Partialwellenanalyse bei Compass

Johannes Bernhard

Institut für Kernphysik Mainz

28.01.09

Motivation

Es gibt viele offene Fragen zur Natur der staken Wechselwirkung:

- Hat man den langreichweitigen Teil der QCD verstanden?
- Wie funktioniert Hadronisation?
- Welche Modelle sind zur Beschreibung der nicht-perturbativen QCD geeignet?

Die Vermessung des Spektrums leichter Hadronen, im Besonderen der Mesonen, kann viele Hinweise liefern.

Exotische Mesonen

Mesonen werden oft als gebundene Zustände zweier Quarks verstanden, vorstellbar sind in der QCD allerdings auch komplexere Kombinationen:

- Glueballs
- Hybride
- gebundene qqqq Zustände (Tetraquarks)
- Meson-Moleküle

Gluebälle

C. Morningstar and M. Peardon, Phys. Rev. D 73

(2006) 014516

- Leichte Gluebälle $(0^{++}(1700), 2^{++}(2400))$ haben konventionelle J^{PC}
- mischen mit massenahen Mesonen
- leichtester exotischer
 Glueball(2⁺⁻) bei 4 GeV

Ordnung nach Quantenzahlen \rightarrow PWA

Grundlagen

Ziel der PWA ist die Parametrisierung des n-Teilchen Phasenraums durch die Eigenschaften von Teilchen (Resonanzen) aus einer Zerfallsreihe mit Hilfe von

- Masse
- Zerfallsbreite
- Quantenzahlen (Spin, Parität, usw.)

wird erreicht durch eine Beschreibung der Teilchen im Wellenbild

$$-\frac{\hbar}{2\mu}\nabla^2\Psi(\vec{r})+V(\vec{r})\Psi\vec{r}=E\Psi(\vec{r})$$

mit Eigenzuständen $\Psi_i = \Psi_i(r, \theta, \phi) = \sum_{l=0}^{\infty} U_l(r) P_l(\cos\theta)$ für V(r) = 0 (vor der Streuung)

Nach der Streuung:

$$\Psi_{S}c = \Psi_{f} - \Psi_{i} = \frac{1}{k} \sum_{l=0}^{\infty} (2l+1) \frac{\eta exp(2i\delta_{l}) - 1}{2i} P_{l}(\cos\theta) \frac{exp(ikr)}{r}$$

Definiere dynamische Amplitude der Streuung:

$$T_l = \sum_{l=0}^{\infty} U_l(r) P_l(\cos\theta)$$

Dynamische Amplitude muss parametrisiert werden, dazu gibt es versch. Ansätze:

- Tensor Formalismen (Zemach Formalismus, kovarianter Ansatz) \rightarrow leicht für kleine L und S
- Spin-Projektions-Formalismen (über Generatoren von Rotationen in der SU(3), *D*-Matrizen)
- Rarita-Schwinger-Formalismus \rightarrow ausschließliche Benutzung der Mandelstamm-Variablen

Zemach-Formalismus

Grundidee: Jeder Drehimpuls der Zerfallsreihe wird durch einen symmetrischen, spurlosen Tensor vom Rang / beschrieben (ähnlich einer Aufteilung der *D*-Matrizen in Unterräume von *I*), z.B.

$$A_{I=0}(\vec{q})=1$$

NB: $\vec{q} * \vec{q_T}$ ist das dyadische Produkt der Vektoren \vec{p} und \vec{q} Die Kopplung der verschiedenen |L, S > Amplituden erfolgt analog zur klassichen QM durch Clebsch-Gordan-Koeffizienten, die PWA macht also nicht anderes, als Amplituden nach Partialwellen in I, m zu entwickeln Beispiel der Entwicklung nach Partialwellen im H Atom sind die Kugelflächenfunktionen $Y_{Im}(\theta, \phi)$

Annahmen im Analyse-Formalismus

- Reaktion $\pi N \rightarrow XN'$ (X sei ein n-Mesonen-System) basiert auf einem Austausch gluonreicher Quasiteilchen (Reggeon, Pomeron)
- Analyse des Systems X seperat vom Recoilsystem N'
- Im System X sind a priori alle J^{PC} -Kombinationen erlaubt
- Wahl des CMS-Systems für X ist Gottfried-Jackson ($z = p_{beam}$, $y = p_{recoil} \times z$, $x = y \times z$)
- Isobarenmodell: Zerfall X → M₁, M₂, ... M_n erfolgt nicht direkt, sondern über eine Zerfallsreihe von Resonanzen, z.B. ρ(770), f₀(1300), f₀(980), f₂(1270), ...

Exkurs: Produktionmechnismen bei COMPASS

Produktionmechnismen bei COMPASS cont.

Natürlich auch Photoproduktion in $\mu \ p \rightarrow \mu \ p_{slow} \ X^0$

Informationen über die Mechanismen

Theoretische Vohersagen und Vorgängerexperimente (wie WA102) schlussfolgern aus der t und ϕ' Abhängigkeit des Wirkungsquerschnittes den Produktionsmeschanismus:

$$\frac{d\sigma}{dt_1 dt_2} \sim (t_1 + t_2) \exp\left(-b(t_1 + t_2)\right)$$

Helizität eins:

$$\frac{d\sigma}{dt_1 dt_2 d\phi'} \sim a^2(t_1^L, t_2^T) \times \left\{ \left(\sqrt{t_1} - \sqrt{t_2} \left(\frac{a(t_1^T, t_2^L)}{a(t_1^L, t_2^T)} \right) \right)^2 + 4\sqrt{t_1 t_2} \cos^2\left(\frac{\phi'}{2}\right) \left(\frac{a(t_1^T, t_2^L)}{a(t_1^L, t_2^T)} \right) \right\}$$

Helizität null (z.B. 0⁻⁺):

$$rac{d\sigma}{dt_1 \; dt_2 \; d\phi'} \sim t_1 \; t_2 \; extsf{sin}^2(\phi')$$

F.Close et al., arXiv:hep-ph/0001158v2, 2000 Wichtiger Input zur Parametrisierung!

Parametrisierung von diffraktiven Prozessen

Im Gottfried-Jackson-System wählen wir die Reflektivitätsbasis $\epsilon = \pm 1$, damit ist die Spinprojektion nicht M, sondern $\pm M$. Als zweite wichtige Quantenzahl definieren wir die Naturalität $\eta = P_{Reggeon}(-1)^{J_{Reggeon}}$, damit ergibt sich die Parametrisierung des Wirkungsquerschnittes durch:

$$\sigma = \Sigma_{\epsilon=-1}^{1} \Sigma_{r=1}^{N_r} |\Sigma_i T_{ir}^{\epsilon} \psi_i^{\epsilon}(\tau) / \textit{Norm.}|^2$$

mit den Basiseigenzuständen ψ_i^{ϵ} und der mehrdim. Phasenraumvariablen τ . Die Normierung ist das Integral über das Betragsquadrat der Basiseigenzustände.

Parametrisierung von diffraktiven Prozessen cont.

In der Chung-Truman-Parametrisierung gilt

$$\sigma(\tau) = \sum_{\epsilon=-1}^{1} \sum_{i,j} \rho_{ij}^{\epsilon} \bar{\phi}_{i}^{\epsilon}(\tau) \bar{\phi}_{i}^{\epsilon}(\tau)^{*}$$

mit der Spin-Density-Matrix ρ , die nun durch einen Fit an die Daten anzupassen ist. Dazu verwenden wir die Likelihood-Funktion

$$lnL = \sum_{n=1}^{N} ln\sigma(\tau_n) - \int \sigma(\tau, m) * Akzeptanz d\tau$$

Ergebnis

15 / 15