€SVA0 Waaﬁ Whyé‘ chv WdAg , (68d)
L5 = _hgbcdeawleﬁéva Waa/} Wbyé Wc/w Wd)la ) (6.8¢)

At this point, it should be mentioned that the three Lagrangians in
equations (6.8¢) to (6.8e) do not have a linearly independent Lorentz
structure from the first two in equations (6.8a) and (6.8b). This can be
seen by virtue of the relation [77]

Av ngc g/l B
gPﬁ

gt g
eyvaﬁe/lpar = —det gpy gpv gptx
gay gav gaa gaﬁ
gry grv grrx grﬂ
which expresses an arbitrary product of two Levi-Civita symbols in

terms of metric tensors. However, all Lagrangians are kept in order to
provide a cross-check for the algorithm of the following section 6.2.

, (6.9)
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Summary

Altogether, the following Lagrangian density

L= ,Cz + ‘Cint (6-10)

with
L ——la”W“ 0 W“’”+£§W““VW“ (6.11)
2 = B uv Op 4 wv A1

and

Line = L3+ L+ L3+ L3+ L3+ L5

will be considered, referring to equations (6.3) and (6.8a) to (6.8¢). Ad-
ditionally, the choice a = -1/2, b = 0 and ¢ = M?/4 has been made for
the free Lagrangian £,, including the generalization that the fields W!#"
and W2#" have the mass parameter M = M; = M, and the field W3#
has the mass parameter M;.2 In the following sections, three physical
requirements are employed:

1. invariance under U(1) transformations of the fields, i.e. conserva-
tion of charge,

2. self-consistency of the constraints with respect to their conserva-
tion in time, and

3. absorbability of the infinite parts in the vertex functions into the
coupling constants.

Typically, these requirements reduce the number of the independent
33 + 5 x 3% = 432 coupling constants.3

6.2 REQUIREMENT OF THE U(1) INVARIANCE
The fields W4#» behave under an infinitesimal U(1) transformation as
WaHY s W'aHv — Wanv _ £€3ab Wb/,tv . (6.12)

The free part of the Lagrangian density is obviously invariant under
this transformation, i.e. §£, = £, — £, = 0, whereas the invariance

2 Strictly speaking, the mass term should be written with the help of a diagonal mass
matrix (M2,) = diag(M?, M?, M3), according to the sum convention.

3 As detailed in the following, this number does not account for the permutation
symmetry due to the Lorentz structure.
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of the interacting part imposes conditions on the coupling constants.
These have been derived systematically with computer programs, see
section B.2. In the following, the one three-field interaction and the five
four-field interactions are discussed separately.

The Interaction Term L,

The interaction term
L= — acha Wby)Lch (6
3=-8 uv A 3)

can be expressed using only one parameter g; owing to the antisym-
metry of the field W#*. In fact, if one carries out the summation in
equation (6.3) exploiting the aforementioned antisymmetry by replacing
W — Vv — V¥, one finds that each prefactor of a non-vanishing
three-field term has the form

g123 _ g132 _ g213 + g231 + g312 _ g321' (6.13)

Furthermore, this part of the Lagrangian is invariant under equa-
tion (6.12) up to first order in ¢ if

(gabd€3dc + gadc€3db " gdbc€3du)Wa#v Wby/l ch/\ =0 (6.14)

holds. This condition is trivially satisfied owing to the antisymmetry of
the fields.

Equation (6.13) justifies that the coupling constants g?%¢ can be ex-
pressed using only one parameter as follows:

P =g. (6.15)

All other constants g#¢ are set to zero without loss of generality.

The Interaction Terms L) to L}

In the following, the sum of all four-field interactions needs to be con-
sidered:

Lo=L +L2+L3+ L4+ L3

5
SuvA
_ Z h;zbcd tf‘ﬁy #vAo 1ra

i=1

(6.16)
b d
s W W W
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Here, £7#7°*"*? corresponds to a Lorentz tensor directly given by the five
four-field Lagrangians L) for i = 1,...,5. Consequently, by applying
the transformation in equation (6.12) to equation (6.16), one obtains the
condition

5
Z(h;ebcde?aea " h?echSeb i h?bedGSec + h;zbce€3ed)
i-1 (6.17)

% t?ﬁw?uvlo we Why5 ch Wd)w =0

op
up to order &, which must hold for all fields Wy,. This results in 32
independent equations for the coupling constants A, .. ., hs and, hence,

reduces the number of independent parameters from 5 x 3* = 405 to
373.

As for the three-field interaction, one respects the antisymmetry by
replacing the antisymmetric tensor field with an arbitrary tensor field,
W,y = V,, =V, and carries out the summation over all indices in equa-
tion (6.16). Additionally, one eliminates 32 coupling constants owing to
equation (6.17) in order to respect U(1) invariance. The resulting expres-
sion can be collected by the fields V, which yields prefactors consisting
of linear combinations of the remaining couplings Ay, . . ., hs. In order to
determine the truly independent parameters in this expression, which
still respects U(1) invariance due to the prior elimination, one executes
the following iterative replacement procedure:

1. Choose an arbitrary prefactor and replace it by a new parameter
0;. This yields a relation of the form

0, = &(hi), (6.18)
where &,(h;) denotes a linear combination in the coupling con-
stants hy, ..., hs. Equation (6.18) can be solved uniquely for an

arbitrarily chosen coupling constant, which is replaced in all other
prefactors. In general, this introduces 0, in these other prefactors
but eliminates the chosen coupling constant completely.

2. Choose the next prefactor which is not independent of the cou-

pling constants Ay, ..., hs—if any left—and replace it by a new
parameter 0,. In general, this yields a relation of the form
0, = & (hi, 61) . (6.19)

Again, solve for one arbitrarily chosen coupling constant and
replace it in all other prefactors.
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3. Repeat step 2 until all coupling constants are replaced by new
parameters 6, j = 1,..., N. Eventually, one obtains N linear
equations of the form 6; = &;(h;, 0;) which are used to replace N
coupling constants by new parameters. All remaining coupling
constants which cannot be replaced are set to zero without loss of
generality.

As a trivial example, the above algorithm can be applied to the case of
L5 discussed in the previous section. There, only one prefactor structure
given in equation (6.13) exists and one solves for ¢g'?*. The newly intro-
duced variable is 6, = g according to equation (6.15). The subsequent
replacement automatically eliminates all other coupling constants g
which are thus set to zero without loss of generality.

Note that these two steps ,,satisfying the U(1) invariance and ,elimi-
nating superfluous parameters” do not commute in general, which has
already been mentioned in chapter 5. In this manner, the presented al-
gorithm was cross-checked against parametrizations used in the vector
field formalism.

Finally, this reasoning leads to N = 10 truly independent parameters
for the four-field interaction. The resulting choice of parameters reads:

hllll h2222 dl
h1122 2 ( d d2 )

h 1133 h 2233 d3 ,

h1212 =2 dz ,
h1313 h2323 d4 ,
h3333 ds ,

6.
hllll I’l2222 2(d6 _ dl) , ( 20)

h** = 4(2d, - dy + dg + d;) ,

WP = b33 = —2(ds —dy +dg + dy)
W = -4(2d, + dy),

h1313 h2323 2(d9 2d4) ,

h3333 2(d10 _ dS)

All other constants are set to zero without loss of generality, which
simplifies the following calculations significantly. Note that the parame-
trization for h; is equivalent to the one in [62] and that Lorentz structures
of the last three interaction terms L3, . .., £; can be completely incorpo-
rated by the first two owing to equation (6.9).
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Interaction =~ Number of  Symbol

Term Parameters
L 1 g1 in (6.15)
L+ + L 10 d; in (6.20)

Table 6.1: Summary of the coupling constants after requiring U(1) invariance.
Note that only the truly independent parameters are counted.

Summary

Finally, the number of coupling constants have been reduced from 432 to
1+ 10 = 11 by requiring U(1) invariance and exploiting the permutation
symmetry including the antisymmetry of the fields. An overview is
given in table 6.1. In the vector-field formalism, one finds analogously
7 parameters for the three-field interaction and 5 parameters for the
four-field interaction, which is in total 12 parameters [62].

6.3 CONSTRAINT ANALYSIS

The constraint analysis can be carried out analogously to section 4.2,
however, the interaction terms are taken into account and the fields
carry an additional internal index. Again, the same non-covariant for-
malism with its choice of fields is applied, but the parametrization in
equation (6.20) is used only if beneficial.

The following calculations have been carried out with a FORM pro-
gram, see section B.2, and have mostly been cross-checked by hand.
Initially, the first four parts of the Lagrangian density of equation (6.10)
are given in this formalism by

1 a a ATA YATA a a \7a
L, = _E[aiWOiajWOj - Wor Wor + Z(BiWik - aiWki)WOk

_ B,VVl‘}caJWJ‘}( + B,W,leJVV]‘}C + a,VVI‘}(aJW,fJ (6.21a)
a a M; ayA7a aysra
- aiWkiajij] + Tu(‘wo;'wo; + WijW,-j) ,
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Ly = —g™ (= Wi Wh W+ We Wh We + WEWS W,

- WAWG W, + Wi, We Wi — Wok Woj Wik

- WEWLWS + WEWEWS + WEWS W, (6210)
=~ Wi Wi Wi + WEWR W - WEWR W

— WEWE W+ WEWEW,),

abcd a A7l 1A7c d 2 Wb we d
ﬁ}l = —4hj (WOjWOI WOjWOI - WojW()l Wojwol

b i ) . (6.21¢)
- W W WEWE + WE W W;jwo,),
i = _hgde[Woai Wi Wobj Woa}
+ (Woazvvzcl - Wo%mci)(wvll}woi - VV};W&)
a c a c d b
+ (Wi WG = WEWE) (Wo Wi = Woy W)
+ (Wo W — W W + WE Wy (6.21d)

+ Wi W = WE W)
(W W~ W+ Whw
bypard byard
P WhWE - Wiw)),

The term for £, is similar to equation (4.9). The lengthy expressions
for £3, £3, and L] have been omitted for clarity, since they consist of
5, 34, and 64 terms, respectively, and cannot be simplified significantly.
Anyway, they vanish for the parameter choice in equation (6.20) due to
equation (6.9).

Owing to the absence of derivatives in the interaction terms, the
canonically conjugated momenta can easily be determined from equa-

tion (6.10) to

e

and

e

& = —a.ﬁ = 8‘52 = Wg, - (aiwﬁn - aierzi) (6.22a)
oW, W,
oL _ 9L _, (6.22b)

mn

B oWe ) oWe
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where equation (6.22b) is not solvable for the velocities W¢,, and there-
fore represents nine constraints

e =TI¢,~0, m<n. (6.23)

The Hamiltonian density can be derived via Legendre transformation,
namely,

1 1
_ la_a a 114 a a a 0
H, = ijzi].+EIIOjH0j+HOj(8iM/ij—8iV\/j,~)+Eai 019 W (6.24)

24

+

M2
" (W36 = W W) = Lim (W55, W)
with yet to be determined functions z;. Requiring conservation in time
of the primary constraints yields#

{(/)}'Zle} = Manin + amngn N a?’lngm - {He Lint}

mn>
_. p2e (625)

" ¥Ymn>

which represents nine secondary constraints, since the unknown func-
tions z; cannot be solved in this step of the iteration. Again, requiring
conservation in time of the secondary constraints yields
2 2
{(prrfn’ Hl} = {Me Wrﬁm’ H?jz?j}
2

e 1 a a Ma a a
+ am {HOn’ 58, Oia]'WOj + TWOjWOj — Lint}

1 M?
— an {H(e)m’ Ea,-WO“iajWO“j + TaWOujWOaj - Lint}

e a 1 a a
- {11, Line} , 11925, + zHO].HOJ. + 105, Wi — 0:; W)}

= Mfr?nijz?j + Ynem
(6.26)
with
ea _ MRgeagimin 4 (10 (1 L)), (6.27)

mnij ij> mn>

where the explicit form of Y¢,, is irrelevant. In the previous calculation it
was used that L;,,—including arbitrary Poisson brackets of that term—is
a polynomial exclusively in the six fields Wy and W It follows from

Note that we distinguish between the function and the corresponding density by a
slightly different notation, e.g. Lin¢ and Lin = f A*xLin.
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No. Fields Factor in det M Inequality

1 Wi =x, M* - x2g? g <o
W3 =x

2a Wj=x M? +16x%d,, dip >0

M? + 4x2dy do >0

2b W) =x M? —16x%d,, dp<0

M? - 4x2d9 dg <0

3a Wy =x M? +16x2d,, d¢ >0

M? - 8x2d7 d7 <0

3b Wh=x M? —16x2d;, de <0

M? + 8x2d7 d7 >0

4 WZ=x, M2M? - 64x2y2d3 d; <0
Woi =y

Table 6.2: Analysis of the determinant of M. For a given choice of fields all
other fields are set to zero. Only the crucial factors of the determinant
are mentioned. Each step depends on the previous ones.

equation (6.26) that the 9x9-matrix M from equation (6.27) needs a
non-vanishing determinant in order to solve for the unknown functions
z{;. This reasoning leads finally to the correct number of constraints for
three spin-one particles, i.e. the 2 x 6 x 3 = 36 canonical variables are
reduced by 2 x 9 = 18 constraints to the 2 x 3 x 3 = 18 physical degrees of
freedom. Furthermore, by exploiting the Jacobi identity one finds the

property
mmii = M5, (6.28)

mnij ijmn >
i.e. M is symmetric, which simplifies further calculations.

The following analysis of the condition det M +# 0 is only feasible with
the help of computers, since every entry in the matrix contains about
11 terms despite using the parametrization in equation (6.20) satisfying
U(1) invariance. Nevertheless, the test case L = £3 has been calculated
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by hand and cross-checked with the programs in use. The analysis is
detailed in table 6.2 on the previous page and results in the equations

d6:d7:d8:d9:d1020>

(6.29)
gl =0 >

besides several insignificant inequalities. Applying these equations ren-
ders det M independent of the fields W}, which are called ,.frozen-out*
in [76]. This could be a hint that one cannot infer more conditions from
this determinant analysis, although an estimate of the lower bound of
the determinant’ seems practically impossible due to the sheer size of
the full expression. At this point, it shall be stressed that the three-field
interaction governed by g; vanishes only by requiring self-consistency
on a classical level owing to equation (6.29).

6.4 QUANTIZATION WITH CONSTRAINTS

The quantization including constraints is based on the path integral
formalism, in which the generating functional plays the crucial role.
On the classical level, the original variables are related by a canonical
transformation to new ones, where the constraints are completely sepa-
rated from the dynamical variables.® This allows for the construction of
the correct generating functional using these new variables. However,
the return to the original ones is accompanied by the introduction of
non-physical fermionic scalar fields, which are called ghost fields. Before
proceeding with the renormalizability analysis, one needs to verify that
these ghost fields, e.g. denoted as c, ¢, do not have a kinetic part, d,cotc,
in the effective Lagrangian implementing the constraints. This ensures
that one can simply derive naive Feynman rules from interaction terms
containing the tensor fields W only, since in dimensional regularization
contributions from fields without kinetic parts can be ignored. In fact,
this check is carried out analogously to [62, Ch. IV].

Note that det M = M'2M¢ for W = 0 by virtue of equation (6.27). Therefore, det M #
0 VW is equivalent to det M >0 VW.

This separation is always possible owing to a fundamental theorem, see [75]. However,
the proof does not yield an explicit form of the canonical transformation.
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The generating functional, in which the variables Q) appearing in
the constraints () = 0 are separated from the dynamical variables w
appearing in the physical Hamiltonian HP"(w) = H(w, Q)| oo Feads

2] = /DwDQ 5(Q)
X exp (i/d‘*x [w?d! + QO - H(w, Q) + w]“ + Q]Q]),
(6.30)

where w = (0!, 0?), Q = (Q1, O?), and sources ] = (J*,J?) have been
introduced. Here, w!, Q! and w?, O? denote the fields and momenta,
respectively. Changing back to the original variables (W, IT) by a canon-
ical transformation as well as to the original constraints (¢!, ¢?), the
d-function behaves as

8(Q) = 8(¢)\/det({,¢}), (6.31)

where

(6.32)

la 1b la 2b
{¢,¢}:({ ij> mn} { ij> mn})

2 2
{93 dmat {97, ¢
is the 18 x18-matrix consisting of the constraints given in equations (6.23)

and (6.25). Since {¢;%, ¢}7,} = 0 holds according to equation (6.23), the
relation

det({¢, ¢}) = det({¢%,, 1}‘}) =det M, (6.33)

is obtained, referring to equations (6.26) and (6.27). Since det M # 0
holds, the system of constraints is indeed of second class.

Furthermore, the action S = [ d*xL is canonically invariant and
the Jacobian determinant of a canonical transformation to the original
values in equation (6.30) is unity. Now, expressing the determinant
in equation (6.33) and the §(¢$?)-function in 6(¢) = 6(¢')I(p?) as
functional integrals over the aforementioned ghost fields,”

6(¢2)~/D/\exp(i'/d4x2)t?j ff) and

i<j
\/W” /Dch'exp(i/d4x Z Eﬁnan;ij?j), (6.34)
i<j

7 Here, the summation convention of indices is noted explicitly once again.
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the generating functional reads

Z[7] = /DWDHDADCDE 8(¢")

(6.35)
x exp[i /d4x (IC + ]“’”W,fv)] ,
where
K= nng(;; + n;’jm‘; = Hy (W, IT) + AL77 + oy Mt il
. . 1
= ngWo? + H?]M,ll; - ‘/’1727] - Engjngj
1

- 105, W — 0 W) - 50 W39, WG (6:36)

+ ﬁ(—wa WE + WaWa) + L
2 Oj Oj ij ij int
+ (MR Wi + 9,115, - 0,115, — {115, Linc})

i
~e ea a
+ Coan M i€

and sources J§, have been introduced.

The integration over the three momenta IT{; can be carried out directly
due to the factor §(¢') = [1,,., 6(I1¢,,) in the integrand and the fact
that {II{, Lin} as well as ¢;,, M7 ..c?; are indeed independent of II, .
Consequently, the integration over the remaining three momenta IIg;
is done by using the generalized formula for Gaussian integrals [78,

Ch. 6.2]. This yields
2171 = [ DWDADCDE expli [ d'x (K + 1 Wa)], (637)
where
K= %[ng (9w - W) - (9:A% - a,-a;,.)]
X[WO? S CARENARICRE ai}‘?i)]

1 a a M?l a a a a
- Ea,-wo,.ajwoj + 7(—W0jW0j + WEWE) + Line

+ A?j(Mi Wi - {H?j’Lint}) + CinMiprni €
1

= (Wi - [auwig + 2) - au(wit + 20)])

x{ Wt = [0:(W8 +A8) - 2w+ 1%) ]}

1

(6.38)

MZ
e[ i+ (i 25) (w3 25) - A

" i

ij> mnij-ij

1
- Ea"woaiajwoaj + Line = Af {5 Line } + Coin Mipisiici -
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By shifting variables Wf; - Wf; - )ij in equation (6.37), an effective
Lagrangian is finally obtained from equation (6.38) of the form
M? M2

Lox= L= MGG+ e

+(1nteract1ons of A,¢c,é, W), (6.39)

with £ given in equation (6.10). Since no kinetic terms of ghost fields
appear in equation (6.39), one can continue with naive Feynman rules
resulting from £ instead of L.s, which simplifies calculations.

6.5 NAIVE FEYNMAN RULES
Propagator

The following explicit derivation of the propagator is guided by [78,
Ch. 6], however, one must take into account not only the more compli-
cated Lorentz structure but also the antisymmetry of the fields. As usual,
one starts with the generating functional of the free Lagrangian density®
from equation (6.11)

fDWexp fd4 WW +W[;] ﬁ]}

:N/DVexp i/d4x Ez W(VW))"’(V“/”_VW)]“/;]}’
)

(6.40)

where in the last step a tensor field V#¥, whose antisymmetric com-
ponent equals W#” = 3(V#" — V'#), has been introduced. The path
integration over the symmetric part of V#" has been compensated with
a normalizing constant V. Hence, one obtains for the exponent

1
(%) = 5 Vg7 Vys + (Vg = Ve ) I (6.41)
with the differential operator

A“PYO = gBSgagy 1 g0 B8 — g3y — oPrgugd

. . (6.42)
+ M (ggP - g%0g),

8 The internal index structure is omitted in the following.
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where here as in the following the divergence theorem has been em-
ployed. Via a change of variables V,3 — V,3 + ¥,4p in the path integral
in equation (6.40), where W, is some ,,constant” field, one obtains

1 1
(%) = = VapA*P Vo5 + Vo AP0 5 + W, g A1V 5
Vag(1 = ) ¢ (98 ),

where the relation W,g A*7%V,,5 = Vg A0, s has been used. The field
¥, is now chosen such that

AP 5 = —(JF - JBe) . (6.44)

The solution of this differential equation can be determined by using
a Green’s function,

¥ys(x) =fd4yDy6w(x—y)1””(y)- (6.45)

Inserting this in equation (6.44) and changing to momentum space
representation, one finds

R13(p)D, s, (p) = —(8585 - 856%) , (6.46)

where the Fourier transform of the differential operator reads

APYO = —gPoptpY — g pPp® 4 g pP p? 4 g7 pep?

o i (6.47)
+M2(g VPl _ o 6gﬁy).

An ansatz for the Lorentz structure of the to be determined Green’s
function reads

Dysyy = A18ys&uv + A28yu&sv + Asgyv8ou
+ BigysPuPv + BagyuPspv + BsgywPsPyu
+ BagsuPyPv + BsgovPyPu + Be&uvPyPs
+ Cipypspupv + Dieysyy »

where one could have already set D; = 0 due to the odd parity of €5,y
This simplifies if one takes into account that

(6.48)

1 . -
Hralx) = W /f d*yd’p e_lpl(x_y)Dw?#v(P)]w()’) (6.49)

is only contracted with antisymmetric tensors in equation (6.43). There-
fore, one can ignore parts symmetric under y <> § by setting A, = B =
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Bg = C; = 0 without loss of generality. Inserting the remaining ansatz in
equation (6.46) yields conditions which can be expressed as

1 1

Ay=Ay— —, By=By———

2 37 M2 27 M?(M? - p?)

(6.50)

By=Bs+———, D=0,

T AR - ) 1
where the coefficients A3, By, Bs are still arbitrary. Applying these condi-
tions in the ansatz leads to

< 1
Dyou(p) = —MZ(M—Z_pz)[(MZ - Pz)gyygév + &yubPspPv gyvpépy]
+ A3(g7vg5H + gwgSV) + B4(ng6Pv + géﬂPva)

+ BS(gYVP5pH + g«SvaPu)
_ _;[(Mz _ 2) + 3 ]
T ME(ME - p?) P”)8&yu8sv + &yuPsPv — &yvPoPu|>

(6.51)

where again symmetric parts have been discarded without loss of gener-
ality.

Finally, one can absorb the path integral in the normalizing constant
and one obtains

21 =Nexp(-2 [[ d*za*2 1(2)[ Days(z - #)
2 (6.52)
- Dagyo(z - 2)]1*(2) }
from which the propagator as the two-point function follows as

) o 802Z[]]
(0‘T[W v (X)Wb)ta ()’)]M - 8Jamv (x) 8]0 (y)

J=0

iéah
= 2 [Dvwla(x -y)- Dyvla(x -)

6.
+Da)tyv(x_y) _D/\Jyv(x_y)] ( 53)

_6T o dp ey 1

M? (2m)* M2 — p? —i0*

x [(M3 = p*) gurgvo + 8urPvPo = SuoPvpr — (4 = v)].

This result is identical to [76, App. A] except for the internal index
structure 8%?, which has been added here for completeness. The term

—i0" introduced in the last step indicates the usual Feynman boundary
condition.
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Three-Vertex

Although the constraint analysis has already shown that all couplings
g°%¢ governing the three-field interaction vanish, the three-vertex is
considered here again from a slightly different point of view. The naive
Feynman rule for the three-vertex can be derived from £ as usual since it
depends merely on index permutations and not on the tensor formalism
itself. It reads:

e Wb g ur8va8op
uv Ao g% | | 2u18vp&oa
bca
- gaCb | 8uc8vB8ra (6.54)
g Sua8vrfop
W, 2 | | guagrofip

gbe 8up8vo8ia

Here and henceforth, the Feynman rules have been written as a ,,scalar
product® of a ,vector® containing only coupling constants and a ,vector®
containing only kinematic terms. This is useful for the model implemen-
tation in FeynArts, see section B.2.

At this point, one should take into account that only parts which
are antisymmetric in the index pairs pv, Ao, and a3 contribute to any
physical quantity since (1) external legs are contracted with antisym-
metric polarization tensors and (2) internal legs are contracted with the
antisymmetric propagator in equation (6.53). The antisymmetric part of
equation (6.54) can be written as

b
W:v Wy,
) (gahc _ gacb _ gbac

6.
+gbca +gcab _gcbu)g[ﬂv][/\‘f][“ﬁ] , ( 55)

W;ﬁ Antisymm.

where gglwvllAellef] js a pairwisely antisymmetric Lorentz tensor, see
also the remarks in section 6.6. Using the parametrization from equa-
tion (6.15), one finds that the right-hand side of equation (6.55) vanishes
unless abc is a permutation of 123. In particular, the non-vanishing part
has always the form

iglg[”v][lg][“ﬁ] , (6‘56)
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Figure 6.1: One-loop contributions to the three-point function. The wiggly
line represents a spin-one particle. However, these contain always
at least one three-vertex and can therefore be ignored due to the
constraint analysis.

which, however, vanishes as soon as the results from the constraint
analysis in equation (6.29) are applied. The three-vertex one-loop contri-
butions are depicted in figure 6.1. In summary;, all contributions which
contain three-vertices can be neglected in a self-consistent theory with-
out loss of generality.
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Four-Vertex

The more complicated naive Feynman rule for the four-vertex reads

a
Wiy

Wofﬁ

where the five summands &, . ..
the Lagrangian densities £}, ..

b
WA o

]

d
Wy6

=6+ 6+ G+ 8+ &,

(6.57)

—_—

=0

, & represent the parts resulting from
., L3 with four fields. For the first two

Lagrangians they are given explicitly in the following, the other three
expressions have been omitted since they can be set to zero without loss
of generality due to equation (6.9) as indicated:

acbd adbc bcad bdac
hi<% + h{®"¢ + h{** + h;

+ hlcadb + hlcbda + hldach + hiibca
gl _ hlabcd + hizdcb + h{mdc + hlhcda .
+ hlchad + hlcdah + hiiabc + hiidm
hlabdc + hizcdh + h{mcd + h{zdca
+ hlcabd + hlcdba + hiibac + hiicab
hgdbc + hgcad Zur8vaZoy8po
h3t® + h3®e | | 8urgvy8oagpo
het® + h3® | | 8uogup8iy8as
hgdca + h;ubd Suo&voSralpy
h3? + hs 0 | | 8uaguagoo8py
£ =i hz’:;d + hg‘*“: 8ua&vy 8N 8o
h37“® + hy* 8up8vo8ro&ay
h3ed + hs®® | | gupgvogrugoy
h3e®® + h3* | | 8uy&n8op&as
hgbdc + htzilcab Sy Gva&rs8op
hse@ + h3 | | 8usgvo8apay
hézadc + htzlcba Zuo8vBEryLoa

8ur8vo8uy8ps
gl’w‘gvﬁg/lygo'(s > (6.583)
8uy8vo8ra8op

(6.58b)

The four-vertex one-loop contributions are depicted in figure 6.2 on the

facing page.
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nine more permutations

Figure 6.2: One-loop contributions to the four-point function. The wiggly line
represents a spin-one particle. The omitted permutations can be
obtained by crossing the external legs.

6.6 RENORMALIZABILITY ANALYSIS

Basically, one requires that Lorentz structures of divergent parts at one-
loop level have the same structure of prefactors as the corresponding
Lorentz structures at tree level. This ensures that infinite quantities
can be absorbed in the parameters of the theory—a crucial condition
for a physical theory—Dby using, for example, the minimal subtraction
renormalization scheme.

Remarks about Antisymmetrization

The vertex functions at tree and one-loop level are pairwisely decom-
posed in antisymmetric and symmetric parts as follows:

t[;w] — %(t‘uv _ t...vy...) ,

) (6.59)
t(yv) — 5(t‘uv + t...vy...) )

This is convenient since the polarization tensors are antisymmetric and,
hence, symmetric parts do not contribute to physically meaningful quan-
tities. In other words, this pairwise antisymmetrization ensures that
merely necessary conditions are deduced in the following renormaliz-
ability analysis.

As an example, the contributions to a three-vertex function I' with
fixed internal indices a, b, ¢ € {1,2,3} are regarded at tree and one-loop
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level for vanishing momenta. These can be expressed in 6!/(3121212!) =
15 products? of three metric tensors gg*"*** as follows:

15
Aoaf uvioaf
Thee P =Y«
i=1

tree igi >
5 (6.60)
I fo"o‘;“ﬁ . Z K gf‘v““ﬁ + (non-divergent parts) .
Pi=0 g
For example, gg""*** is given by
wAoaf _ uv Ao af
& =88 8- (6.61)

Each of these tensors can be decomposed into 23 = 8 parts according
to equation (6.59), however, only the pairwisely antisymmetric part
needs to be considered. As seen in section 6.5, only one such structure
gglwllhollef] remains. The expression reads

[lev](A0](ep]

P = é(K5—K6—Kg+K9—K10+K11+K13—K14)g[””][)“’][“ﬁ] (6.62)
and an analogous expression for the divergent part of the one-loop
contribution. Since x and & are functions of the coupling constants, one
can derive conditions by requiring the same structure at tree and one-
loop level. However, it has been shown in section 6.5 that the prefactor
in equation (6.62) is always zero for all three-vertices and, hence, no
conditions can be deduced.

Regarding the four-vertex function, the contributions are expressed in
terms of 81/(4!2!212!12!) = 105 products of four metric tensors gg!**7**"°
as follows:"

105
vAoafByd vAoafByd
[HrAoapyd _ in %54 By ,

tree -
. (6.63)

F;w)waﬁyé uvAoafyd
i

1-loop | pi=0

1l
P}

+ (non-divergent parts) .

As indicated, the figure 15 is given by 6! combinations of the Lorentz indices of T
divided by 3! combinations of positions of the metric tensor and divided three times

by 2! to account for the symmetry of the metric tensor in its Lorentz indices.
At this point, a certain order of the structures gf’”mﬁ with «; or &; as coeflicients in

equation (6.60) has been chosen.
The x; used here are not related to the ones in equation (6.60).
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The pairwisely antisymmetric part is then written as

[uv][Aa][aB][yd]

rleviiellapllyo] _ (kg9 — Koo — K104 + K105)%1H

tree

— |

+ E(Kse K57 — K59 + Ko — K71 + K72

+ K74 — K75 — Kg3 + Kgq + Kgg — Kg7

+ Ko — Kop — 1 -+ ) g AT 1000)

1 v] «
n —(Kss—K K68+K69)%M [Ao][aB][yd]

1
+ E(Kzs — K — Kag + K9 — K49 T Kygg

+ K43 — K44 — K76 + K77 + K79 — Kgo

¥ Ko = oz — Kog + Ko ) gl 1A AAIA]

1
+ E(Kzo — K1 — K3 + K24 — K35 + K36

+ K33 — K39 — Kgq7 + Kyg + K50 — K51

+ K2 — Kegs — Kegs + Kesg) gl A LeRILYY)

1 ) .
+ Z(KU Kig — K33 + K33)% [uv][Ac][aB][yd] ,

(6.64)

where gggl#"117I*F10®) denote six independent pairwisely antisymmet-

ric tensors. An analogous expression holds for the one-loop contribution.

[wv][Ao][aB][yd] .

For example, g is given by

%[#V] [Ao][ap][yd] _ g(xagﬁ/lgyvg&; gcxogﬁ/\gyygév (6 65)
_ g gﬂogyvgrSy + g(xlgﬂagy‘ugﬁv
Each of the six prefactors in equation (6.64) at one-loop level needs to
be absorbed in the corresponding coefficient at tree level simultaneously.
This requires the same structures of coupling constants and therefore
leads to the conditions for specific vertices, presented in the following
sections.

Moreover, this procedure of antisymmetrization has been successfully
cross-checked by pairwisely antisymmetrizing the whole expression first
and then comparing coefficients of metric tensor products one by one.
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The Vertex abcd = 3333.

The following prefactors of antisymmetric Lorentz structures are ob-
tained at tree level and one-loop level:

Lorentz structure Tree Loop (divergent part)

v o 1
gl Il g _;(3d§_4d3d4+2di+lzd§)

v olla 1
gl llels] g (32 - 4dyds + d3 +10d2)

2

The divergent part can only be absorbed if d2 + 2dZ = 0 holds, which is
equivalent to

dy=ds=0. (6.66)

This result is used in the analysis of the following two vertices.

The Vertex abcd = 2233

The following prefactors of antisymmetric Lorentz structures are ob-
tained at tree level and one-loop level:

Lorentz structure Tree Loop (divergent part)

gDl g (M* + Mg)dﬁ
16 M2 M;m?

The divergent part must vanish, hence

The Vertex abcd = 1111

The following prefactors of antisymmetric Lorentz structures are ob-
tained at tree level and one-loop level:

Lorentz structure Tree Loop (divergent part)

ofla 1
gl Bollefllal g —4—712(720112 — 80d,d, +72d3 + 6d3)

1
gl lleAlel g, 15 (3247 — 40dad, + 3243 + 3d53)
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6.7 CONSISTENCY CHECK WITH SU(2)

The divergent part can only be absorbed if d? + d2 = 0 holds, which is
equivalent to

di=d,=0. (6.68)

Summary

All other non-mentioned vertices or Lorentz structures lead to either
equivalent or trivial conditions. Collecting all the results above, one
finds the conditions

d1=d2=d3=d4=d5=0. (669)

According to table 6.1 on page 50, the 13 parameters (including M and
M3) have been reduced due to equation (6.29) on page 54 and equa-
tion (6.69) to 2. All couplings g; and d; vanish and only the mass pa-
rameters remain. Therefore, no self-consistent interacting tensor model
exists. Further implications of this result are discussed in chapter 8, and
the findings of a cross-check starting from a global SU(2) symmetry are
presented in the following section.

6.7 CONSISTENCY CHECK WITH GLOBAL SU(Z) INVARIANCE

Using the fact that %€ = 0 and f*¢ = €2 holds in SU(2), a global SU(2)
invariance' is established by the following choice of coupling constants:

gabc — gleabc , hizbcd — fléacabd + fllaabé\cd ,
hgde — fz(sac(sbd +f2/6ab6cd , hgzbcd — f35ac5bd +f3/6ab6cd , (6.70)
thCd — f46ac6bd + f4/6ab8cd , h?bcd — f56ac6bd + fsl(sab(scd )
Additionally, all three particles have the same mass, i.e. M3 = M. Here,

the three Lagrangians containing the product of Levi-Civita symbols
are directly discarded owing to equation (6.9), i.e.

fi=fi=fa=fi=fsi=£(=0 (6.71)

is set in equation (6.70) without loss of generality.’s

Compare also chapter 5 and section A.1.
The calculation was also carried out without using equation (6.71) and it led to the
same result.
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No. Fields Factor in det M Inequality

12 Wh=x 8x2(2fi+fo+2f{+f)+M?> 2fi+fh+2f/+f, >0
b Wh=x M2-24x22fi+ L+2f{+f]) 2fi+fa+2f/+f, <0

2a Wh=x, 4x*(4fi+ fo)+ M? 4fi+ £, >0
Wii=x M?-4x*(4fi+ f) 4fi+ <0
2b W} =x, M*-36x2g} g <0
W3 =x

Table 6.3: Analysis of the determinant of M including global SU(2) symmetry.
See table 6.2 on page 53 for further explanation.

A constraint analysis is carried out analogously to section 6.3 using
the parameters given above.’4 One finds

§=0, fh=-4fi, f,=2(A-f). (6.72)

Details for this analysis are given in table 6.3. Again, the three-vertex,
which is determined by g, vanishes as do therefore all its one-loop
contributions since in those a three-vertex is always present, see figure 6.1
on page 61.

Subsequently, the renormalizability analysis is restricted to the four-
vertex. One can divide all vertices with non-vanishing divergences into
two classes,

abed € {1111,2222,3333} and abcd € {1122,1133,2233,... }, (6.73)

where ... denotes more permutations. One finds that all Lorentz struc-
tures which do not appear at tree level vanish also at loop level after
pairwise antisymmetrization. In order to ensure renormalizability, the
linear combinations of coefficients at tree level need to be identical to the
ones at loop level. This leads for the first class of vertices to one equation

212+ (A +f1’)2 =0 (6.742)

However, note that in this section g; does not coincide with g from the previous
sections.
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and for the second class to three equations:

fE+4afifi =0, (6.74b)
2f2-2ffl + f* =0, (6.74¢)
fR-6fifl+f*=0. (6.74d)

Since equation (6.74a) can be interpreted as a parabolic surface in three
dimensions which only intersects the f,f/ plane in the origin, all four
equations are equivalent to

fi=fi=0. (6.75)

Employing these conditions in the constraint analysis again, one finds
that det M = (M?)® # 0, i.e. no further conditions can be deduced. In
summary, twelve parameters in equation (6.70) (including M) have been
reduced due to equations (6.72) and (6.75) to two. As in section 6.6, one
finds that all three- and four-vertex functions vanish. This is consistent
with the findings of the previous sections since the more restrictive
global symmetry group SU(2) has been required here which should at
least reproduce the results obtained by assuming the global symmetry
group U(1) a priori.
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MAGNETIC MOMENT OF THE RHO MESON

This chapter presents the calculation of the magnetic moment of the rho
meson in the framework of chiral effective field theory up to order O(g?).
This is the first step towards form factors of vector mesons, which are
helpful to describe a physical process depicted in figure 7.1. Furthermore,
the results for the magnetic moment can, in principle, be used in Lattice
QCD extrapolations. Simply speaking, Lattice QCD is another approach
to non-perturbative QCD and regularizes the theory by discretizing the
Minkowski space-time. Due to current limitations in computing power,
results are calculated with pion masses of about M ~ 300 MeV, i.e. far
away from the physical value. Therefore, so-called chiral expansions are
helpful to extrapolate the results obtained by Lattice QCD to physical
values of the input parameters, such as the pion mass [79].

The chiral Lagrangians for pions and vector mesons discussed in
the first part of this work are used. Some lengthier results are given
in appendix C in order to keep the following presentation as clear as
possible.

(a) (b)

Figure 7.1: Exemplary subprocess to which the magnetic moment of the rho
meson contributes. Process (a) represents a scattering process of
an electron with a rho meson including all possible interactions,
whereas process (b) represents the one-photon-exchange approxi-
mation, which is justified since the QED vertex is proportional to
/& ~1/3/137 <« 1. The photon is represented by a wiggly line and

carries the squared momentum g°.
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71 MODEL DEFINITION AND PRELIMINARY REMARKS

The inclusion of the lightest vector mesons in ChPT is a reasonable step
in the construction of a chiral effective field theory. This was motivated
in sections 2.2 and 2.3 and the introduced notation is employed here.
Additionally, in figure 7.1b the incoming and outgoing large momenta of
the rho meson are denoted as p; and py, respectively, and the incoming
photon momentum is g.

In this manner, the most general Lagrangian describing pions and
vector mesons consistent with the assumed symmetries reads

L=Ly+ Lo+ Lopn+ ..o (7.1)

where

- FZZ T D, U(D*U)' | + i (U + U'), (7.22)

Ly 1
1 ; v v
Lon = ) Tr(pup™) + idy Te (P T*) + fu Tr(pun L)
M2+ ¢, M*Tr(U+U") /4
N ste gzr( +U")/ Tr[(gpy—iry)(gl’ﬂ_ir”)]

1 (44 M‘Z" 14 F v af, u
‘prn:_zwva +7wyw +§gwpneymﬁw Tl'(p u )

(7.2¢)

Here, only terms relevant to the calculation of the magnetic moment
have been taken into account. Furthermore, the building block y has
been replaced by the square of the pion mass M?, which is allowed
within the desired accuracy of this calculation. Note that, for practical
reasons, the definition of the LEC fy is slightly different from the usual
one, e.g. in [68]. The usual definition can be obtained by the replacement
fv = =fv/(2V2).

As already mentioned, the Kawarabayashi-Suzuki-Riazuddin-Fay-
yazuddin relation (KSRF) [63, 64] of the bare parameters is used to
eliminate the pion decay constant F in the chiral limit from the results,

M) =2¢F*. (7.3)

Additionally, the term proportional to ¢, in equation (7.2b) leads to a
modification of the undressed rho meson propagator as follows

—i w PP
P2 — (M2 + c M) (s M2+ i) 74)




72 POWER COUNTING

which transforms to the standard propagator for vector fields in the case
¢x = 0, where M is the squared mass of the rho meson in the chiral
limit. Fortunately, FeynArts provides a technique to implement this
modification easily. Since the physical mass of the rho meson is given
by the pole of the dressed propagator, the on-mass-shell condition for
an external rho momentum reads

p* =M +c.M*+O(h), (75)

where O(#) denotes loop contributions.

Note that the so-called conventional dimensional regularization has
been used here and henceforth and not dimensional reduction. This
is favorable in computer-assisted calculations. In particular, the Levi-
Civita symbol €#*A? in equation (7.2¢) is treated as D-dimensional in
contractions.! Consequently, these two methods yield different coefh-
cients for finite terms, i.e. terms not proportional to a loop integral. Note
that FeynCalc does treat the Levi-Civita symbol four-dimensionally by
default, but FeynArts does not.

72 POWER COUNTING

As explained in section 3.1, the power counting takes all possible fluxes
of external large momenta into account. Hence, they are shown for all
one-loop topologies contributing to the self-energy and the magnetic
moment in figures C.1 and C.2, respectively. For completeness, it is
assumed that the external photon carries a small momentum, whereas
the external rho mesons carry large momenta. The polarization vector
of the photon e* is counted as O(q'), which implies that the covariant
derivative D¥ can also be counted consistently as O(q'). The last assign-
ment is merely a convention since the polarization vector is an overall
factor according to the LSZ formalism. However, this small quantity is
included in the total accuracy of the calculation, namely O(g?), but not
in the orders given for the diagrams in figures 7.3 and 7.4.

An example shall illustrate the power counting scheme outlined in
section 3.1. To this end, the one-loop diagram (13) in figure 7.4 is chosen.
The rho meson is represented by a straight line, the pion by a dashed line,
the external photon by a wiggly line and the omega meson by a curly

Conventional dimensional regularization is discussed in [70], based on [69]. For
dimensional reduction see [80]. See also [81] for a comparison of the two schemes
and more references.
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line. The three possible cases and the resulting order of the vertices are
discussed in the following separate paragraphs using the Feynman rules
given in section C.1 on page 105. Here, fluxes of large momenta have
already been indicated by thicker lines.

)
Yy
0
1 0
0%
Pa 0 =21 Pb
2)
Yy
0
) 0
-2,79%,0

Pa 0 0 O Po

The yp vertex counts as O(q°), since its leading
order is M7 g#". The prm vertex counts as O(q°),
since one of the pion momenta is large. Both
wpm vertices count as O(q'), since either the p
momentum or the 7 momentum is small, but not
both. In total this yields4 +1+1-1-2 = 3.

The yp vertex and the pnm vertex are assigned
the same order as for the first case. The upper
wpm vertex counts as O(g?), since the p and the
m momentum are both small. The lower wpn
vertex counts as O(q°), since the p and the 7
momentum are both large. In total this yields
4+2-2=4.

The yp vertex, the prr vertex and the upper wpn
vertex are assigned the same order as for the first
case. All other vertices count as O(q°), since
there are always large momenta involved. In total
thisyields 4 +1-1=4.

In summary, the order O(g?) is assigned to the diagram as the lowest
order resulting from these three cases, excluding the order stemming
from the polarization vector. This procedure has been carried out for
each diagram in figure 7.4. Owing to the power counting of the cor-
responding propagators in table 3.1 on page 22, the lowest orders are
usually obtained if pions carry small momenta and vector mesons large

ones.
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T Pc

Pa Po  Pa Pb
(1) O(q*) (2) O(q")

g Pd w
Pa \\_’/ Pb Pa i : Pb Pa \\_// Pb
TT¢ Pc g
(3) O(q?) (4) O(q*) (5) O(q°)

Figure 7.2: One-particle irreducible diagrams contributing to the two-point
function of the rho meson.

73 TWO-POINT FUNCTION

The wave function renormalization constant Z, is defined as the residue
at the pole z, of the dressed propagator

_ ab uv ~ Pva/Zo

ab
Dy (p) -z

Z, + (non-pole parts) . (7.6)

The sum of all one-particle-irreducible diagrams in figure 7.2 of the
two-point function can be parametrized as

iHZﬁ =i§% [glwnl + (g/tvpz - PMPV)HZ(PZ)] > (7.7)

where IT; is independent of p? and IT,(p?) is regular at p? = 0. In terms
of equation (7.7), the wave function renormalization constant of the rho
meson reads?

1
- 1- Hz(Z()) - ZoHé(Z())

V4 =1+11,(20) + 2oIT5(20) +O(H*), (7.8)

=87,

where O(#?) denotes higher-order loop corrections.

The result is obtained by writing the dressed propagator symbolically as a self-similar
series iD = iDg + iDg illiDg + iDg il iDg il iDg + - -+ = iDgy + iD ill iD,, where
iDy is the undressed propagator in equation (7.4) and iIT is the sum of all one-particle-
irreducible diagrams in equation (7.7). The Lorentz structure can be taken into account
by using a suitable ansatz for D as shown for the propagator in section 6.5. Since only
the pole part is of interest, iIl is expanded around p? = z.
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Noting that equations (7.4) and (7.6) imply zo = M7 + ¢, M? + O (h)
and using the approximation M, ~ M, the explicit calculation yields

2

8
02, =—
P 576m*MA(M2 + c.M?)

—24A0(M?)(gdx - 1)(3gdy - 1)(M?c, + M;)?

+ (MPc, + M2)[12(gdy - 1) (MPc, + M?)
x Bo(M?cy + M2, M?, M?)
x (M?(3g(cx = 2)dy — ¢ = 2) + M2 (3gd, - 1))
+ 99M3Bo (M + M2, MPc, + M2, MPc, + M2)
+8M?(c, — 3)M3(gd, —1)(3gd, +1)
+4M*(c, — 6)ce(gds —1)(3gd, +1) (7.9)
+ M3(4gd.(3gd. - 2) +109)]}

{—258M§A0(M2cx +M2)

2
_ gpr[
2887 (M2 + ¢, M?)
+3A0(M*)[M*(1-2c,) - 3M]
- [M*(17¢, - 24) - 7M2 ][ MPc, + M2 ]
+3M?[(Bcy + 1)M2 + M?(cx - 1)(2¢, +1) ]

{-340(M2) 2%, + M2 + M?]

x By(M2c, + M2, M2, M2) |

The above result is used in the calculation of the magnetic moment
according to the LSZ formalism. This is detailed in the following section.

74 MAGNETIC MOMENT

In this section, the diagram depicted in figure 7.1a is calculated for g*> = 0
in the one-photon-exchange approximation. To this end, the amplitude
of the sub-diagram represented by the ,,blob" in figure 7.1b is written as

M = M (=i)DEE(pr) e VA (pg, piy q) (—1) D (p)M;'F , (710)
where M{"* and Mgl # are the polarization vectors of the outgoing and

incoming rho meson, respectively, and the dressed propagator from
equation (7.6) has been used. The SU(2) structure €3* has already been
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Y Y
P3
Pa i Pb Pa ; Pb
(1) O(q") (2) O(q°)

Figure 7.3: Tree diagrams contributing to the magnetic moment of the rho me-
son. Their order can be directly read oft the corresponding Feynman
rules.

separated from the vertex V. Next, the ypp vertex can be parametrized
as

VM (pepig) = 2 6 Vi(pF o1 4°) » (7:1)
J

where t?” " are Lorentz structures. Expanding each V; around the pole
zo and substituting equation (7.6) in equation (7.10), the leading pole
contribution is obtained as

- pfoc va/ 20

pi—2

Auv
% Z t;"" Vi(20, 20, 4%) Z,
j

M/l — —€3uh_/\/lf(xng¢w

pole

Qup ~ Piniﬁ/ZOMbﬁ . (7.12)

2 2
Pi = %o

In order to properly renormalize the ypp vertex function according to
the LSZ reduction formula [44], equation (7.12) is rewritten as

./\/l/1 :_€3ab\/Z_pMi1ag0W_pf(xpfv/ZO

ole 2
P Pt =20

“\Zp ) £4Vi(20. 20, PIVZ, (7.13)
J

o Sup — PiuPip/2o0 \/Z—ngﬁ’

pi— 2o

so that the renormalized vertex function is given by

VZy 1V 20 OV, = 2,V (5 pod)
j

=T (pi, pr q) -

(7.14)
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Pe P

Pa Pd Pb
(2) O(¢%)

4
P3
e ST
4‘/7,77:‘7
Pa T4 Pb
(11) O(q")

Mg /N Tty

Pa Pb

Pa [Z Pb
(12) O(q")

Figure 7.4: One-particle-irreducible loop diagrams contributing to the mag-

netic moment of the rho meson. Continued on page 79.
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Figure 7.4: One-particle-irreducible loop diagrams contributing to the mag-
netic moment of the rho meson. (Cont.)
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Noting that structures like p,D#"(p) do not have a pole according
to equation (7.6), structures containing p! or p} in T#** are dropped.
Next, the ,,on-mass-shell“ part of the vertex function I' defined in equa-
tion (7.14) is parametrized as

T (pi, e q) = fild®) (P} + 1) g™ + (@) (0' g - 9" 8") » (7.35)

where other Lorentz structures do not appear due to symmetries and
gauge invariance. Here, the momenta p; and q are defined as incoming
and the momentum py is defined as outgoing. In particular, the on-shell
condition

ar* =0, (7.16)

which corresponds to the conservation of the U(1) current of quantum
electrodynamics, justifies the parametrization in equation (7.15). This
structure has been checked for the sum of the calculated diagrams. The

electric charge e and the magnetic moment y, are then defined by £,(0)
and £,(0) as

fi(0) =e, (7.17a)
£(0) =2M,u, . (717b)

According to equation (7.14), there are tree and loop contributions in
these quantities, which are sorted symbolically in orders of # as follows:

T = —(1+ 16 Z,) (Ve + hVi™) + O(h?)

tree loop (718)
Auv Auv Auv '
= —Vile = 1(8Z, Vil + Vi) + O(?).

The Feynman diagrams at tree level for Vt’r\fev are given in figure 7.3 and
Auv .
at one-loop level for Vloop in figure 7.4.

Finally, at tree level, the form factors are obtained as

1¢(0) = e, (7.19a)
fztree(o) = e[2+gpﬂ_g(dx +2fV)]- (7.19b)

Taking the tree-order results times the wave function renormalization
constant according to equation (7.18) into consideration, one finds at
one-loop level

flloop(o) =0. (7.20a)



7.4 MAGNETIC MOMENT

This result is expected and serves as a reliable cross-check since hadronic
corrections cannot contribute to the electric charge due to the Ward
identity of quantum electrodynamics [46]. In the same way, using again
the approximation M,, ~ M,, the magnetic moment of the rho meson is
obtained as

loop egz —
0)= B
L0 576mM4(M2c, + M2) ™
0o (7.20b)
gwpn

+ Ha,

576m2M2( M2 — M?)
where the lengthy expressions Z; and Z, are given in section C.3 on
page 110.

Regarding power counting, the maximum order of terms to be taken
into account in equation (7.18) is O(q?), since the total accuracy is of
order O(q*) where the polarization vector counts as O(q') as an overall
prefactor. This translates for the form factor f; to order O(q?*) and
for the form factor f, to O(q') according to equation (7.15). Moreover,
there is an important point concerning the power counting order of the
wave function renormalization constant. Referring to equation (7.8), the
minimal order of I1,(2,) and IT}(2,) determines the order of Z, since
zo = M} + O(h, q) is of order O(q°). These two quantities can be seen
as the coefficients of a Taylor expansion around p? = z, of the two-point
function as follows:

M, (p*) = Ma(20) + (p* - 20) Tj(20) + O((p* - 20)?) - (7.21)
0(q")

Since the tree level diagrams in figure 7.3 start with O(q°), the wave
function renormalization constant §Z, contributes with O(g?) in equa-
tion (7.18). By virtue of equation (7.21), this translates to O(g?) as the
maximum order of relevant diagrams in figure 7.2. Note that all these
power counting considerations are only valid for particular expressions
if the contributions of the diagrams are renormalized such that they
respect their assigned chiral order. This is dealt with in the following
section.
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75 REFORMULATED INFRARED REGULARIZATION

The next step is to calculate the subtraction terms as explained in sec-
tion 3.2 in order to give IR regularized expressions for the results in
equation (7.20b) up to order O(q'). Furthermore, one can check the
correct calculation of subtraction terms up to order O(g?) by virtue of
equation (7.20a), since the IR regularization scheme satisfies the Ward
identities. Nevertheless, there is a subtle point in calculating the sub-
traction terms for the wave function renormalization constant. It is not
correct to calculate them on the basis of the per-diagram expressions
in table C.1. During the derivation of equation (7.9), the relation for
0By/dp? in equation (A.11) on page 97 has been used, which is only
valid in n = 4 dimensions. However, this relation must not be used
in the calculation of subtraction terms, where the expansion around
n = 4 must take place as a last step. Consequently, one needs to calculate
the subtraction terms oftf-mass-shell up to order O(q*)—noting that
p*— M is of order O(q')—before taking the derivative with respect to p?.
Additionally, a similar complication appears in the case of diagrams for
the magnetic moment. After the Passarino-Veltman reduction of tensor
integrals, the small squared photon momentum g2 can appear in the
denominator as a so-called Gram determinant. Therefore, a numerator
X containing loop integrals needs to be expanded around g2 as ¢> - 0,
namely

L 9X
0q?

1

limézhm—(X\qz:O 2 ) oX

q°+ (7.22)

q2:0 q2=0

=0

In other words, the derivatives of scalar one-loop integrals? are needed
with respect to their momentum arguments. Again, one must not use
formulas expressing the derivatives of C, integrals in terms of Ay and
B, integrals including finite parts stemming from n — 4. Finally, one
can resort to calculating the subtraction terms in n dimensions for
arbitrary g* and then taking the limit g> — 0. Note that this implies
using the Passarino-Veltman reduction in # dimensions.# As a last step,
the expression is expanded around n = 4.

See section A.2 on page 96 for the definition of the scalar loop integrals.

4 This is stressed here since FeynCalc takes the limit n — 4 after Passarino-Veltman

reduction by default, i.e. it automatically adds the finite terms from dimensional
regularization.
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7.5 REFORMULATED INFRARED REGULARIZATION

In order to illustrate this, the test case is considered where only terms
proportional to g, are taken into account and ¢, is set to zero. Re-
ferring to the Feynman diagrams in figures 7.2 and 7.4, one concludes
that only diagram (5) of the two-point function and diagram (15) of the
magnetic moment contribute to fllooP up to order O(q?).5 Fortunately,
the calculation of subtraction terms in this case necessitates only the ex-
pansion of one-point and two-point scalar loop integrals. Consequently,
they read

2

w  SapeM3
87 b, (5) = 28p8n2 [31 (Mz) 7] +0(q%), (7.23a)
F(0)s>05) = 25;””; [7M +3(M2 + 3M?) In(M?) (7.23b)

+9M?]+ O(q) -

Here and henceforth, the scale has been set to 4 = 1 GeV and divergences
proportional to A in equation (A.10) have not been shown. Next, the
IR regularized expressions are obtained by subtracting the terms in
equations (7.23a) and (7.23b) from the corresponding unrenormalized
expressions in tables C.1 and C.2 on pages 112-113, respectively, and
expanding the result up to M? with the help of the analytical expressions
in equations (A.8) and (A.9) on pages 96-97. They read

S7IR(5) — (gw””)z [In(M?) +3] + O(M?) (7.24a)
P 322 ’ '
2
F(0)R05) = (g;‘;;)z[ln(Mz) +3]+O(M?). (7.24b)

According to equations (7.18), (7.19a), and (7.20a) and to the fact that
reformulated IR regularization preserves symmetries up to higher order,
the condition

F(0)RGS) 1 e 5ZII)R’ 6 =0+ 0O(M?) (7.25)

must hold, which is indeed true for equations (7.24a) and (7.24b). After
the standard Passarino-Veltman reduction in n dimensions, it is conve-
nient to analyze first which subtraction terms of the loop integrals are
needed in particular. As motivated in equation (7.22), one can already
set the external rho momenta on-shell, pf; = M2 + ¢, M?, whereas the

Compare also the particular contributions to f;(0) of each diagram in table C.2 on
page 113 in the appendix.
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photon momentum g? should be kept off shell. The analysis is achieved
by replacing each specific scalar one-loop integral by a dummy series of
sufficient® order, e.g.

Co(M2 + ¢ M2, @, M2 + ¢, M2, M?, M2, M?)

(7.26)
—>C()+NCI+NZCZ+NSC3+... ,

where R counts the small quantities and the C; are unique with respect
to the loop integral and its arguments. Next, small quantities in the
prefactors of the integrals are identified with the replacements

M - M,
0= M2+ R(pi— M2) (7.27)
pl/f P pl/f p/> 727
qZ N NZ 2 ,
where pys denotes an external, not necessarily on-shell rho momentum
and g? the squared photon momentum. Subsequently, the whole expres-
sion is expanded around X = 0 up to order O(X?) and, afterwards, R is
discarded by setting R = 1. For diagram (11) in figure 7.4, this analysis

leads to an expression which contains Cy, C;, C,. Hence, the subtraction
terms for the integral’

Co(M? + ¢, M?, 4%, M2 + ¢, M2, M2, M?, M?) (7.28)

up to order O(q?) need to be calculated.
The procedure is carried out in a standard way [82] by using the
Feynman parametrization

1 o) .
_ =1 Ipxd N .
» 1 /0 e X (7.29a)

for the three propagator terms, integrating over d”k by using
BZ
/ d"k exp(iAk2 + 2in) = iR gnl2 g=nl2 exp(—iX) , (7.29b)

after interchanging both the integrations, substituting the Feynman
parameters x; by

x=A, x%=A1-&)&, x3=A(1-&)(1-5,), (7.29¢)

6 In practical calculations a maximum order of 10 was chosen.

See equation (A.12) on page 98 for its standard definition. Here, the +i0* prescription
is noted explicitly again.
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and, finally, integrating over A by using

/ T AT = T (g 4 1) (7:20d)
0

One obtains

Co(M> + ¢, M2, %, M2 + . M?, M?, M?, M?)
1
- ()" (3 - nf2) [ dEdE (1- §)
0

[ (M2 0%) - (M2 + .M E(1- &) (730)

n/2-3
-q*(1-&)*(1- fz)fz] .

According to the reformulated IR regularization scheme, the inte-
grand in equation (7.30) is expanded in small Lorentz-invariant quanti-
ties in order to obtain the subtraction terms. To this end, after employing
the replacements in equation (7.27), the integrand is expanded up to X?
and, afterwards, ® = 1is set. This yields

Co(M + ¢, M?, g%, M + ¢, M?, M, M?, M?)**
- mu) PG - ) [ dEdE (1 8)
{80~ &)M; - i0*]"*”
+[nf2-3][-&6,0 - &)M2 - io*]"*™
*[~(1- &P(1-B)& + M (1- c.&(1-&)]}
(7.31)

At this point, one respects the —i0* boundary condition correctly by
using the auxiliary relation

[Fa(1-&)M2—i0*]" = e ™ & (1- &) (M2)", (732)

where x is either (1/2-3) or (n/2-4). Note that the term & (1- &) M}
is always non-positive since the integration variable & ranges between 0
and 1. Consequently, the integration over ¢, is trivial in equation (7.31)
and the integration over & can be carried out by employing the formula
[83]

_T(a+1)I(B+1)

J) daia- 8P == (739)
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The expansion around 7 = 4 is only necessary up to order (n —4)° for
loop integrals since the n-dependent prefactors of the full expression
cannot contain terms proportional to 1/(n — 4). However, note that x
in equation (7.32) is n-dependent, which leads to the correct imaginary
parts of the subtraction terms due to the factor e=7*. Eventually, the
first three coefficients in equation (7.26) are obtained as

1
M;
Ci =0 (all odd coefficients vanish),

Co [ln(Mf,) +1- in] ,

C, = 6?\23 [ln(Mf)) +2- in] (734)
M? .
_ ﬁg[(c" ~2)In(M2) - in(c, - 2) + 2] .

By neglecting all diagrams in figure 7.4 with order O(4*) or higher?®
one finds that after the reformulated infrared reformulation procedure
only diagram (15) contributes to f*(0) and f;*(0) and the contribution
of diagram (3) in figure 7.2 to 8Z})R vanishes. Hence, the already verified
consistency condition in equation (7.25) stays the same if taking all
diagrams into account. Finally, the result for the gyromagnetic ratio in
reformulated infrared regularization reads

1 ree. IOO,IR
SIR(O) e = = (=4 0T

M 2
“24 g (AR 2 + M (gl + O(M) .

(7.35)

8 That means that no calculation of subtraction terms has been carried out for these inte-

grals since the corresponding C, integrals are cumbersome to integrate, despite using
comprehensive integral tables [84, 85, 86]. Hence, no cross-check of the assignment
of orders to those diagrams was done.



7.6 DISCUSSION OF RESULTS

Method o Reference
Current Dyson-Schwinger  2.01 [89]
Rel. QM: Light-front 1.92 [90]
QCD light cone sum rules  2.3+0.5 [91]
QCD sum rules 2.0+£0.3 [92]
Previous Dyson-Schwinger 2.69 [93]
Rel. QM: Covariant 2.14 [94]
Rel. QM: Light-front 2.19,2.17,2.15,2.48 [94]
Rel. QM: Light-front 2.26 [95]

Table 7.1: Comparison with other theoretical predictions. They are sorted by
date of publication. The magnetic moment y, is given in units of
= e/(2M,). In general, all methods use some non-trivial assump-
tions concerning the effective interaction or validity of perturbative
expansion.

7.6 DISCUSSION OF RESULTS

The main result obtained in this chapter is given in equation (7.35). The
loop correction, which should be small in comparison to the tree-level
result, can be estimated by numerical evaluation. Using the physical
masses M = 0.140 GeV, M, = 0.775GeV [36] and the heavily model-
dependent numerical value for the LEC ;% ~ 16 GeV~! [87], one finds
as a rough estimate

£°PTR(0) /e ~ 0.137. (736)

Here, the width of the rho meson I, has been neglected as a higher-
order correction. Assuming that the numerical value at tree level for
the magnetic moment y, is 2 in units of 4 = e¢/(2M,) [88], the loop
correction is indeed small.> However, at least the LEC g, at tree level
in equation (7.35) is not known so far and thus no completely numerical
result can be given.

In table 7.1 some other theoretical predictions are presented. They are
in good agreement with the result obtained here if one takes into account
that this calculation has an error of at least 15 % due to the numerical

Note that f,(0)/e is exactly the magnetic moment y, defined in equation (7.17b) in
units of y = e/(2M,).
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value of gif},,, [87]. In Lattice QCD, the main problem is the calculation

of this complex quantity at the physical pion mass due to the limited
computational power resulting in large statistical errors [96, 97]. Hence,
the results obtained there are not yet comparable. A higher-order calcu-
lation in the framework of chiral effective field theories could be used to
give a more reliable numerical value for the magnetic moment as a chiral
extrapolation of Lattice QCD results. Unfortunately, no experimental
data for the magnetic moment exist at the moment and thus no final
decision on the validity of the various theoretical assumptions compared
in table 7.1 can be made.



SUMMARY AND CONCLUSION

This chapter gives a short summary of the results obtained in part II and
draws conclusions from it. Consequently, some possible extensions of
this work are proposed as a short outlook. Obstacles and difficulties,
which may occur in future endeavors, are pointed out.

In chapter 5, a successful extension to the SU(3) sector of the constraint
analysis in the vector field formalism has been presented. A massive
Yang-Mills theory has been found for eight vector particles assuming
a global SU(3) symmetry a priori. However, starting from a global
U(1) symmetry, i.e. requiring only charge conservation, the analysis has
not been feasible for eight fields due to the vast number of parameter
choices during the constraint analysis. The same obstacle appears if
requiring a global SU(2) symmetry as a subgroup of SU(3), i.e. for equal
up- and down-quark masses, which leads to isospin symmetry. It is also
a non-trivial task to find the number of truly independent parameters
resulting from the permutation symmetries of the interaction terms.
In conclusion, reducing the a priori assumptions for eight vector fields
quickly leads to severe problems.

At this point, it shall be mentioned briefly that a constraint analysis
for three axial-vector particles was carried out and led to conditions for
the coupling constants. Unfortunately, the subsequent renormalizability
analysis yielded lengthy equations which could not be simplified further.
Nevertheless, little effort has been made to investigate this further.

In chapter 6, a challenging result has been found. Assuming U(1)
invariance a priori, the most general Lagrangian for three vector par-
ticles described by antisymmetric tensor fields has been constructed.
Here, interaction terms accompanied by couplings of negative energy
dimension have been assumed to be suppressed by an intrinsic large
scale. By applying a cumbersome constraint analysis, one directly finds
that the three-vertex interaction must vanish. Taking absorbability of
divergences into account, the four-vertex interaction must also vanish.
This result would not have been obtained if one had not carried out the
cumbersome constraint analysis. In conclusion, the only self-consistent
theory in the antisymmetric tensor field formalism is the free theory.
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This is in stark contrast to the findings in the vector field formalism.
There, the same assumptions lead to a massive Yang-Mills theory.

An integral part of this work was cross-checking the results stemming
from computer algorithms as far as possible by hand. Relying on that,
one draws the conclusion that there is an astounding difference between
the tensor field formalism and the vector field formalism in effective
quantum field theories. Regarding the former, the assumption that
terms with a higher number of fields and derivatives are suppressed
does not lead to an expected self-consistent interacting theory as for the
latter. However, the equivalence of both formalisms has been shown
for various interaction terms in chiral effective field theories including
vector mesons [60, 68]. There, different methods of implementing vector
mesons are mutually consistent with respect to chiral symmetry, number
of LECs, and power counting. In this sense, it is often argued that using
either the vector or tensor field formalism does not matter and the
formalism should be chosen as one prefers. Nevertheless, with a few
exceptions [30], a proper constraint analysis for these interactions is not
considered, although it is a crucial part in the reasoning presented here.
Therefore, it would be a reasonable extension of this work to investigate
interaction terms of vector mesons with pions or nucleons within the
tensor field formalism including a constraint analysis. Of course, the
increasing number of fields and thus the complexity of possible self-
consistent parameter choices make life hard.

In chapter 7, the magnetic moment of the rho meson has been calcu-
lated in the framework of a chiral effective field theory including the rho
and omega mesons. In comparison to work concerning the properties
of nucleons, new difficulties appear. First, the power counting becomes
more involved due to the different fluxes of large external momenta.
Considering this, a chiral order was assigned to each diagram and the
regularization scheme has been successfully confirmed for the relevant
diagrams. Second, the rho meson can decay into two pions and thus
loop integrals with imaginary parts appear. Additionally, the unstable
rho meson should be implemented with a complex mass in order to
absorb the complex counter-terms, however, it turned out that this is an
effect of higher order in the calculated quantities. Up to order O(g?),
the calculation of the electromagnetic form factors at g = 0 was suc-
cessful in the reformulated infrared regularization scheme. The most
important terms stemmed from the inclusion of the omega meson. Here,
future work could focus on reinvestigating the correct construction of
the most general Lagrangian, e.g. by using a constraint analysis, and on
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cross-checking the renormalized quantities more thoroughly by con-
sidering the case g* # 0. Furthermore, the current Lattice QCD results
need chiral expansions in the pion mass. Hence, a result valid for higher
chiral orders could be advantageous.

Although the two last chapters cover different topics at first sight, both
the results contribute to the endeavor how to create an effective field
theory applicable in the low-energy regime up to 1GeV. To this end,
it is definitely necessary to include vector mesons as explicit degrees
of freedom, which have been known as resonances in experiments for
a long time. On the one hand, the sometimes favorable tensor field
formalism for vector particles has shown not to be quasi-equivalent to
the vector field formalism. This necessitates rethinking of the various
descriptions of vector meson interactions with other hadrons. On the
other hand, calculating physical properties of vector mesons turns out to
be more complicated in comparison to nucleons. However, a successful
calculation and comparison with future experiments and Lattice QCD
extrapolations can increase the confidence in the validity of the effective
field theory.
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NOTATIONS AND RELATIONS

In this chapter, the notation used throughout this thesis is briefly sum-
marized. Furthermore, some important relations, which have been
employed in the calculations, are given.

A.1 THE SPECIAL UNITARY GROUP

The following definitions and relations are also given in the comprehen-
sive compendium of [77]. The special unitary group SU(N) is defined
as

SUN)={M|M'M=1,detM =1}, (A1)

where M is an N x N complex matrix. The unitary group U(N) is
obtained by simply removing the constraint det M = 1. Elements U of
SU(N) can be parametrized as

U =exp(-i0,T,), (A2)

where T, represent the Hermitian and traceless N2 —1 generators. The to-
tally antisymmetric structure constants f,;., which encode the structure
of the Lie group, are defined as

[Tw Tb] = ifabc Tc > (A3)

where [A, B] = AB — BA denotes the commutator. Furthermore, the
anticommutation relations can be written with the help of the totally
symmetric tensor d,. as

{Tﬂ’ Tb} = K(Sab + dahc Tc > (A4)

where « is some N dependent constant.
For N = 2, the generators can be written in terms of the Pauli matrices,
namely T; = 7;/2, where

) ) L) e
10 i 0 0 -1

The structure constants are equivalent to the Levi-Civita symbol, f,;. =
€.0c, and the d ;. vanish. For convenience, 7, denotes the unit matrix.
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For N = 3, the generators T, = A,/2 are given by the Gell-Mann
matrices

010 0 -i 0 1 0 0
M=11 0 o], A=|i 0 of, A=10 -1 of,
000 0 0 0 0 0 0
00 1 0 0 —i 0 00
As=]0 0 o), As=|0 0 o}, As=]0 0 1],
1 0 i 0 0 010

00 0 1100
A7=O(?—i,)t3=%01 ol (A.6)
0 i 0 00 -2

The constants f,;. and d,;. can be calculated by the relations

1 1
fabc = 4_1 Tr([la,)tb])tc) and dabc = Z Tr({la,)tb}/lc) 5 (A7)

respectively.

A.2 ONE-LOOP INTEGRALS

This section briefly summarizes the so-called scalar one-loop integrals
in the notation of [98]. They typically appear as results of one-loop
calculations after applying the standard Passarino-Veltman reduction
[72]. The scheme reduces tensor loop integrals over d"k, which carry
quantities such as k#k” in the numerator, to scalar ones. For a thorough
review of Passarino-Veltman reduction schemes see [73]. The algorithms
presented there are implemented in FeynCalc as well as in FormCalc, a
part of FeynArts, see also appendix B. The calculation of loop integrals
is detailed in [82].

In dimensional regularization [69], the one-point scalar integral is
given by

4-n
A(m 271#) fdn

im? m2 + 107"

mZ
= -32m°Am* - m*In —
w
The mass scale y gives the integral the mass unit eV> independent of the
number of space-time dimensions 7. It is usually set to 4 = 1GeV in this

thesis, which simplifies results.

(A.8)
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The two-point scalar integral can also be calculated explicitly for
arbitrary arguments. It reads

Bo(p?, my, m3)

_ Qmu)* f Ik 1

in? [k2 = m? +i0*][(k + p)* - m2 + i0*]

a2 Wy .3
_ 3271/\+1n(m%> 1=~ 2R 230) (o)

_1[1 z(m_l)]zFl(l 23 1+%),

_ m; —m3 + p* + \/(mf - mj + p*)? — 4mjp*
2m?

b

where ,F;(a, b; ¢; z) is the standard hypergeometric function [83]. The
divergent part of the one-point and two-point integrals is encoded in

= 1617'[2 { - i i %[1n(47‘[) +T/(1) + 1]} ) (A.10)

According to the MS renormalization scheme, quantities proportional

to A in equation (A.10) are compensated by appropriate counter-terms.

Furthermore, the derivative of B, with respect to p* reads

2 2 2
aBO(Pépnzl’ ) = %{(—P2 +mi+ m%)P2 - Ao(mg)(P2 +mj - m%)

= Ag(m})(p? = mi + m)

+ Bo(p?, m, m2)[p*(m?+ m3) = (m? - m3)*]
(A.11)

where

D = p[mi = 2(p* + m3)mi + (p* - m3)?].

This relation proves to be useful in the calculation of the wave function
renormalization constant. Among more derivatives, this result can be
found in [99, App. C.2.1]. However, note that some of these formulas
exhibit parts not proportional to a one-loop integral. Therefore, they are
only valid in # = 4 dimensions and cannot be used for the calculation of
subtraction terms in the reformulated IR regularization scheme.
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The non-divergent three-point scalar integral can only be calculated
analytically for special arguments, so only its definition is given for
completeness as

(7p)*
172
T (A12)

x | d"k ,
f [k2—mf][(k+p1)2—mg][(k+pu)2—mg]

2.2 .2 2 2 2y _
Co(p1> p2> 12> Mi> M3, m3) =

where p;, = p; + p; and the +i0* prescription in the denominator has
been dropped for brevity. By virtue of the translation invariance in k,
the following expressions are all equal:

2,2 .2 .2 2 3 2 .2 .2 .2 2 2
Co(p1> 2> Pio» mi> my, m3),  Co(piys P3s P1> My, M3, M3)

2.2 2 .2 2 3 2.2 2 .2 2 3
Co(p1s Pias P3» M3, mi, m3),  Co(p3, phs p1> M3, m3, my), (Aa3)

2 .2 .2 .2 2 ) 2,2 .2 2 2 3
Co(pios P1> P2> M3, mi,m3),  Co(p3s Pis Pras M3, M3, M7) .

Furthermore, the derivatives of C, with respect to an arbitrary argument
is detailed in [100]. The corresponding algorithm is also given in [99,
App. C.2.1] and has been implemented in Mathematica in order to ex-
press all Cy at g? = 0 in terms of By and A, compare also section 7.5 on
page 82.

For completeness, the following relations for special arguments of C,
integrals are given:

Co(p*,0, p*, mi, m3, m3) =
[} = 2m3(m? + p?) + (m - p*)*]
x [(m3 - m} - p*)(Bo(p*, m3, m}) - 1)
- (m%+mlz—pz)Ao(mg)/mg+2A0(m12)], (A.142)
Co(p?, p*, 0, m3, m3, m3) =

[Bo(p?, m3, m3) = Bo(p?, m3, m3) |/ (m3—m3).  (Aagb)



TECHNICAL DETAILS

This chapter gives a brief overview of the various tools and techniques
which have been used to calculate the results throughout this work.
Mostly, the comprehensive computer algebra system Wolfram Mathe-
matica 7.0 and the programming language FORM [101, 102, 103] have
been employed on a Linux-based 64bit machine. Note that a 32bit sys-
tem is not sufficient due to some limitations of the FORM interpreter.
Furthermore, both the Mathematica packages FeynCalc [104] and Fey-
nArts/FormCalc [105] have been used in parallel for the calculation of
diagram amplitudes.

B.1 EFFECTIVE FIELD THEORY MODEL IN FEYNARTS

Starting from the definition of the Lagrangian using the common build-
ing blocks of chiral effective field theories, the calculation is carried out
in a semi-automatic way, i.e. all intermediate results are not transferred
by hand at any point. This approach reduces possible sources of mistakes
in general. However, its drawback is that interim consistency checks can
become less transparent. The single calculation steps are detailed in the
following and an overview is depicted in figure B.1.

The original FORM code for generating the Feynman rules in the
mesonic sector—kindly provided by Sandro Gorini—was extended for
the inclusion of the omega meson. Indeed, FORM is well-suited for the
necessary expansion of the Lagrangian and the permutation operations
involved in deriving Feynman rules of effective field theories. Next, a
wrapper which automatically generates a complete FeynArts model has
been developed in Mathematica as a first proof of concept. The wrapper
obtains the Feynman rules via FormGet, a spin-off of FeynArts. Besides
that, the Feynman rules are prepared for easy usage with respect to the
FeynCalc package. The main difficulty concerning the wrapper was
the correct separation of the Feynman rules in a so-called kinetic part
and a part containing coupling constants according to the FeynArts
manual, see also equations (6.58a) and (6.58b) on page 62. Basically, it
boils down to the determination of coefficients of Lorentz structures
and a rather cumbersome formatting of the output suitable for FeynArts.
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Generate Feynman rules from effective
Lagrangian using building blocks.

i FormGet

Convert Feynman rules and generate
FeynArts Model.

;

cross-checking purposes.

Generate diagrams with FeynArts. Write down
Export as graphics. diagram
¢ amplitudes
manually.
Calculate amplitudes with FormCalc Calculate with
including PaVe reduction. FeynCalc.
Compare results for debugging and

Figure B.1: Flowchart visualizing the necessary extension of FeynArts for effec-
tive field theories. The Feynman rules are also automatically con-
verted for FeynCalc usage, which is a helpful tool for cross-checking.
Boxes with thicker border indicate that the necessary code is mostly
self-written. Boxes with gray background indicate that FORM is

used instead of Mathematica.



B.2 CONSTRAINT ANALYSIS IN FORM

Future developments should modify the FORM code output such that it
is easily converted in a FeynArts model.

Regarding an effective field theory (EFT), typically much more com-
plicated Feynman rules with various kinetic parts appear in comparison
to the Standard Model, for which FeynArts has been originally designed.
Furthermore, the photon-rho coupling requires appending a two-vertex
to each generated topology. This is implemented by direct modification
of already generated topology code, i.e. before inserting the particular
fields. In summary, it turned out that FeynArts in conjunction with
FormCalc is suitable for successful calculations in EFTs. Nevertheless,
the calculation can take some hours since FormCalc is not optimized
for typical amplitudes of EFTs. During the development process, some
bugs in FormCalc have been identified by thorough comparison with
FeynCalc results, especially in the SU(2) index handling and in the re-
cently available Passarino-Veltman reduction code. They have already
been fixed in the current official release. This was greatly supported
by Thomas Hahn, the maintainer of FeynArts and FormCalc. Consid-
ering that FeynCalc is outdated and not well-maintained anymore, a
future-proof approach should take FeynArts into account.

B.2 CONSTRAINT ANALYSIS IN FORM

As already mentioned in the previous section B.1, FORM is well-suited
for algebraic transformations relevant to theoretical physics. For exam-
ple, the contraction of a symmetric tensor with an antisymmetric one
is automatically identified as zero. Furthermore, a very comprehensive
replacement system and a useful preprocessor is provided.

The first part was the determination of available Lorentz structures
discussed in section 6.1 on page 43. This is implemented in a brute-
force approach by simply contracting all possible index permutations
with the corresponding product of fields. Since FORM automatically
sorts the indices in a standard order, only a few terms remain. They
were finally reduced to the truly independent Lorentz structures by
taking into account the contraction with the arbitrary coupling constants.
These steps have also been cross-checked with independently developed
Mathematica code. Admittedly, there are smarter ways of obtaining the
possible Lorentz structures, but the brute-force method should be the
most robust.

The second part concerned the requirement of the U(1) invariance in
conjunction with the elimination of superfluous coupling parameters.
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To this end, the summation over all Lorentz indices and internal indices
is carried out in equations (6.14) and (6.17) on pages 47-48, respectively.
Additionally, the antisymmetry of the tensor fields is incorporated as
usual by the replacement W#" — V#¥ — V¢ where V#¥ is an arbitrary
tensor field. The resulting expressions have been collected by the fields
V. Fortunately, FormGet preserves this parenthesis structure of the ex-
pression. Using Mathematica, the conditions on the coupling constants
due to U(1) invariance have been solved and converted to replacements
again suitable for FORM. Finally, the whole Lagrangian is considered
again in FORM and the solution ensuring U(1) invariance is inserted af-
ter explicit summation of all indices and antisymmetrization. This result
is analyzed in Mathematica with respect to superfluous parameters ac-
cording to the algorithm described in section 6.2 on page 46. In this part,
the main problem was to figure out which tool is best-suited to carry
out a specific step. For example, solving a linear equation algebraically
is easily done in Mathematica, but hard in FORM. On the other hand,
tensor structures and summations are much more efficiently handled by
FORM in comparison to Mathematica.

The third part was the calculation of the matrix M in equation (6.27)
on page 52, whose determinant was then analyzed in Mathematica. This
problem boils down to the implementation of the Poisson algebra

{f.ght=g{f-h}+{f.g}h, (B.1)

where f, g, h are arbitrary functions of the canonical variables. Using
equation (B.1), the expression is simplified to the fundamental Poisson
brackets, which obey equation (4.15) on page 32. The algorithm uses
replacements for the algebra and represents the poisson bracket by a so-
called non-commuting function in FORM. The fact that no derivatives
appear in the interaction part of the Lagrangian simplifies matters signif-
icantly since no integration by parts needs to be carried out. Finally, the
output is prepared for Mathematica after applying the relations obtained
from the U(1) invariance.

The last part consisted of the renormalizability analysis. It was carried
out using a general tensor model file in FeynArts, analogously to the
vector model file used in chapter 5. Fortunately, FeynArts supports tensor
fields by design. Since the parametrization in equation (6.20) on page 49
is given for explicit internal indices, the infinite parts of the vertices
needed to be calculated on ,,particles insertion level® This calculation
takes some hours and it has been parallelized using a small bash script
and the MASH Perl script, which allows for treating Mathematica scripts
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as usual shell scripts. This approach renders the process more stable.

Note that FeynCalc is not suitable for such calculations, since the tensor
rank of the loop integrals is quite high and the necessary simplification
of the Lorentz structure is an elaborate problem.
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C.1 FEYNMAN RULES

In the vertices, the rho meson is represented by a straight line, the pion
by a dashed line, the (always external) photon by a wiggly line and
the omega meson by a curly line. All the momenta in the following
Feynman rules are incoming. These and the Lorentz indices y, v, 1, 0, «
are ordered starting from the left upper corner in a counter-clockwise
direction, e.g.

p3 /\ pla[fl PS:(X

P p
pz’ Vv or p2> v p3, A P4, o

Additionally, note that the LEC fy is defined differently in comparison
to the usual definition, see e.g. [68] due to the implementation in FORM.
Referring to equation (7.2b) on page 72, the usual definition can be
obtained by the replacement fy; — —f,/(21/2). All rules presented here
have been automatically calculated and inserted into this document,
which reduces readability on the one hand, but increases correctness on
the other hand. The Minkowski product p; - p, of two four-vectors is
written p; p; in the following Feynman rules.

iea3h U ov uv 2
’)‘/’V"V\"iph (gplpl(dx+2fV)+g (M?c, -
gpi(de +2fv) + M;))
Pc
Euhc
R -/ 2pig (P2 (MPex + 28 (pips)de + M) -
s PY(MPex +2g(paps)ds + My))
b
Y
‘(IHJJ e( B H)€3ab
7T ——PIZFf;Z (M2 + M?c, - 2F°g%)
o
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_gwpn_6ubeplp2‘uv

2
AN
PE/%&

ge((pt - ph)g™ + (ph — pi) g™ + (p} -

pe p)g*)
Pb
Pc
y —ee(gon— g(dx +2fv))(plg" - pig™)
Pb
\7Ta pPd
o ~ l a C v v
\‘::< ~ 2 (M2, 8% 0g" + g (pl p} -
T S pyp)(8%8% — 57¢0"))
b c
—ﬁ(Z(?”S“b(g”"(ZMzcx +

8(pspa)(ds +2fv) + g(p1pa +
papa)ds + M3) - gph(p5(ds +
T Pa 2fv) +d(p; +p3))) +
JaaN 83a8bd(_gm(Mzcx + g(P3p4)(dx +
2fv) +28(p1pa)dx — (P1P3)&on +
(P2P3)8pn + M) + gply (p3(dy +

\ /
\ /
\
\ /
N
N/
*,H)f\

2fv) +2dxpl) + on(Ph — PY)P3) +
83b8ad(_gyv(Mzcx + g(p3p4)(dx +
2fy) + 2g(pzp42)dx +(p1P3)gpon —
(P2P3)8pn + M) + gpy (p3(ds +
2fv) +2d.p3) + gon(pl = P5)P3))

T, w

. _iggwpﬂeabcepllyv
Pb Pc
\T[a w

iegwpﬂ€3ac€—p3/\,uv



C.1 FEYNMAN RULES

Pa Pd

_ig2(_5ab6cd(g/1vgya +g)tygva _zg)wg;w) _
6a66bd(glvgyo _ zg/lygva + g/lagyv) _
6ad6bc(_zg)tvgya_i_glygva_'_g)wgyv))

Pb Pc
e

@(‘(P?gl" - pigt”) (348 -
3€3ue6bd + 36ae63bd _ 38ad€3be _
28ab63de + 83h€ade + 63a€bde)(g(dx +
2fv) ~ o) — 28dx (8 ((py +
p2)g" — (pi +p3)gh) +

T e 8™ ((2py + py)g™ = (2p1 +

P5)g) 8 ((2p} + py)gh -
(2p1 + p3)g") + 16" ((p} +
2p3) g™ — (pr +2p3)g™) +

8% ((pt +2p3)g" — (py +
2p3) ") + 8% (py g -
pigt) + 8> ((py — ph)gh +
(pt - p5)g") + 6% (pygh -
phgt) + 8% ((py - p3y) gt +
(p3-pHg™)))
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C.2 FLUXES OF LARGE MOMENTA FOR EACH TOPOLOGY
In figures C.1 and C.2 the possible fluxes of large external momenta

are given. They have been used to determine the chiral order of each
diagram, see figures 7.2 and 7.4 on pages 75-78, respectively.

Q)

(a) Topology 1

—O— —— O

(b) Topology 2

Figure C.1: Possible fluxes of large momenta through each topology of one-loop
diagrams for the two-point function. The external rho mesons are
assumed to carry large momenta. The large momenta are indicated
by a thicker propagator line. Note that these diagrams should be
seen as naive templates for a computer algorithm. Compare also
figure 7.2 on page 75.
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(a) Topology 1

@) O

(b) Topology 2
e~
(c) Topology 3
S~
(d) Topology 4
0
(e) Topology 5

Figure C.2: Possible fluxes of large momenta through each topology of one-loop
diagrams relevant to the magnetic moment. Again, the external rho
mesons are assumed to carry large momenta, whereas the photon
momentum is assumed to be small. Compare also figure 7.4 on

page 78.
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-

C.3 E; AND E, FOR THE MAGNETIC MOMENT

Here, the two lengthy expressions for Z; and E,, which have been used
in equation (7.20b) on page 81, are given in the following equations (C.1)
and (C.2).
8y = -18M,Ag(M?c, + M3)(3g(dx + 2fv) = 3gpn = 5)
- 24A0(M?)(M?c, + M3)((gdx - 1)
X (Mzcx(g(:)’dx(g(dx +2fy) - 8pn — 2) - 2fy)
+ S(gpﬂ +1)) + Mfz)(g(?’dx(g(dx +2fv) - 8pr ~ 2)
= 2fv) +38pn)) - 3M;)
+ (MPc, + Mf,)(lZ(gdx -1)(M?c, + Mﬁ)
x Bo(M?2c, + M2, M?, M?)
x (M*(—g(3(cx = 2)dxgpn + 3cxdy + 2¢, fy + 4fv)
+3¢%(cx = 2)dy(dy + 2fv) +3(cx —2)gpn + 6)
+ M7 (g(3dx(g(dx + 2fv) = gon —1) = 2fv) + 3gpx))
~ 45M!By(M?c, + M2, M2c, + M2, M?c, + M2)
< (8(dy +2fv) ~ gpn +2)
- 8M?c,(3M? - M3)(gdx —1)(g(3gd.(dx +2fv)
—3d.gon +2fv) +3(gon — 1))
+4M*ci(gd, —1)(g(3gdy(dy + 2fv) = 3dxgpr + 2fv)
+ 3(gpﬂ - 1))
—24M>M3(gd, —1)(g(3gd(dx +2fv) = 3d.gom + 2fv)
+ 3(gpﬂ - 1))
+ Mﬁ(g(dx(‘}g(?’dx(g(dx +2fv) = gpon —1) —4fv)
+ 3(8gpn -9)) - 38fv) + 3(gpﬂ -17)))

(Ca)
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By = (M? = M2)(M?c, + M2)(M*M (¢ (=5gdy — 68g fy + 348, +14)
+45gd, +96g fy —48g,, - 9)
+ M, (16c, - 3)(gdy — 1) + M;(27gd, +28g fy —14g,, +18))
+6A0( M) (M*M2(2¢,(-28(2dx + fv) + gpn + 4) +2¢2(gdx — 1)
—2g fv + gon +3) + MP M3 (cx(4g(dy + fv) = 28pn — 1) — 4gd, - 2)
+ M®(cx —1)%cx(gde = 1) + M3(2g(dy + fv) = gon +4))
= 6Ao(M?*)(M* My (~2¢x(3gdx = 28 fv + gon — 3) + 3ci(gdx — 1)
—2g fv + gon +3) + MPM3(2gc.dy — 4gce fy +2(cx = 2) gpn + Ca
—gd +8gfv —5) + MSc,((cx —3)c, +1)(gdy - 1)
+ MS(-g(de +6fyv) +38pm+7))
+6(Bo(M?c, + M2, M2, M2)(~M®(cx ~ 1) M2(2¢.(~5¢d, — 2¢ fv
+ gon +5) +3c3(gdx —1) = 2¢ fv + gpn + 3)
- M4M,§(C92c(4g(dx +fv) - 2(gpﬂ +2))
+ o (—20gd, —8g fv +4gpn +17) +2(2gdy = 28 fv + gon + 4))
+ MPMS (3¢, (—g(dy +2fv) + gon +1) + 78y — 28 fv + gon +5)
+ M®(=(cx =1))cy(gdy —1) - 3M3)
+(gde —1)(M?*(cx —4) + M) (MPcy + M3)?
x Bo(M2c, + M2, M?, M?))
(C.2)
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C.4 NON-RENORMALIZED EXPRESSIONS PER DIAGRAM

The full non-renormalized expressions per diagram for the quantities
8Z,, f1(0), and f,(0) are given in tables C.1 to C.3, respectively. They
have been included in this document in a fully automatic way. Concern-
ing the magnetic moment, some diagrams have been grouped in order
to ensure the current conservation, i.e. only their sum fulfills the Lorentz
structure given in equation (7.15) on page 80o. See also the corresponding
Feynman diagrams in figures 7.2 and 7.4 on pages 75-78.

Diagram 6Z,

(1) 0
(2) 0
2 _ 2 2
(3) _8(ed, ) (M, + M;) (Ag(M?)(6-18gd,) +

14472 M?
(3gd. +1)(M2(cy - 6) + M2) + 3Bo(M?c, +
Mﬁ’ Mz’ Mz)(M2(3g(Cx - Z)dx —Cx — 2) +
M}(3gd, -1)))
g , , ,
- _258A M + M + M +
(4) 576712(M26x T M;Z))( 0( Cy p) ( Cx
M2)(99Bo(M?c + M2, MPc, + M2, M2c, + M2) +
113))
Sapn
28872 (M?c, + M’Z))
Ag(M?*)(M?(6¢c, —3) + 9M§) + (M?(17¢, - 24) -
TM2)(MPc, + M2) +3M*(M?(~2¢2 + ¢, +1) -
(3Cx + I)Mz)BO(MZCx + ME)MZ’ M;))

(5)

(3A0(M2)(2MPc, + M2+ M?) +

Table C.1: Contributions of each Feynman diagram in figure 7.2 to §Z, defined
in equation (7.8).
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Diagram f£,(0)
eg?M?c,(gd, —1)*(M?*c, + M?)

PZL(~M? - 6Ag(M?) -

(1) 14472 M (-»; o(M?)

M?(cx = 6) +3(M?(cy +2) + M3)Bo(M?c, +

M,Z,,MZ,MZ))
(2) 0

eM?c. gz,
7 Ag(M?)(M?(cy -2

) 2882 M2(M2c, + Mf,)(S o(M7) (M (ex =2) +

31\?,) + 23A0(M§)(M2(cx2+ 2) - 12/13)) + (M?c, :

M2)(M?(10¢, - 3) + 7M?) = 3M?((3cx + 5)M? +

M?(c2 + ¢, = 2))Bo(M?c, + M2, M*, M?))
(4) 0

eg’d.(gd; —1)(M?c, + M?)

(5)+(7) M (—6A0(M?) + 2(M?(cx -

6) + M>) +3(M*(cx —4) + M))Bo(M?c, +

2 2 2

M2, M?*, M?))
(6)+(8) 0
(9) 0
(10) 0

eg?(gd, —1)2
() g14f7'[2M6 ((Mcx+ M7)?) (-M; - 640 (M?) -
p
M?(cx —6) +3(M?(cy +2) + M3)Bo(M?c, +
M2, M, M?))
eg’ . VP I e

(12) (=534A¢(M?c, + M?) + (M?c, +

15272 (M?c, + M?)
M3)(495Bo(M?c, + M3, M*c, + M7, MPc,, +
M?) +196))

Table C.2: Contributions of each Feynman diagram in figure 7.4 to the form
factor £1(0) in equation (7.20a). Continued on page 114.
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Diagram  f£,(0)

(13)+(14) 0

€Zupn

28872 M>
3A0(M?)(M?(cx =2) +3M2) — (MPc, +
M3)(M?(10¢, = 3) + 7M7) +3M*((3c, +5) M +
M?(c2 + ¢x = 2))Bo(MPc, + M2, M?, M?))

eg3d,(gd, —1)(M?c, + M?

(16)+(19) g’d.(gdx )2( . x p)

14472 M
6) + M2) + 3(M*(cx —4) + M3)Bo(M?c, +
M2, M, M?))
eg?

3847 (M?c, + M2)
M2)(99B,(M?c, + M7, Mcy + M%, Mc, + M?) —
10))

€Zapn

288m*(M?c, + M})
TM?(cy +3)My = 3M>Ag(M?)(cx +1) +
3A0(M3)(M?(=cy) = 2M3 + M?) + 3M*(M?(cx -
1)* - 4M?)Bo(M?c, + M2, M?, M2))

(15) (3A0(M;) (M} — M*(cy +2)) -

(-6A40(M?) +2(M?(cy -

(17)+(20) (6A0(M2cx + M2) - (MPc, +

(18)+(21)

4 4
(14M3 - 7M* (¢, = 3)cx +

(22) 0
(23) 0

(24) 0

Table C.2: Contributions of each Feynman diagram in figure 7.4 to the form
factor £1(0) in equation (7.20a). (Cont.)
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Diagram f,(0)
eg?M?c,(gd, —1)*(M?*c, + M?)

P 2 2
(1) 447 M (M2 +6A0(M?) +
M?(cx = 6) +6(M?(cy —1) + M) Bo(M?c, +
M2, M?, M?))
eg?
- —&pm dx
(2) 1447T2(M2Cx+M§>( 8p +g( +
2fv))(=5140(M?cy + M2) + (MPc, +
M2)(36Bo(M?c+ M2, MPcy+ M2, M+ M2)+5))
eM?c. g,
oPr 6Ao(M?)(M?*(c, -1
G) 576n2M§(M2cx+M,%)( o(Mp) (M (cx 1) +
2M2) + 6A0(M?)(M*(1-2¢,) = 3M?2) + (M?c, +
M3)(M? (11, +3) +14M7) — 6(M? (3¢, — 4) M +
M*(c, —1)* + 3M})Bo(M?c, + M2, M?, M2))
(4) 0
eg?(gd, —1)(M?c, + Mf,)(gdx +28m)
~6A(M?
(5)+(7) TrEE (—640(M?) +
2(M*(cx = 6) + M2) +3(M?(c, — 4) +
M?2)Bo(M?c, + M2, M?, M?))
(6)+(8) 0
©) _eg3M2A0(M2)cxdx
? 8712M;§
3eg?
(10) " (gor — g(ds +2fv))
eg*(gd, —1)?
(11) ngTMS((Mzcx+Mf,)2)(M§+6A0(M2)+M2(cx—
6) + 6(M?(cy —1) + M2)Bo(M?c, + M3, M?, M?))
2
(12) i (54640 (M2, + M2) + (M2c, +

115272 (M?c, + M2)
M2)(513Bo(M?cy + M2, MPc, + M2, MPc, + M2) —
136))

Table C.3: Contributions of each Feynman diagram in figure 7.4 to the form
factor f(0) in equation (7.20b). Continued on page 116.
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Diagram f,(0)

egg)pﬂ(gdx - 1)

- 576mM2(M2 - M?)
M?*(cy —1)% + M3) = 6A¢(M?)(M?(2¢, = 5) M) +
M*((cx = 3)cx +1) +2M3) — 6M>(2M?(cy -
3)(cx —1)M; + M*(c, —1)° = 8M; ) Bo(M?c, +
M2, M*, M) + (MPcy + M2)(6(M?(cx — 4) +
M2)(MPc + M2)Bo(MPcy + M2, M, M?) + (M -
M,) (M, + M)(M*(16c, - 3) +13M?)))

€Zupn

5762 M2
6A0(M2)(M?(~cy) = 2M? + M?) — (MPc, +
M) (M?(1lcy +3) +14M?) + 6(M?* (3¢, — 4) M) +
M*(cx —1)* + 3M3)Bo(M?c, + M2, M*, M?))

eg’d,(gd, —1)(M?*cy + M?)

1447 M
6) + M?2) +3(M?(cx —4) + M2)Bo(M?c, +
M2, M?, M?))

(13)+(14) (640(M;) (M (cy ~4)M; +

(15) (6A0(M?)(M?(2¢, —1) +3M2) +

(16)+(19) (-6Ao(M?) +2(M?*(c, -

eg’ 2 2 2
+ 6Ag(M?c, + M%) — (M?c, +
(17)+(20) 384m2(M?c, + Mf)) ( o(Me P) (Me

M3)(99Bo(M?c, + M3, MPc, + M3, MPc, + M7) —
10))
€Zupn
2887 (M?c, + M2)
TM?(ce +3)M3 = 3M?Ag(M?) (cx +1) +
3A0(M2)(M?*(=cy) = 2M3 + M?) + 3M*(M? (¢, -
1)’ - 4M?)Bo(M?c, + M2, M?, M?))
eg’Ag(M?)d.(M?c, + M?)
87> M;

(18)+(21)

(14M3 - 7M* (¢, = 3)cx +

(22)

2

3eg
32m*(M?c, + M3
e8upn
642 (M2 - M2)
2M2A((M2))

(23)

) (4(MPc, + M2) - 3A0(M?c, + M2))

(24) (5M* —5M} - 2M* Ao (M?) +

Table C.3: Contributions of each Feynman diagram in figure 7.4 to the form
factor f,(0) in equation (7.20b). (Cont.)
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