Some Ideas about Efficiency und Purity of the CEDARs

Tobias Weisrock

Graduate School Symmetry Breaking Johannes Gutenberg-Universität Mainz

COMPASS Mainz Meeting June 11, 2012

Recalling the method

Some Ideas about Purity

Efficiency

Step 5: Use likelihoods to identify particles

Compare log likelihoods to get an ID for each CEDAR:

- $\log L^{K} > \log L^{\pi} + A \Rightarrow PID K$
- $\log L^{\pi} > \log L^{\kappa} + B \Rightarrow PID \pi$
- else no PID given
- ► Tune **A** and **B** due to efficiency/purity.
- Combine CEDARs afterwards with OR combination

$C_2 \setminus C_1$?	π	K
?	?	π	Κ
π	π	π	?
K	K	?	K

Additional quality cuts

Two possibilities for quality cuts on probabilities:

Additional quality cuts

Two possibilities for quality cuts on probabilities:

1. Cut on
$$\mathsf{r} = \sqrt{\theta_{\mathsf{x}}^2 + \theta_{\mathsf{y}}^2} < 200 \times 10^{-6}$$

Additional quality cuts

Two possibilities for quality cuts on probabilities:

- 1. Cut on $r = \sqrt{ heta_x^2 + heta_y^2} < 200 imes 10^{-6}$
- 2. Take out Bins with P = 0 (no statistics) and P = 1 (very low statistics)

Recalling the method

Some Ideas about Purity

Efficiency

Method 1: Comparing Histograms

Starting Point

n Histograms H_i (invariant Masses of $K\pi\pi$), consisting of signal **S** (unknown) and background **B** (known) with an unknown ratio:

 $H_i = s_i \cdot S + b_i \cdot B$

Question

Can one get coefficients \mathbf{b}_i as a measure for purity?

Method 1: Comparing Histograms

Some Thougts

It is:

$$\mathbf{S} = \frac{1}{s_i} (\mathbf{H}_i - \mathbf{b}_i \cdot \mathbf{B})$$

 ${f S}$ is the same for every ${f H}_i$. Thus:

$$\frac{1}{s_i}(H_i-b_i\cdot B)-\frac{1}{s_j}(H_j-b_j\cdot B)=0$$

Goal

Find b_i, b_j (s_i, s_j) that

$$S_{ij} = \frac{1}{s_i}(H_i - b_i \cdot B) - \frac{1}{s_j}(H_j - b_j \cdot B) \stackrel{!}{=} 0$$

Method 1: Comparing Histograms

Plan

Minimize quadratic sum over all bins

$$\Sigma_{ij} = \sum_{n \text{bins}} \left(S_{ij} \right)_n^2$$

for each pair (i, j) of Histograms.

Problem

Coefficients can only be determined up to a common factor. \Rightarrow Only possible to obtain ratios (relative background contributions)

Different Histograms

Background

Problem

No convergence! $S_{ij} \approx \mathcal{O}(10^5)$

Method 2: \mathbf{K}^* oder not \mathbf{K}^*

Idee

Look at

$${\sf h}^-{\sf p}
ightarrow {\sf h}'^-{\sf K}^0_{\sf S}{\sf p}$$

Then one knows (due to conservation of strangeness):

$$rac{{\mathsf{h}}'^-}{{\mathsf{K}}^-} rac{{\mathsf{h}}^-}{{\pi}^-} \ {\mathsf{K}}^-$$

Take invariant mass of $\mathbf{h'}^- \mathbf{K}_S^0$ assuming $\mathbf{h'}^- = \pi^-$. Look at $\mathbf{K}^*(892)$ and $\mathbf{K}^*(1430)$. Selecting pions in the CEDAR these should disappear.

Example

Result

Different Possibility

Use RICH information to identify $\mathbf{h^{\prime-}}$

Result

\$5

Kaon Purity

Also use RICH information to identify $\mathbf{h^{\prime-}}$

Result

Tobias Weisrock (JGU Mainz)

June 11, 2012 16 / 17

Recalling the method

Some Ideas about Purity

Efficiency

Only Idea so far

Look at expected number of Kaons (2.4%) and Pions (97%)

r < 200

