Parton distribution functions

Malte Wilfert

Institut für Kernphysik - Johannes Gutenberg-Universität Mainz

19th December 2017

Introductions

- Description of structure functions F_i by
 - $F_i(x, Q^2) = \sum_{a=q,g} C_{i,a} \otimes f_{a/A}(x, Q^2)$
 - PDFs $f_{a/A}$ of flavour *a* in a hadron *A*
 - Coefficient functions C_{i,a}
- Hadron cross sections σ_{AB} in hadron-hadron collisions
 - $\sigma_{AB} = \sum_{a,b=q,g} \hat{\sigma}_{ab} \otimes f_{a/A}(x_1, Q^2) \otimes f_{b/B}(x_2, Q^2)$
 - Process-dependent partonic cross sections $\hat{\sigma}_{ab}$
- Scale dependence given by DGLAP evolution equations

•
$$\frac{\partial f_{a/A}}{\partial \ln Q^2} = \sum_{a'=q,g} P_{aa'} \otimes f_{a'/A}$$

- Splitting functions $P_{a,a'}$
- $C_{i,a}, \hat{\sigma}_{a,b}, P_{a,a'}$ perturbative series in α_s
- Number sum rules:

$$\int_{0}^{1} \mathrm{d}x \ u_{v}(x, Q_{0}^{2}) = 2 \quad \int_{0}^{1} \mathrm{d}x \ d_{v}(x, Q_{0}^{2}) = 1 \quad \int_{0}^{1} \mathrm{d}x \ s_{v}(x, Q_{0}^{2}) = 0$$

Momentum sum rule:

$$\int_0^1 \mathrm{d}x \, x[u_v(x, Q_0^2) + d_v(x, Q_0^2) + S(x, Q_0^2) + g(x, Q_0^2)] = 1$$

Malte Wilfert (KPH Mainz)

Heavy quarks

- Important for precise measurements at hadron colliders
- Delicate issue to obtain proper treatment
 - Choices/mistakes lead to changes in PDFs
 - Larger than quoted uncertainties
- Two distinct regimes:
 - Fixed flavour number scheme (FFNS)
 - Zero mass variable number scheme (ZM-VFNS)

Fixed flavour number scheme

- Hard scale $\lesssim m_H$
- Describe heavy quark as final-state particle (not as parton)
- Only light quarks are partons \Rightarrow flavour number is fixed
- Usually $n_f = 3$ but also possibility for $n_F = 4, 5$
- Structure functions are $F_i = \sum_k C_{i,k}^{FF,n_f} (Q^2/m_H^2) \otimes f_k^{n_f} (Q^2)$
- Contains all *m_H* dependent contributions
- Problems
 - Does not sum $lpha_s^m \ln^j (Q^2/m_H^2) (j \le m)$, problem for $Q^2 > m_H^2$
 - Calculations including full mass dependence complicated
 - FFNS coefficient functions, only known up to NLO for neutral current structure functions

- Problems of FFNS solved
 - Heavy quark evolves like massless quarks
 - Resumation of large logarithms is achieved by heavy quark PDF
- Assumption at $Q^2 \gg m_H^2$: heavy quark behaves like massless parton \Rightarrow Same coefficient functions as in the massless limit $F_i = \sum_k C_{i,j}^{ZM,n_f} \otimes f_j^{n_f}(Q^2)$
- $n_f 3$ number of active heavy flavour, switched on above transition point
- Typical at scales similar to m_H^2
- Some mass dependence included in boundary condition (evolution)
- PDFs in different quark number regimes related $f_j^{n+1} = \sum_k A_{jk} (Q^2/m_H^2) \otimes f_k^n(Q^2)$
- Perturbative matrix element A_{jk} contains In terms
- Guaranteeing correct evolution in both regimes

General mass variable number scheme

- ZM-VFNS ignores $\mathcal{O}(m_H^2/Q^2)$ corrections (~ 6% error in light quark PDFs at small-x)
- Connection between FFNS and ZM-VFNS
- No unique definition
- Possibility:
 - Equivalence of $n_f = n(FFNS)$ and $n_f = n + 1(GM VFNS)$ above transition point

$$\begin{split} F_{i}(x,Q^{2}) &= \sum_{k} C_{i,k}^{FF,n}(Q^{2}/m_{H}^{2}) \otimes f_{k}^{n}(Q^{2}) \\ &= \sum_{j} C_{i,j}^{VF,n+1}(Q^{2}/m_{H}^{2}) \otimes f_{j}^{n+1}(Q^{2}) \\ &= \sum_{j,k} C_{i,j}^{VF,n+1}(Q^{2}/m_{H}^{2}) \otimes A_{j,k}(Q^{2}/m_{H}^{2}) \otimes f_{k}^{n}(Q^{2}) \end{split}$$

• Problems of ZM-VFNS are thrown into sharp relief at NNLO

• $A_{j,k} \neq 0$ at $Q^2 = m_H^2$, discontinuities in PDFs

	Heavy flavour	Intrinsic charm
MSTW	GM-VFNS (TR')	—
MMHT	GM-VFNS ('optimal')	—
NNPDF	GM-VFNS (FONLL-B)	possible, small
HERAPDF	GM-VFNS (RTOPT)	—
CTEQ	GM-VFNS (S-ACOT- χ)	—
CJ	GM-VFNS (S-ACOT)	—

Image: A matrix

æ

Experiment	NNPDF	MSTW (MMHT)	CTEQ	CJ	HERApdf
NMC	$F_2^{d}/F_2^{p}, \sigma^{NC,p}$	$F_{2}^{d}/F_{2}^{p}, F_{2}^{p}, F_{2}^{d}, F_{L}$	$F_2^{d}/F_2^{p}, \sigma^{NC,p}$	$F_{2}^{d}/F_{2}^{p}, F_{2}^{p}$	-
SLAC	$F_2^{\mathrm{p}}, F_2^{\mathrm{d}}$	$F_{2}^{p}, F_{2}^{d}, F_{L}$	_	$F_2^{\mathrm{p}}, F_2^{\mathrm{d}}$	_
BCDMS	$F_2^{\mathbf{p}}, F_2^{\mathbf{d}}$	$F_{2}^{\mathrm{p}}, F_{2}^{\mathrm{d}}, F_{2}$	$F_2^{\mathrm{p}}, F_2^{\mathrm{d}}$	$F_2^{\mathbf{p}}, F_2^{\mathbf{d}}$	_
E665	_	$F_2^{\rm p}, F_2^{\rm d}$	_	_	_
HERMES	-		-	$F_2^{\mathrm{p}}, F_2^{\mathrm{d}}$	_
JLab	-	-	-	$F_{2}^{\mathrm{p}}, F_{2}^{\mathrm{d}}, F_{2}^{\mathrm{n}}/F_{2}^{\mathrm{d}}$	-
CHORUS	$\sigma_{\nu}^{CC}, \sigma_{\bar{\nu}}^{CC}$	F2, xF3	_	-	-
NuTev	$\sigma_{\nu}^{CC}, \sigma_{\bar{\nu}}^{CC}$	F ₂ , ×F ₃ dimuon	dimuon	-	_
CDHSW		_	F ₂ , F ₃	-	_
CCFR	-	dimuon	F_2, xF_3 , dimuon	-	_
HERA	$\sigma_p^{NC,CC}, \sigma_{NC}^c, F_2^b$	$\sigma_p^{NC,CC}, F_2^c(, F_L), \text{ jets}$	$\sigma_p^{NC,CC}, \sigma_{NC}^c, \sigma^b, F_L$	$\sigma_p^{NC,CC}$	$\sigma_p^{NC,CC}$
EMC	F ₂	· _	,	,	,
E866	$\sigma_{DY}^{p}, \sigma_{DY}^{d}/\sigma_{DY}^{p}$	$\sigma_{DY}^{p}, \sigma_{DY}^{d}/\sigma_{DY}^{p}$	$\sigma_{DY}^{p}, \sigma_{DY}^{d}/\sigma_{DY}^{p}$	$\sigma_{DY}^{p}, \sigma_{DY}^{d}/\sigma_{DY}^{p}$	-
E605	σ_{DY}^{ρ}		σ_{DY}^{p}	-	_
CDF	Z ⁰ , jets	Z ⁰ , W(asy), jets	$Z^{0}, W(asy), jets$	Z ⁰ , W(asy), jets	_
D0	Z ⁰ , W(asy)	Z ⁰ , W(asy), jets	Z ⁰ , W(asy), jets	Z ⁰ , W(asy), jets	_
LHC	$W, Z, DY, t\bar{t}, jets$	(W, Z, DY)	W, Z, jets	-	-

3

A B >
 A B >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

MSTW

- A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt
- DIS cuts: $Q^2 \ge 2 \,\mathrm{GeV}^2, \, W^2 \ge 15 \,\mathrm{GeV}^2$
- Parametrisation $u_v, d_v, S, s + \overline{s}$:

$$\begin{aligned} xq &= Ax^{\eta_1} (1-x)^{\eta_2} \left(1 + \epsilon \sqrt{x} + \gamma x\right) \\ x(\bar{d} - \bar{u}) &= Ax^{\eta_1} (1-x)^{\eta_2} \left(1 + \gamma x + \delta x^2\right) \\ xg &= Ax^{\eta_1} (1-x)^{\eta_2} \left(1 + \epsilon \sqrt{x} \gamma x\right) \\ &+ A' x^{\delta'} (1-x)^{\eta'} \\ x(s - \bar{s}) &= Ax^{\eta_1} (1-x)^{\eta_2} (1 - x/x_0) \end{aligned}$$

- 30 Parameters (including α_s)
- $\mu_0^2 = 1 \, \text{GeV}^2$

MMHT

- A.D. Martin, P. Motylinski, L.A. Harland-Lang, R.S. Thorne
- DIS cuts: $Q^2 \ge 2 \,\mathrm{GeV}^2, \, W^2 \ge 15 \,\mathrm{GeV}^2$
- Parametrisation $u_v, d_v, S, s + \overline{s}$:

$$xq = A(1-x)^{\eta} x^{\delta} [1 + \sum_{i=1}^{r} a_i T_i^{Ch} (1 - 2\sqrt{x})]$$

$$x(\bar{d}-\bar{u}) = A(1-x)^{\eta} x^{\delta} (1+\gamma x+\delta x^2)$$

$$egin{aligned} & xg = A \left(1 - x
ight)^{\eta} x^{\delta} [1 + \sum_{i=1}^{2} a_{i} T_{i}^{Ch} (1 - 2 \sqrt{x})] \ & + A' \left(1 - x
ight)^{\eta'} x^{\delta'} \end{aligned}$$

 $x(s-\bar{s}) = A(1-x)^{\eta} x^{\delta} (1-x/x_0)$

• 37 Parameters (including α_s)

•
$$\mu_0^2 = 1 \, \text{GeV}^2$$

Malte Wilfert (KPH Mainz)

NNPDF

- Neural Network PDF
- DIS cuts: $Q^2 \ge 3.5 \,\mathrm{GeV}^2, W^2 \ge 12.5 \,\mathrm{GeV}^2$
- Neural network: $f_i = A_i x^{\alpha} (1-x)^{\beta} NN_i(x)$
- Preprocessing term for speed up

$$\Sigma = u + \bar{u} + d + \bar{d} + s + \bar{s}$$

$$T_3 = u + \bar{u} - d - \bar{d}$$

$$T_8 = u + \bar{u} + d + \bar{d} - 2s - 2\bar{s}$$

$$V = u - \bar{u} + d - \bar{d} + s - \bar{s}$$

$$V_3 = u - \bar{u} - d + \bar{d}$$

$$V_8 = u - \bar{u} + d - \bar{d} - 2s + 2\bar{s}$$

$$+ charm$$
• $\mu_0 = 1.65 \text{ GeV}$

HERAPDF

- Only HERA data
- DIS cuts: $Q^2 \ge 2.5 \, {
 m GeV}^2$
- Parametrisation

$$xg = Ax^{B}(1-x)^{C} - A'x^{B'}(1-x)^{C'}$$

$$xu_{V} = Ax^{B}(1-x)^{C}(1+Ex^{2})$$

$$xd_{V} = Ax^{B}(1-x)^{C}$$

$$x\bar{U} = Ax^{B}(1-x)^{C}(1+Dx)$$

$$x\bar{D} = Ax^{B}(1-x)^{C}$$

- $\mu_0^2 = 1.9 \, {\rm GeV}^2$
- Up-type (xU = xu + xc) distributions
- Down-type (xD = xd + xs) distributions

Malte Wilfert (KPH Mainz)

CTEQ

- The Coordinated Theoretical-Experimental project on QCD
- DIS cuts:

 $Q \geq 2\,{\rm GeV}, \, \textit{W} \geq 3.5\,{\rm GeV}$

• Parametrisation: $x^{a_1}(1-x)^{a_2}P(x)$

$$\begin{aligned} P_{u_{v},d_{v}} &= d_{0}p_{0}(\sqrt{x}) + d_{1}p_{1}(\sqrt{x}) + d_{2}p_{2}(\sqrt{x}) \\ &+ d_{3}p_{3}(\sqrt{x}) + d_{4}p_{4}(\sqrt{x}) \\ P_{g} &= g_{0}(e_{0}q_{0}(2\sqrt{x}-x)) + e_{1}q_{1}(2\sqrt{x}-x) \\ &+ q_{2}(2\sqrt{x}-x)) \\ P_{\bar{u},\bar{d}} &= 4^{th} \text{ order in } 2\sqrt{x} - x \\ P_{s+\bar{s}} &= \text{const} \end{aligned}$$

PDF

• Bernstein polynomials *p_i*

• $\mu_0 = 1.4 \text{ GeV}$ Malte Wilfert (KPH Mainz)

CTEQ-Jefferson Lab

• DIS cuts:

$$Q^{2} > 1.69 \text{ GeV}^{2}, W^{2} > 3 \text{ GeV}^{2}$$
• Parametrisation $u_{v}, d_{v}, \bar{u} + \bar{d}, g$

$$xq = a_{0}x^{a_{1}}(1-x)^{a_{2}}(1-a_{3}\sqrt{x}a_{4}x)$$

$$d_{v} \rightarrow a_{0}\left(\frac{d_{v}}{a_{0}} + bx^{c}u_{v}\right)$$

$$\frac{d}{\bar{u}} = a_0 x^{a_1} (1-x)^{a_2} + 1 - a_3 x (1-x)^{a_3}$$

• $\mu_0 = m_c$

