Using Bayesian Methods for Particle Identification in the CEDARs

Tobias Weisrock

Johannes Gutenberg-Universität Mainz

Hadron Analysis Meeting March 4, 2012

Outline

Beam Particle Identification

Particle Identification using Likelihoods

Testing the method

CEDARs at COMPASS

- ► CEDAR = ČErenkov Differential counters with Acromatic Ring focus
- Two CEDARs at COMPASS beamline about 30 m upstream of the target

How does a CEDAR work?

 \blacktriangleright Fast charged particles emit Čerenkov light with angle heta

$$\cos(\theta) = \frac{1}{\mathsf{n}\beta}$$

- Čerenkov light detected with 8 PMTs
- Particle identification using multiplicities, e.g. 6 of 8 PMTs

Influence of Beam Divergence

 \Rightarrow Multiplicity method does not work for divergent beams

Influence of Beam Divergence

 \Rightarrow Multiplicity method does not work for divergent beams

Goal

Find a better method to take divergence into account

Tobias Weisrock (JGU Mainz)

General Idea

- Look at PMT response for Kaon and Pion seperately
- Take beam divergence into account
- Identify beam particles using likelihoods

General Idea

- Look at PMT response for Kaon and Pion seperately
- Take beam divergence into account
- Identify beam particles using likelihoods

5 steps to take

- 1. Measure beam divergence
- 2. Create a pure Kaonsample and a pure Pionsample
- 3. Determine probabilities to have hits in PMTs for Pion and Kaon
- 4. Calculate likelihoods from probabilities
- 5. Use likelihoods to identify particles

Step 1: Measure beam divergence

- Measure beam position in front of (x₁, y₁) and behind (x₂, y₂) CEDARs
- Calculate relative displacement $\Delta_x = \frac{x_2 x_1}{1283.4 \text{ cm}}$
- Divergence $\theta_x = \arctan(\Delta_x) \approx \Delta_x$

Step 2: Create a pure Kaonsample and a pure Pionsample

Create a Kaonsample and a Pionsample

- Kaonsample
- ightarrow Use free Kaon decay ${f K}^-
 ightarrow \pi^-\pi^-\pi^+$
 - 3 outgoing particles with correct charged
 - Primary vertex outside of the target
 - Cut on beam momentum and Kaon mass
 - ► Pionsample

ightarrow Use diffractive production $\pi^- {f p}
ightarrow \pi^- \pi^- \pi^+ {f p}$

- 3 outgoing particles with correct charge
- Primary vertex inside the target
- Small angle to beam direction

In addition: Produce a Beamsample without any filtering for testing the method

Step 3: Determine probabilities to have hits in PMTs for π and K

Example: Probability that a particle with divergence θ_x, θ_y that produces a signal in PMT i is a Kaon

 \rightarrow Use Bayes' Theorem:

$$\mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Kaon}|\mathsf{Signal}) = \frac{\mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Signal}|\mathsf{Kaon}) \cdot \mathsf{P}_{\theta_{x},\theta_{y}}(\mathsf{Kaon})}{\mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Signal})}$$

Here:

$\mathbf{P}_{\theta_x,\theta_y}^{i}$ (Signal Kaon):	Probability that Kaon at $ heta_{x}$, $ heta_{y}$	$(\rightarrow$ Kaonsample)
,	produces signal in PMT i	
P_{θ_x,θ_y} (Kaon):	Probability that Kaon has diver-	$(\rightarrow$ Kaonsample)
·	gence $ heta_x$ and $ heta_y$	
$\mathbf{P}_{\theta_{x},\theta_{y}}^{i}$ (Signal):	Probability that signal in PMT i ist	$(\rightarrow \text{Beamsample})$
0,x,0 y	produced at $ heta_x$, $ heta_y$	

Step 3 continued

We know that Pions and Kaons have the same divergence distribution:

$$\mathbf{P}_{\theta_x,\theta_y}(\mathsf{Kaon}) = \mathbf{P}_{\theta_x,\theta_y}(\mathsf{Pion}) = \mathbf{P}_{\theta_x,\theta_y}(\mathsf{Beam})$$

 $\Rightarrow \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Kaon}|\mathsf{Signal}) \text{ and } \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Pion}|\mathsf{Signal}) \text{ have same normalization}$

factor
$$\frac{P_{\theta_x,\theta_y}(Beam)}{P_{\theta_x,\theta_y}^i(Signal)}$$
, thus

$$\begin{array}{l} \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Kaon}|\mathsf{Signal}) \propto \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Signal}|\mathsf{Kaon})\\ \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Pion}|\mathsf{Signal}) \propto \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Signal}|\mathsf{Pion}) \end{array}$$

Also calculate

$$\mathsf{P}^{\mathsf{i}}_{\theta_{\mathsf{x}},\theta_{\mathsf{y}}}(\mathsf{Kaon}|\overline{\mathsf{Signal}}) \text{ and } \mathsf{P}^{\mathsf{i}}_{\theta_{\mathsf{x}},\theta_{\mathsf{y}}}(\mathsf{Pion}|\overline{\mathsf{Signal}})$$

$P_{xy}^{i}(\text{Signal}|\text{Pion}) \propto P_{xy}^{i}(\text{Pion}|\text{Signal})$

$P_{xy}^{i}(Signal|Pion) \propto P_{xy}^{i}(Pion|Signal)$

P_{xy}^{i} (Signal|Kaon) $\propto P_{xy}^{i}$ (Kaon|Signal)

Step 4: Calculate likelihoods from probabilities

To obtain the log likelihood just add logarithms of probabilities

$$\begin{split} \log \mathsf{L}(\mathsf{Kaon}) &= \sum_{i=1}^{8} \mathsf{log} \, \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Kaon}|\mathsf{Signal}) \cdot \eta^{i} \\ &+ \sum_{i=1}^{8} \mathsf{log} \, \mathsf{P}^{i}_{\theta_{x},\theta_{y}}(\mathsf{Kaon}|\overline{\mathsf{Signal}}) \cdot (1 - \eta^{i}) \end{split}$$

Where:

$$\eta^{i} = \begin{cases} \mathbf{1} & \text{Signal in PMT i} \\ \mathbf{0} & \text{no Signal in PMT i} \end{cases}$$

Kaonsample

55

Pionsample

55

Step 5: Use likelihoods to identify particles

- Compare log likelihoods to get an ID for each CEDAR:
 - $\log L^{K} > \log L^{\pi} + A \Rightarrow PID K$
 - ▶ $\log L^{\pi} > \log L^{\kappa} + B \Rightarrow PID \pi$
 - else no PID given
- ► Tune **A** and **B** due to efficiency/purity.
- Preliminary choice: A = B = 0.1 in the following slides, equivalent to Pⁱ(Kaon) = 1.01 · Pⁱ(Pion) (and vice versa)

Step 5: Use likelihoods to identify particles

- Compare log likelihoods to get an ID for each CEDAR:
 - $\log L^{K} > \log L^{\pi} + A \Rightarrow PID K$
 - ▶ $\log L^{\pi} > \log L^{\kappa} + B \Rightarrow PID \pi$
 - else no PID given
- ► Tune **A** and **B** due to efficiency/purity.
- Preliminary choice: A = B = 0.1 in the following slides, equivalent to Pⁱ(Kaon) = 1.01 · Pⁱ(Pion) (and vice versa)
- Combine CEDARs afterwards

$C_2 \setminus^{C_1}$?	π	Κ
?	?	π	Κ
π	π	π	?
K	K	?	Κ

PMT efficiencies

55

PMT correlation between CEDAR 1 and CEDAR 2

55

Tobias Weisrock (JGU Mainz)

Particle Identification in the Beamsample

Tobias Weisrock (JGU Mainz)

A-Dependence of Kaon Identification

Testing the method

Comparison with Majority Method

<u>\$</u>\$

Tobias Weisrock (JGU Mainz)

Comparison with Majority Method

Tobias Weisrock (JGU Mainz)

Using 16 PMTs

Testing the method

Using 16 PMTs

55

Tobias Weisrock (JGU Mainz)

Summary

- COMPASS hadron beam consists of 97% Pions and 2.4% Kaons
- Pions and Kaons have to be identified for analyses
- Majority method identifies 45% of the Kaons
 - Problems with divergent beams
- Likelihood method improves identification for divergent beams
 - Identifies 80% of the Kaons

Testing the method

BACKUP

Beamsample

- 55