Likelihood Methods for Beam Particle Identification at the COMPASS Experiment

Tobias Weisrock for the COMPASS Collaboration

Graduate School Symmetry Breaking Johannes Gutenberg-Universität Mainz

SPIN-Praha-2012 July 7,2012

bmb+f - Förderschwerpunkt

COMPASS

Großgeräte der physikalischen Grundlagenforschung

Outline

The COMPASS Experiment

Hadron Physics @ COMPASS

Beam Particle Identification @ COMPASS

Beam Particle Identification using Likelihoods

Efficiency and Purity of the Likelihood Method

- COmmon Muon and Proton Apparatus for Structure and Spectroscopy
- Located at SPS at CERN

- ► COmmon Muon and Proton Apparatus for Structure and Spectroscopy
- Located at SPS at CERN

- ► COmmon Muon and Proton Apparatus for Structure and Spectroscopy
- Located at SPS at CERN

- ► COmmon Muon and Proton Apparatus for Structure and Spectroscopy
- Located at SPS at CERN

- ► COmmon Muon and Proton Apparatus for Structure and Spectroscopy
- Located at SPS at CERN

Very broad program

- Very broad program
- Spectroscopy
 - Different final states
 - ► 3π, 5π, Kππ,...
 - Search for exotic states

- Very broad program
- Spectroscopy
 - Different final states
 - ► 3π, 5π, Kππ,...
 - Search for exotic states
- Primakoff program
 - $\pi p \rightarrow \pi \gamma p$
 - Measure pion/kaon polarizabilities

- Very broad program
- Spectroscopy
 - Different final states
 - ► 3π, 5π, Kππ,...
 - Search for exotic states
- Primakoff program
 - $\pi p \rightarrow \pi \gamma p$
 - Measure pion/kaon polarizabilities

Example: $\mathbf{K}\pi\pi$ analysis

Analysis of diffractive dissociation of K^- into $K^-\pi^+\pi^-$ on a liquid hydrogen target at the COMPASS spectrometer, PhD Thesis P. Jasinski (JGU Mainz)

Event Selection

- Incoming kaon (majority cut)
- Primary vertex in target with 3 outgoing charged tracks
- ho Four momentum transfer $0.07 < t' [{
 m GeV^2/c^2}] < 0.7$
- One negative particle identified with RICH

Partial Wave Analysis

- disentangle $K\pi\pi$ spectrum
- several resonances found
- further investigation needed (mass dependent fits)

Partial Wave Analysis

- disentangle $K\pi\pi$ spectrum
- several resonances found
- further investigation needed (mass dependent fits)

JP	mass $({ m GeV/c^2})$	possible state
0-	1.30	K(1460)
1+	1.25	K ₁ (1270)
1^+	1.35	$K_1(1400)$
1^+	1.80	$K_1(1650)$
1-	1.75	K*(1680)
2+	1.44	K ₂ *(1430)
2-	1.70	K ₂ (1770)
2-	1.85	K ₂ (1820)
2-	1.9 - 2.2	several

Partial Wave Analysis

- disentangle $K\pi\pi$ spectrum
- several resonances found
- further investigation needed (mass dependent fits)

JP	mass $({ m GeV/c^2})$	possible state
0-	1.30	K(1460)
1+	1.25	K ₁ (1270)
1^+	1.35	$K_1(1400)$
1^+	1.80	$K_1(1650)$
1-	1.75	K*(1680)
2+	1.44	K ₂ *(1430)
2-	1.70	K ₂ (1770)
2-	1.85	K ₂ (1820)
2-	1.9 - 2.2	several

Only pprox 50% of kaons used due to bad efficiency of beam particle identification. *

Beam Particle Identification @ COMPASS

- Two CEDAR detectors
- ▶ 30 m upstream of the target

How does a CEDAR work?

- CEDAR = ČErenkov Differential counters with Acromatic Ring focus
- Fast charged particles emit Čerenkov light with angle $\cos(\theta) = \frac{1}{n\beta}$

How does a CEDAR work?

- Čerenkov light detected with 8 PMTs
- Particle identification using multiplicities, e.g. 6 of 8 PMTs

- beam tuned to traverse full spectrometer
- beam is not parallel in the CEDAR region

- beam tuned to traverse full spectrometer
- beam is not parallel in the CEDAR region

- beam tuned to traverse full spectrometer
- beam is not parallel in the CEDAR region

- Kaon ring leaves acceptance, pion ring enters
- Multiplicity method does not work for divergent beams

- beam tuned to traverse full spectrometer
- beam is not parallel in the CEDAR region

- Kaon ring leaves acceptance, pion ring enters
- Multiplicity method does not work for divergent beams
- \sim Find a method which takes divergence into account

General Idea

- Look at response of single PMTs for Kaon and Pion seperately
- Take care of beam divergence
- Identify beam particles using likelihoods

General Idea

- Look at response of single PMTs for Kaon and Pion seperately
- Take care of beam divergence
- Identify beam particles using likelihoods

5 steps to take

- 1. Measure beam divergence
- 2. Create a pure Kaonsample and a pure Pionsample
- 3. Determine probabilities to have hits in PMTs for Pion and Kaon
- 4. Calculate likelihoods from probabilities
- 5. Use likelihoods to identify particles

Step 1: Measure beam divergence

- Measure beam position in front of (x_1, y_1) and behind (x_2, y_2) CEDARs
- Calculate relative displacement $\Delta_x = \frac{x_2 x_1}{1283.4 \text{ cm}}$
- Divergence $\theta_x = \arctan(\Delta_x) \approx \Delta_x$

Step 2: Create a pure Kaonsample and a pure Pionsample

Create a Kaonsample and a Pionsample

- Kaonsample
- ightarrow Use free Kaon decay ${\sf K}^-
 ightarrow \pi^-\pi^-\pi^+$
 - 3 outgoing particles with correct charged
 - Primary vertex outside of the target
 - Cut on transverse momentum and Kaon mass
- Pionsample
- ightarrow Use diffractive production $\pi^- {f p}
 ightarrow \pi^- \pi^- \pi^+ {f p}$
 - 3 outgoing particles with correct charge
 - Primary vertex inside the target
 - ▶ Small angle to beam direction, similar momenta \rightarrow same mass

In addition: Take a Beamsample without any filtering for testing the method

٠

Example: Particle with divergence θ_x, θ_y produces signal in PMT **i** *Question:* Is it a kaon?

 \rightarrow Use Bayes' Theorem:

 $P^{i}_{\theta_{x},\theta_{y}}(Kaon|Signal) =$

Here:

Example: Particle with divergence θ_x, θ_y produces signal in PMT i *Question:* Is it a kaon?

 \rightarrow Use Bayes' Theorem:

$$\mathsf{P}^{\mathsf{i}}_{\theta_{\mathsf{x}},\theta_{\mathsf{y}}}(\mathsf{Kaon}|\mathsf{Signal}) = \frac{\mathsf{P}^{\mathsf{i}}_{\theta_{\mathsf{x}},\theta_{\mathsf{y}}}(\mathsf{Signal}|\mathsf{Kaon}) \cdot}{}$$

Here:

Example: Particle with divergence θ_x, θ_y produces signal in PMT i *Question:* Is it a kaon?

 \rightarrow Use Bayes' Theorem:

$$\mathsf{P}^{\mathsf{i}}_{\theta_{x},\theta_{y}}(\mathsf{Kaon}|\mathsf{Signal}) = \frac{\mathsf{P}^{\mathsf{i}}_{\theta_{x},\theta_{y}}(\mathsf{Signal}|\mathsf{Kaon}) \cdot \mathsf{P}_{\theta_{x},\theta_{y}}(\mathsf{Kaon})}{\mathsf{I}}$$

Here:

Example: Particle with divergence θ_x, θ_y produces signal in PMT i *Question:* Is it a kaon?

 \rightarrow Use Bayes' Theorem:

$$\mathsf{P}_{\theta_{x},\theta_{y}}^{i}(\mathsf{Kaon}|\mathsf{Signal}) = \frac{\mathsf{P}_{\theta_{x},\theta_{y}}^{i}(\mathsf{Signal}|\mathsf{Kaon}) \cdot \mathsf{P}_{\theta_{x},\theta_{y}}(\mathsf{Kaon})}{\mathsf{P}_{\theta_{x},\theta_{y}}^{i}(\mathsf{Signal})}$$

Here:

$\mathbf{P}_{\theta_{x},\theta_{y}}^{i}$ (Signal Kaon):	Probability that Kaon at $ heta_{x}, \ heta_{y}$	$(\rightarrow$ Kaonsample)
	produces signal in PMT i	
P_{θ_x,θ_y} (Kaon):	Probability that Kaon has diver-	$(\rightarrow$ Kaonsample)
P ⁱ (Signal):	Probability that signal in PMT \mathbf{i} ist	$(\rightarrow \text{Beamsample})$
$\theta_{\rm x}, \theta_{\rm y}$ (0.8.12.)	produced at θ_{x} , θ_{y}	(·

Step 3 continued

Pions and Kaons have the same divergence distribution:

 $\mathbf{P}_{\theta_{x},\theta_{y}}(\text{Kaon}) = \mathbf{P}_{\theta_{x},\theta_{y}}(\text{Pion}) = \mathbf{P}_{\theta_{x},\theta_{y}}(\text{Beam})$

 $\Rightarrow \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Kaon}|\mathsf{Signal}) \text{ and } \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Pion}|\mathsf{Signal}) \text{ have same normalization}$

factor $\frac{P_{\theta_x,\theta_y}(Beam)}{P_{\theta_x,\theta_y}^i(Signal)}$, thus

$$\begin{split} & \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Kaon}|\mathsf{Signal}) \propto \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Signal}|\mathsf{Kaon}) \\ & \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Pion}|\mathsf{Signal}) \propto \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Signal}|\mathsf{Pion}) \end{split}$$

Also calculate

$$\mathsf{P}^{\mathsf{i}}_{\theta_{\mathsf{x}},\theta_{\mathsf{y}}}(\mathsf{Kaon}|\overline{\mathsf{Signal}}) \text{ and } \mathsf{P}^{\mathsf{i}}_{\theta_{\mathsf{x}},\theta_{\mathsf{y}}}(\mathsf{Pion}|\overline{\mathsf{Signal}})$$

Probability Distributions

Probability Distributions

Probability Distributions

Tobias Weisrock (JGU Mainz)

Probability Distributions

Probability Distributions

Additional Cut

- Statistics bad for large divergences
- Cut out events with

$$\mathsf{r}=\sqrt{ heta_{\mathsf{x}}^2+ heta_{\mathsf{y}}^2}<200 imes10^{-6}$$

 About 20% of all events are lost this way

Step 4: Calculate likelihoods from probabilities

To obtain the log likelihood just add logarithms of probabilities

$$\begin{split} \log \mathsf{L}(\mathsf{Kaon}) &= \sum_{i \in \mathsf{PMT} \text{ with Signal}} \mathsf{log} \, \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Kaon}|\mathsf{Signal}) \\ &+ \sum_{j \in \mathsf{PMT} \text{ without Signal}} \mathsf{log} \, \mathsf{P}^{j}_{\theta_{x},\theta_{y}}(\mathsf{Kaon}|\overline{\mathsf{Signal}}) \end{split}$$

- Calculate the same for Pions.
- Compare them

Kaonsample

Pionsample

Step 5: Use likelihoods to identify particles

Compare log likelihoods to get an ID for each CEDAR:

- $\log L^{K} > \log L^{\pi} + A \Rightarrow PID K$
- $\log L^{\pi} > \log L^{\kappa} + B \Rightarrow PID \pi$
- else no PID given
- ► Tune **A** and **B** due to efficiency/purity.

Step 5: Use likelihoods to identify particles

Compare log likelihoods to get an ID for each CEDAR:

- $\log L^{K} > \log L^{\pi} + A \Rightarrow PID K$
- $\log L^{\pi} > \log L^{\kappa} + B \Rightarrow PID \pi$
- else no PID given
- ► Tune **A** and **B** due to efficiency/purity.
- Combine CEDARs afterwards

$C_2 \setminus C_1$?	π	Κ
?	?	π	Κ
π	π	π	?
K	K	?	K

Calculation of Purity

Look at

$$h^-p \to h'^- K^0_S p$$

Then one knows (due to conservation of strangeness):

 \rightarrow Identify h'^- using the RICH and count the "wrong" particles

Select $\mathbf{h}^- = \pi^-$

For CEDAR pions RICH should only see kaons $(\log_2 (p(K)/p(\pi)) > 0)$ Look at Events with p < 50 GeV, cut out ± 0 and -4

Purity of Pion Selection

- Independent of likelihood cut
- \blacktriangleright \approx 40% better than majority

Select $\mathbf{h}^- = \mathbf{K}^-$

For CEDAR pions RICH should only see pions $(log_2~(p(K)/p(\pi))<0)$ Look at Events with $p<50~{\rm GeV}$, cut out ± 0 and -4

Purity of Kaon Selection

- Independent of likelihood cut
- Compatible with majority method
- Compatible with pion purity

Calculation of Efficiency

Look at expected number of particles in the beam 2.4% kaons, 97% pions

 \Rightarrow Efficiency of around 80% for pions and kaons Efficiency for kaons \approx 60% better than for majority method

Direct Comparison with Majority Method

Direct Comparison with Majority Method

 Most of majority Kaons reproduced as Kaons (896 of 1074, 83%)

Direct Comparison with Majority Method

- Most of majority Kaons reproduced as Kaons (896 of 1074, 83%)
- 920 additional Kaons from majority Pions

Summary

- COMPASS hadron beam consists of 97% Pions and 2.4% Kaons
- Pions and kaons have to be identified for analyses
- Majority method only identifies pprox 50% of the Kaons
 - Problems with divergent beams
- Likelihood method improves identification for divergent beams
 - Identifies 80% of the kaons with 87% purity.

Summary

- COMPASS hadron beam consists of 97% Pions and 2.4% Kaons
- Pions and kaons have to be identified for analyses
- Majority method only identifies pprox 50% of the Kaons
 - Problems with divergent beams
- Likelihood method improves identification for divergent beams
 - Identifies 80% of the kaons with 87% purity.

Outlook

- Adapt methods to 2009/2012 data taking
- Do finetuning using existing hadron analyses

