# Untersuchung der Spinstruktur des Nukleons am COMPASS Experiment

#### Malte Wilfert

Johannes Gutenberg-Universität Mainz

Promotionsvortrag 4. Juli 2017





#### Motivation

#### 2 COMPASS Experiment & neue Daten

#### 3 Ergebnisse

- Asymmetrien und Strukturfunktionen
- NLO QCD Analyse, systematische Studien
- Erste Momente

#### Zusammenfassung

# Struktur des Nukleons

#### Naives Quark-Parton-Modell (QPM)



- Drei Valenzquarks
- Zwei Quarktypen q (up (u), down (d))
- Isospindublett (p = uud, n = udd)

#### QCD erweitertes Quark-Parton-Modell



- Gluonen (g 
  ightarrow q ar q)
- Seequarks  $(q, \bar{q})$
- Mehr Quarktypen  $(u, d, s, \bar{u}, \bar{d}, \bar{s}, ...)$
- Abhängig von Auflösung

Malte Wilfert

Spinstruktur

# Longitudinale Spinstruktur des Nukleons

#### Naive Erwartung



- Drei Valenzquarks mit Spin 1/2
- Kombination der Spins:  $\uparrow\uparrow\downarrow$
- Ergibt den Nukleon Spin 1/2

#### Realistisches Modell



- Beitrag der Quarks  $\Delta \Sigma$ ?
- Beitrag der Gluonen  $\Delta G$ ?
- Beitrag von Bahndrehimpulsen L?
- $S_z = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + L$
- Abhängig von Auflösung

Malte Wilfert

#### Spinstruktur

# Tiefinelastische Lepton-Nukleon-Streuung (DIS)



- Inklusiver Wirkungsquerschnitt (nur einlaufendes/gestreutes Lepton)
- Bestimmung von Strukturfunktionen F<sub>1</sub>, F<sub>2</sub>
- Extraktion von Partonverteilungen  $q(x, Q^2)$  über Strukturfunktionen
- Erweitertes QPM:  $Q^2$  als weitere Variable

#### Doppelt polarisierte tiefinelastische Streuung



• Photon-Nukleon Asymmetrie

- Absorption polarisierter Photonen  $\sigma_{1/2} \sim q^+ \ \sigma_{3/2} \sim q^-$
- $q(x) = q(x)^+ + q(x)^ \Delta q(x) = q(x)^+ - q(x)^-$

$$A_{1}(x,Q^{2}) = \frac{\sigma_{1/2} - \sigma_{3/2}}{\sigma_{1/2} + \sigma_{3/2}} \stackrel{\text{QPM}}{=} \frac{\sum_{q} e_{q}^{2} \Delta q(x)}{\sum_{q} e_{q}^{2} q(x)}$$

• Spinstrukturfunktion

$$g_1(x,Q^2) = A_1(x,Q^2) \cdot F_1(x,Q^2) \stackrel{\text{QPM}}{=} \frac{1}{2} \sum_q e_q^2 \Delta q(x)$$

# COMPASS @ CERN

#### SPS Protonstrahl: $400 \, { m GeV}/c$

Sekundärer Hadronstrahl  $(p, \pi, K)$ : 150 – 270 GeV/cTertiärer polarisierter Myonstrahl (~ 80%): 100 – 200 GeV/c



Malte Wilfert

Spinstruktur

## Das COMPASS Experiment

#### COmmon Muon and Proton Apparatus for Structure and Spectroscopy





- Benötigt: Polarisierte p, d
   → Festkörper-Target
- Polarisation durch DNP (Dynamic Nuclear Polarisation)
- Starkes Magnetfeld:
   2.5 T Solenoidfeld
- Niedrige Temperatur: 50 m mK
- <sup>6</sup>LiD (Longitudinale Deuteron-Polarisation:  $\sim$  50%)
- NH<sub>3</sub> (Longitudinale Proton-Polarisation: ~ 90%)
- Große geometrische Akzeptanz (180 mrad)

Malte Wilfert

#### LiD Target

- 2002-2004: 160 GeV Myonstrahl
- 2006: 160 GeV Myonstrahl

#### $\mathsf{NH}_3$ Target

- 2007: 160 GeV Myonstrahl
- 2011: 200 GeV Myonstrahl
  - Höhere  $Q^2$
  - Kleinere x
- Analyse in zwei kinematischen Bereichen
  - $Q^2 > 1 \, (\text{GeV}/c)^2$ : Erlaubt perturbative Berechnungen
  - $Q^2 < 1 \, (\text{GeV}/c)^2$ : Nicht perturbativer Bereich, empirisch Interessant

# Überprüfung der Datenqualität



#### Überprüfung von Mittelwerten verschiedener Größen

- Anzahl primärer Vertices pro Ereignis
- Anzahl an Spuren pro primärem Vertex
- ..
- Vergleich mit zeitlichen Nachbarn
- Einfluss von:
  - Problemen im Spektrometer
  - Problemen in der Strahlführung



#### Methode zur Asymmetriebestimmung



- Gesucht:  $A = \frac{\sigma^{\uparrow \downarrow} - \sigma^{\uparrow \uparrow}}{\sigma^{\uparrow \downarrow} + \sigma^{\uparrow \uparrow}}$
- Gemessen:  $A_{exp} = \frac{N_u - N_d}{N_u + N_d}$

- $N \sim \sigma \cdot Fluss \cdot Akzeptanz$
- Benötigt:
  - Flussverhältnis = 1
  - Akzeptanzverhältnis = 1
    - $\rightarrow$  Rotation der Polarisation
    - $\rightarrow$  2/3 Targetzellen

#### Methode zur Asymmetriebestimmung



- Gesucht:  $A = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}}$
- Gemessen:  $A_{exp} = \frac{N_u - N_d}{N_u + N_d}$

- $N \sim \sigma \cdot Fluss \cdot Akzeptanz$
- Benötigt:
  - Flussverhältnis = 1
  - Akzeptanzverhältnis = 1
    - $\rightarrow$  Rotation der Polarisation
    - $\rightarrow$  2/3 Targetzellen

#### Beseitigung der Abhängigkeit von der Akzeptanz

40



- Akzeptanz ändert sich mit z
- Zwei/Drei Targetzellen mit entgegengesetzter Polarisation
- Simultane Messung mit beiden Polarisationen
- Regelmäßige Änderung der Polarisation:
  - Rotation des Solenoidfeldes

## Beseitigung der Abhängigkeit von der Akzeptanz



- Akzeptanz ändert sich mit z
- Zwei/Drei Targetzellen mit entgegengesetzter Polarisation
- Simultane Messung mit beiden Polarisationen
- Regelmäßige Änderung der Polarisation:
  - Rotation des Solenoidfeldes
  - Neu polarisieren
  - → Aufhebung residualer Effekte durch Feldrichtung

# Berechnung der Asymmetrie

- Anzahl an Interaktionen in einer Zelle:  $N_i = a_i \phi_i n_i \overline{\sigma} (1 + fDP_B P_T A_1)$ 
  - Akzeptanz: a<sub>i</sub>
  - Fluss:  $\phi_i$
  - Anzahl Targetnukleonen: n<sub>i</sub>
  - Spinunabhängiger Wirkungsquerschnitt:  $\overline{\sigma}$
- Nutze Gewichte:  $w = fDP_{\rm B}$
- Berechne  $\Omega_j = \sum\limits_{ ext{Daten}} w_i$
- Berechne  $A_1$  aus  $\delta = rac{\Omega_u \Omega_d'}{\Omega_u' \Omega_d}$ 
  - $\rightarrow aA_1^2 + bA_1 + c = 0$
- P<sub>T</sub> nicht im Gewicht:
  - Zeitliche Änderung
  - Quelle falscher Asymmetrien

• Mittelwerte: 
$$\langle x \rangle = \frac{\sum w \cdot w \cdot x}{\sum w \cdot w}$$



#### Beiträge zur Asymmetriebestimmung





- $A_{exp} = A_1 \cdot P_{\rm B} \cdot P_{\rm T} \cdot f \cdot D$
- D: Depolarisationsfaktor
- f: Verdünnungsfaktor
- $P_{\rm T}$ : Targetpolarisation
- $P_{\rm B}$ : Strahlpolarisation  $\rightarrow$  Simulation
- Berechne Asymmetrie für Gruppen

Malte Wilfert

- Vertex im Targetmaterial
- Spur des einlaufenden Myons hätte alle Targetzellen durchquert
- $Q^2 > 1 \, (\text{GeV}/c)^2$
- 0.1 < y < 0.9
- $\Rightarrow 0.0025(0.004) < x < 0.7$
- $\Rightarrow W^2 > 5 \, (\text{GeV}/c^2)^2$



- Vertex im Targetmaterial
- Spur des einlaufenden Myons hätte alle Targetzellen durchquert
- $Q^2 > 1 \, (\text{GeV}/c)^2$
- 0.1 < y < 0.9
- $\Rightarrow 0.0025(0.004) < x < 0.7$
- $\Rightarrow W^2 > 5 \, (\text{GeV}/c^2)^2$



- Vertex im Targetmaterial
- Spur des einlaufenden Myons hätte alle Targetzellen durchquert
- $Q^2 > 1 \, (\text{GeV}/c)^2$
- 0.1 < y < 0.9
- $\Rightarrow 0.0025(0.004) < x < 0.7$
- $\Rightarrow W^2 > 5 \, (\text{GeV}/c^2)^2$



- Vertex im Targetmaterial
- Spur des einlaufenden Myons hätte alle Targetzellen durchquert
- $Q^2 > 1 \, (\text{GeV}/c)^2$
- 0.1 < y < 0.9
- $\Rightarrow 0.0025(0.004) < x < 0.7$
- $\Rightarrow W^2 > 5 \, (\text{GeV}/c^2)^2$



#### Systematische Studien

- Wichtig: Test der Akzeptanzaufhebung
- $\Rightarrow$  Suche nach falschen Asymmetrien
  - Vergleich der Daten vor/nach dem Neupolarisieren
  - Vergleich gleicher Spinkonfigurationen

• ...





Malte Wilfert

#### Systematische Studien

- Wichtig: Test der Akzeptanzaufhebung
- $\Rightarrow$  Suche nach falschen Asymmetrien
  - Vergleich der Daten vor/nach dem Neupolarisieren
  - Vergleich gleicher Spinkonfigurationen
  - ...





# Ergebnisse zu $A_1^{\mathrm{p}}$

- Höhere Strahlenergie für 2011 160  ${\rm GeV} \rightarrow$  200  ${\rm GeV}$ 
  - Höhere  $Q^2$
  - Kleinere x
  - ⇒ Wichtig für erste Momente
- Korrekturen zur Asymmetrie
  - Korrektur für <sup>14</sup>N (Spin-1)
  - Spinabhängige Strahlungskorrekturen
- Anstieg zum Valenzbereich
- Gute Übereinstimmung
- Schwache Q<sup>2</sup> Abhängigkeit

•  $g_1^{\mathrm{p}}(x, Q^2) = \frac{F_2^{\mathrm{p}}(x, Q^2)}{2x(1+R(x, Q^2))} A_1^{\mathrm{p}}(x, Q^2)$ 



Malte Wilfert

Promotionsvortrag

# Ergebnisse zu $A_1^p$

- Höhere Strahlenergie für 2011  $160 \text{ GeV} \rightarrow 200 \text{ GeV}$ 
  - Höhere Q<sup>2</sup>
  - Kleinere x
  - ⇒ Wichtig für erste Momente
- Korrekturen zur Asymmetrie
  - Korrektur f
    ür <sup>14</sup>N (Spin-1)
  - Spinabhängige Strahlungskorrekturen
- Anstieg zum Valenzbereich
- Gute Übereinstimmung
- Schwache Q<sup>2</sup> Abhängigkeit

• 
$$g_1^{\mathrm{p}}(x, Q^2) = \frac{F_2^{\mathrm{p}}(x, Q^2)}{2x(1+R(x, Q^2))} A_1^{\mathrm{p}}(x, Q^2)$$



# Weitere Ergebnisse

- Deuterondaten,  $Q^2 > 1 \, (\text{GeV}/c)^2$ 
  - Kombiniert mit existierenden Daten
  - Verbesserte Statistik ( $\sim 50\%$ )
  - Gute Übereinstimmung
  - Asymmetrie mit Null verträglich bei kleinen x
- Protondaten,  $Q^2 < 1 (\text{GeV}/c)^2$ 
  - Messung bei sehr kleinen x
  - Deutliche Verbesserung im Vergleich mit SMC
  - Erstmalige Beobachtung von Spineffekten bei so kleinen x
  - Keine signifikante x Abhängigkeit



# QCD Analyse I

- Effekt der Auflösungsänderung in perturbativer Weise berechenbar
- DGLAP Entwicklungsgleichungen

$$\frac{\mathrm{d}}{\mathrm{d} \ln Q^2} \Delta q_{\mathrm{NS}} = \frac{\alpha_s(Q^2)}{2\pi} \quad \Delta P_{qq} \otimes \Delta q_{\mathrm{NS}}$$
$$\frac{\mathrm{d}}{\mathrm{d} \ln Q^2} \begin{pmatrix} \Delta q_{\mathrm{Si}} \\ \Delta g \end{pmatrix} = \frac{\alpha_s(Q^2)}{2\pi} \begin{pmatrix} \Delta P_{qq} & 2n_f \Delta P_{qg} \\ \Delta P_{gq} & \Delta P_{gg} \end{pmatrix} \otimes \begin{pmatrix} \Delta q_{\mathrm{Si}} \\ \Delta g \end{pmatrix}$$

Strukturfunktion:

 $g_{1} = \frac{1}{2} \langle e^{2} \rangle \left( C^{\mathrm{Si}}(\alpha_{s}) \otimes \Delta q_{\mathrm{Si}} + C^{\mathrm{NS}}(\alpha_{s}) \otimes \Delta q_{\mathrm{NS}} + C^{g}(\alpha_{s}) \otimes \Delta g \right)$ 

• Koeffizienten  $\Delta P$  und C berechnet in 2. Ordnung (NLO)

• 
$$\Delta q_{\mathrm{Si}} = \Delta(u + \bar{u}) + \Delta(d + \bar{d}) + \Delta(s + \bar{s}),$$
  
 $\Delta q_3 = \Delta(u + \bar{u}) - \Delta(d + \bar{d}),$   
 $\Delta q_8 = \Delta(u + \bar{u}) + 2\Delta(d + \bar{d}) - \Delta(s + \bar{s})$ 

• Gleiche Kopplung des Photons an q und  $ar{q} \Rightarrow$  keine Separation

Malte Wilfert



- x-Abhängigkeit unbekannt
- Parametrisierung für $Q_0^2 = 1\,({
  m GeV}/c)^2$  benötigt
- Typischer Ansatz:
  - Niedrige  $x: x^{\alpha}$
  - Hohe *x*:  $(1 x)^{\beta}$
  - Nulldurchgang:  $1 + \gamma x$

$$f = \eta \frac{x^{\alpha} (1-x)^{\beta} (1+\gamma x)}{\int_0^1 x^{\alpha} (1-x)^{\beta} (1+\gamma x) \mathrm{d}x}$$

#### Daten und Einschränkungen



• 
$$\chi^2 = \sum_{n=1}^{N_{Exp}} \left[ \sum_{i=1}^{N_n^{Daten}} \left( \frac{g_1^{fit} - \mathcal{N}_n g_{1,i}^{Daten}}{\mathcal{N}_n \sigma_i} \right)^2 + \left( \frac{1 - \mathcal{N}_n}{\delta \mathcal{N}_n} \right)^2 \right] + \chi^2_{\text{Positivität}}$$

• Positivität:  $|\Delta g(x)| < g(x)$  und  $|\Delta (q(x) + ar q(x))| < q(x) + ar q(x)$ 

- Insgesamt: 495 Datenpunkte (W<sup>2</sup> > 10 GeV<sup>2</sup>), 11 freie Parameter und 15 Normierungsparameter
- Unpolarisierte Partonverteilungen von MSTW2008

Malte Wilfert

# Lösungen für die Helizitätsverteilungen

- Mehrere gleich gute Lösungen
- Wähle die zwei extremen Parametrisierungsformen
- Systematische Studien:
  - Verschiedene
     Parametrisierungen
  - Referenzskala  $Q_0^2$
- $\chi^2$  stabil
- $\Rightarrow$  Systematische Fehler größer als statistische





Singlet

Gluon

#### Statistische Fehler

• Erzeuge 1000 Sätze an Pseudodaten:

Verschiebe Datenpunkte zufällig gemäß einer Gaußverteilung (Breite = stat. Fehler, Mittelwert = Messwert)

- Führe zu jedem Datensatz einen Anpassung durch
- Berechne Mittelwert und Breite (1 $\sigma$  Intervall) der Verteilung



#### Vergleich von Messung und Anpassung





#### Helizitätsverteilungen



• Quarkpolarisation  $0.25 < \Delta \Sigma < 0.35$ 

• Gluonpolarisation  $\Delta G = \int \Delta g(x) dx$ 

Nicht gut bestimmt  $\rightarrow$  Direkte Messungen

Malte Wilfert

#### Erste Momente von Strukturfunktionen

$$\Gamma_1^{p,n}(Q^2) = \int_0^1 g_1^{p,n}(x,Q^2) dx = \frac{1}{36} \left[ (a_8 \pm 3a_3) C^{NS}(Q^2) + 3a_0 C^{S}(Q^2) \right]$$

- Nutze Ergebnisse der QCD Analyse
  - Entwickle  $g_1$  zu  $Q^2 = 3 \, (\text{GeV}/c)^2$
  - Extrapolation zu x = 0 und x = 1
- 97% im gemessenen Bereich
- Kleine Beiträge aus Extrapolation
- Ergebnisse:

$$\begin{split} \Gamma_1^{\rm p} &= 0.138 \pm 0.003_{\rm stat} \pm 0.009_{\rm syst} \pm 0.005_{\rm evol} \\ \Gamma_1^{\rm N} &= \frac{1}{2} \left( \Gamma_1^{\rm p} + \Gamma_1^{\rm n} \right) &= 0.046 \pm 0.002_{\rm stat} \pm 0.004_{\rm syst} \pm 0.005_{\rm evol} \end{split}$$

$$a_0 = rac{1}{C^{
m S}(Q^2)} \left( 9 \Gamma_1^{
m N}(Q^2) - rac{1}{4} a_8 \, C^{
m NS}(Q^2) 
ight)$$

- ullet Nutze das erste Moment von  $g_1^{
  m d}$  und die axiale Ladung  $a_8$
- $a_8$  bestimmt aus Messungen zum Hyperon und Neutron eta-Zerfall
- a0 beschreibt Beitrag der Quarks zum Nukleonspin
- $\overline{\mathrm{MS}}$ :  $a_0 = \Delta \Sigma = \Delta (u + \overline{u}) + \Delta (d + \overline{d}) + \Delta (s + \overline{s})$
- Ergebnis für  $Q^2 = 3 \, (\text{GeV}/c)^2$ :

 $a_0 = 0.32 \pm 0.02_{\rm stat} \pm 0.04_{\rm syst} \pm 0.05_{\rm evol}$ 

• QCD Analyse:  $0.25 \le \Delta \Sigma \le 0.35$ 

Möglichkeit zur Bestimmung der Beiträge der verschiedenen Flavour

Malte Wilfert

$$\int_{0}^{1} g_{1}^{NS}(x, Q^{2}) dx = \int_{0}^{1} \left( g_{1}^{p}(x, Q^{2}) - g_{1}^{n}(x, Q^{2}) \right) dx = \frac{1}{6} \left| \frac{g_{A}}{g_{V}} \right| C_{1}^{NS}(Q^{2})$$

- Non-singlet Strukturfunktion  $g_1^{NS} = g_1^{P} g_1^{n} = 2 \left[ g_1^{P} \frac{g_1^{d}}{1 3/2\omega_D} \right]$ ,  $\omega_D = 0.05$  (D-Wellenanteil an Deuteronwellenfunktion)
- ullet Bestimme  $g_1^{
  m NS}$  nur aus COMPASS Daten
  - 2007 & 2011 Proton Daten
  - 2002 2004 & 2006 Deuteron Daten
- $|rac{g_A}{g_V}| = 1.2723 \pm 0.0023$  aus dem Neutron eta-Zerfall
- Ziel: Überprüfung der Bjorken Summenregel

### Non-singlet Strukturfunktion

- Berechne  $g_1^{\mathrm{NS}} = g_1^{\mathrm{p}} g_1^{\mathrm{n}}$
- Neue QCD Analyse
  - Nur  $\Delta q_3$
  - Benötigt 3 Parameter
  - Entwicklung zu  $Q^2 = 3 \, (\text{GeV}/c)^2$
  - Extrapolation zu x = 0,1
- 93% im gemessenen Bereich
- Bestätigung der Bjorken Summenregel:

 $\left.\frac{g_A}{g_V}\right|_{NLO} = 1.29 \pm 0.05_{\rm stat} \pm 0.10_{\rm syst}$ 

• Verbesserung durch neue Daten  $|g_A/g_V| = 1.28 \pm 0.07 \pm 0.10$ 



Malte Wilfert

### Zusammenfassung

ullet Neue Messung von  ${\mathcal A}_1^{
m p}$  und  ${\mathcal g}_1^{
m p}$  mit dem 200  ${
m GeV}$  Myonstrahl

 $\Rightarrow$  Erweiterter kinematischer Bereich

- ullet Neue Messung zu  ${\it A}_1^{
  m d}$  und  ${\it g}_1^{
  m d}$  mit dem 160  ${
  m GeV}$  Myonstrahl
  - $\Rightarrow$  Verbesserte Genauigkeit
- Weiterführende Ergebnisse:
  - Verbesserte QCD Analyse der Weltdaten mit neuen Schlussfolgerungen
  - Bestimmung von ersten Momenten der Strukturfunktion
  - Bestimmung der axialen Ladung *a*0
  - Bestätigung der Bjorken Summenregel mit verbesserten statistischen Fehler
- Messung von  ${\cal A}_1^{
  m p}$  und  $g_1^{
  m p}$  bei  ${\cal Q}^2 < 1\,({
  m GeV}/c)^2$ 
  - Messung einer positiven Asymmetrie/Strukturfunktion
  - Erstmalige Entdeckung von Spineffekten in diesem kinematischen Bereich

# Abschätzung für falsche Asymmetrien

- Kein Hinweis auf falsche Asymmetrien
- Abschätzung für obere Grenze

 $\Rightarrow$  Verteilung der "Pulls":  $r_i = \frac{A_{1,i} - A_1}{\Lambda A_2^{\text{stat}}}$ 

- Statistische Methode
- Zwei Beiträge zur Breite
  - Statistischer Beitrag  $\sigma_{\mathrm{stat}} = 1$ • Systematischer Beitrag  $\sigma_{\rm syst}$  $\Rightarrow \sigma_{\rm tot}^2 = \sigma_{\rm stat}^2 + \sigma_{\rm syst}^2$
- Obere Grenze für Breite:  $\sigma_{\rm tot}^{\rm lim} = \Delta \sigma_{\rm tot} + {\rm Max}\{1, \sigma_{\rm tot}\}$
- Grenze f
  ür Unsicherheit

$$\sigma^{\mathrm{syst}} = \sqrt{(\Delta \sigma_{\mathrm{tot}} + \mathrm{Max}\{1, \sigma_{\mathrm{tot}}\})^2 - 1}$$

