Offene Charm-Produktion mit 160 GeV Myonen im COMPASS-Experiment

Malte Wilfert

Institut für Kernphysik Johannes Gutenberg-Universität Mainz

21. März 2011

bmb+f - Förderschwerpunkt

COMPASS

Großgeräte der physikalischen Grundlagenforschung

21. März 2011

Motivation

- Offene Charm-Produktion
- Ermöglicht Bestimmung von $\Delta G/G$
- Dominanter Prozess: Photon-Gluon-Fusion

$$\gamma^*g \to c\bar{c}$$

21. März 2011

- Messung über $c\bar{c} \rightarrow D^*$, D^0
- Hinweise auf Beiträge anderer Produktionsmechanismen z.B
 - Wechselwirkung mit intrinsischem Charm
 - Assoziierte Produktion

COMPASS

Malte Wilfert (KPH Mainz)

- gesuchte Zerfälle: $D^* \rightarrow D^0 \pi$ $D^0 \rightarrow K \pi$
- Rekonstruktion des Sekundärvertex nicht möglich
- Teilchenidentifikation durch RICH
- Schnitte:

•
$$\Delta M = M_{D^*} - M_{D^0} - M_{\pi}$$

- $z = E_D/\nu > 0.2$
- | cos θ_K |< 0,9 (0,65)
- Invariante Masse im Bereich der PDG Masse

- Fit an das invariante Massenspektrum im Bereich von \pm 700MeV
- Exponentieller Untergrund
- Gaußfunktion für den Peak von $D^0 \to K\pi$
- Spezielle Form f
 ür den Peak des Dreik
 örperzerfalls des D⁰

Untergrundsubtraktion

- Fit an das invariante Massenspektrum im Bereich von \pm 700MeV
- Exponentieller Untergrund
- Gaußfunktion für den Peak von $D^0 \to K\pi$
- Spezielle Form f
 ür den Peak des Dreik
 örperzerfalls des D⁰

Kinematische Verteilung

- Alle Daten von 2002-2006 verwendet
- Keine Akzeptanzkorrektur

• Unterschiedliche Produktionsmechanismen

Akzeptanzbestimmung

- Nur für D* Ereignisse für 2004
- Monte Carlo Simulation (AROMA)
- 1D Akzeptanzen auf Grund der Statistik
- Gleiche Schnitte wie für reale Daten
- Bestimmt wurden:
 - Inklusive Myon-Akzeptanz
 - Akzeptanz für D-Mesonen
- Akzeptanz etwa gleich f
 ür D^{*+} und D^{*-}

Winkelverteilung & Akzeptanzkorrektur

•
$$\sigma = \frac{N_{D^{*\pm}}}{\text{Luminosität} \cdot \text{Branching Ratio} \cdot \text{Akzeptanz}}$$

- Nur f
 ür 2004
- Luminosität: $L = 707/\text{pb} \pm 15\%$
- Getrennt für D^{*+} und D^{*-}
- Differentieller Wirkungsquerschnitt als Funktion von ν , E, z und p_T^2

21. März 2011

9 / 12

• Vergleich mit EMC Daten möglich

Ergebnis für differentiellen Wirkungsquerschnitt

- Unabhängige Akzeptanzbestimmung mit MC
- Nur für 20 GeV < *E* < 80 GeV
- Gute Übereinstimmung mit AROMA
- D^{*-} systematisch höher als D^{*+}
- 4 leicht unterschiedliche Ergebnisse f
 ür σ auf Grund der Akzeptanz
- $\sigma = (1, 8 \pm 0, 4)$ nb

Ergebnis für differentiellen Wirkungsquerschnitt

- Unabhängige Akzeptanzbestimmung mit MC
- Nur für 20 GeV < *E* < 80 GeV
- Gute Übereinstimmung mit AROMA
- D^{*-} systematisch höher als D^{*+}
- 4 leicht unterschiedliche Ergebnisse für σ auf Grund der Akzeptanz
- $\sigma = (1, 8 \pm 0, 4)$ nb

Verhältnis von D^{*+} zu D^{*-}

- Akzeptanz etwa gleich für $D^{*\pm}$
- Alle Daten ohne Akzeptanzkorrektur

•
$$A = \frac{d\sigma^{D^{*+}}(X) - d\sigma^{D^{*-}}(X)}{d\sigma^{D^{*+}}(X) + d\sigma^{D^{*-}}(X)}$$

- Einsicht in D-Produktion
- Unterschiede zwischen Daten und MC
- Prozesse mit Beiträgen durch das Target
 - Assoziierte Produktion $D^{*-}\Lambda_c$
 - Abstrahlung harter Gluonen
- Asymmetrie in Wirkungsquerschnitt
- Bei hohem z Beiträge durch weitere Prozesse
 Malte Wilfert (KPH Mainz)

21. März 2011

- Kinematische Verteilung für $D^{*\pm}$, $K_2^*(1430)$ und den Untergrund
- Wirkungsquerschnitt für $D^{*\pm}$ Produktion gemessen $\sigma = (1, 8 \pm 0, 4)nb$
- Wirkungsquerschnitt stimmt mit den Vorhersagen von AROMA überein

21. März 2011

- Unterschiede in der Produktion von $D^{*\pm}$
- Assoziierte Produktion als möglicher Prozess