Master Vortrag Qualitätsanalyse des COMPASS-Triggers

Benjamin Moritz Veit

7. November 2017

-						
L'on	0.000.00	NΖ	0.0	 • •	0.	٠
DELL		IV.		•		
e cirij						

Master Vortrag

Gliederung

Einleitung:

- Physik bei COMPASS
- Allgemeine Informationen zum Strahl und Spektrometer
- Auswahl an durchgeführten Arbeiten:
 - Modifikationen der Triggergeometrie
 - Test auf Lichtdichtigkeit
 - Bestimmung der T₀-Parameter
 - Bestimmung des Arbeitspunkt der Photomultiplier
 - Bestimmung der Effizienzen
- Zusammenfassung und Ausblick

・ 同 ト ・ ヨ ト ・ ヨ ト

COMPASS Physik I

• SIDIS: Semi-inklusive Messung der Tiefinelastischen-Streuung

• DVCS: Tief-virtuelle Compton-Streuung

Benjami	in M	lorit	17 V	eit
Denjann			· - ·	

COMPASS Physik I

Benjamin Moritz Veit

- SIDIS: Semi-inklusive Messung der Tiefinelastischen-Streuung
- DVCS: Tief-virtuelle Compton-Streuung

Beide Messungen triggern auf das gestreute Myon.

Master Vortrag	7. Novembe	er 2017	3 / 34
		ex ≣	৩৫৫

COMPASS Physik II

- DY: Drell-Yan.
- Messung der Winkelverteilung des Myonpaars.

D '					
Pop	0.000.00	n 1\/1	OP11		O 1 T
теп		1 101	OH II.	/ V	епь
_					

< 1 k

COMPASS Physik II

- DY: Drell-Yan.
- Messung der Winkelverteilung des Myonpaars.

Trigger auf das erzeugte Myonpaar.

Benjamin Moritz Veit

Master Vortrag

E 6 4 E 6

COMPASS Strahlführung

5 / 34

COMPASS Strahlführung

5 / 34

Targetbereich für Drell-Yan

- Pion-Strahl auf polarisiertes NH₃-Target.
- Absorber direkt hinter dem Target.
- Trigger auf erzeugtes Myonpaar.
- Messung der Winkelverteilung des Myonpaars.

Spektrometeraufbau für DVCS

- Myon-Strahl auf unpolarisiertes Wasserstoff-Target.
- 2,5 m langes Flüssigwasserstoff-Target in Recoil-Proton-Detektor.
- Zusätzliches elektromagnetisches Kalorimeter.
- Gleichzeitige Messung von DVCS und SIDIS.
- Triggersystem um auf das gestreute Myon zu triggern.

Triggeraufbau

Simulation

Simulation des Aufbaus mit TGeant (MC-Simulation) zur Optimierung der Geometrie unter Berücksichtigung der neuen Targetposition.

Optimierung der Geometrie für $Q^2 > 1 \left(\frac{GeV}{C}\right)^2$ Ereignisse.

Benjamin Moritz Veit

< □ > < □ > < □ > < □ > < □ > < □ >

Neue Hodoskopgeometrien

Detailansicht HO04

- HO03 :
 - Lochbereich modifiziert.
- HO04 :
 - Mittlere Streifen ergänzt.
 - Stufenauslese auf der nicht abgelenkten Seite.

イロト イヨト イヨト

Stufenauslese

Aufbau der Stufenstreifen:

Auslese:

э

<ロト < 四ト < 三ト < 三ト

Lichtdichtigkeit

Neue Methode:

- Lautsprecher wird an Photomultiplier angeschlossen.
- Eine modulierte Lichtquelle wird über den Streifen geführt.

 \rightarrow Lichtlecks werden hörbar.

-							
_	001	0.000.0	n N/	0.00		`'	0.tt
ັ	enn	ann	11 17	101	ιz	v	eιι

Master Vortrag

Trigger-Elektronik und Bestimmung der T_0 -Parameter

T₀ entspricht der Verzögerung zwischen dem Trigger-Signal und dem Photomultiplier- bzw. des Meantimer-Signals.

Benjamin Moritz Veit

Master Vortrag

7. November 2017 13 / 34

Bestimmung von T_0

Der Mittelwert μ entspricht dem gesuchten T_0 .

Benjamin Moritz Veit

Master Vortrag

Bestimmung von T_0

Benjamin Moritz Veit

Master Vortrag

7. November 2017 14 / 34

LAS-Trigger T_0

Bisher:

- LAS-Trigger: kein auslesbarer Meantimer.
- Virtueller Meantimer bei der Rekonstruktion.
- *T*₀-Korrektur mit den Werten der Einzel-PMT.

Master Vortrag

LAS Meantimer-Korrektur

Virtueller Meantimer wird nun schon bei der Bestimmung der T_0 berechnet und als Korrektur in der Rekonstruktion verwendet.

Benjamin Moritz Veit

Master Vortrag

7. November 2017 16 / 34

Bestimmung des Arbeitspunkts mit dem Messstand

Benjamin Moritz Veit

Master Vortrag

7. November 2017 17 / 34

3

Arbeitspunkt Bestimmung am Messstand

- Einspeisung von LED-Pulsen mit 5 kHz Rate.
- Hochspannung der Photomultiplier wird verändert.
- Zählrate wird gemessen.

- Eindeutiges Arbeitsplateau sichtbar dessen Länge von der Lichtmenge abhängt.
- Zweites Plateau kommt durch Reflexion zustande.

Benjamin Moritz Veit

Master Vortrag

7. November 2017 18 / 34

Implementation am Experiment

Bestimmung der Arbeitspunkte unter normalen Strahlbedingungen für Outer, Middle, LAS und Vetos.

- Installation von Splittern und Scalern an Outer-, Middle- und Ladder-Hodosokopen.
- Programm kommuniziert über das DIM-Protokoll mit DAQ und DCS (SlowControl).
- Aufnahme der Scaler-Werte nach jedem Spill in die Datenbank.

Benjamin Moritz Veit

Ergebnisse der Arbeitspunktermittlung am H1 (LAS)

- Vor Arbeitspunktbestimmung: Fluktuationen im Ratenprofil.
- Nach Arbeitspunktbestimmung: Kontinuierliches Ratenprofil nimmt zum Strahl hin zu.

Kalorimeter-Trigger

Kalorimeter-Trigger realisiert über zwei hadronische Kalorimeter.

Zellengröße entspricht transversaler Ausdehnung eines Hadronschauers.

Ben	iamin	Mori	tz V	eit

< □ > < 同 > < 回 > < 回 > < 回 >

Kalorimeter-Trigger

Kalorimeter-Trigger realisiert über zwei hadronische Kalorimeter.

Zellengröße entspricht transversaler Ausdehnung eines Hadronschauers.

Unabhängiges Triggersystem zum Testen der Hodoskoptrigger.

Pop	in min	Mority 1	Voi+
Dell	amm	IVIOITLZ	veit

A D F A B F A B F A B

Hodoskopeffizienzen

Schnitte auf Target-Durchgang und Parameter wie Impuls, Q^2 , Strahlungslängen, ...

 N_{extrap} : # Extrapolierte Spuren innerhalb der Akzeptanz des Hodoskops.

 N_{hits} : # Extrapolierte Spuren zum Hodoskop mit assoziiertem Treffer.

Effizenz:
$$\epsilon = \frac{N_{hits}}{N_{extrap}}$$

Triggereffizienzen

- Trigger-Kandidaten: Rekonstruiertes Myon wird durch beide Hodoskope eines Triggers extrapoliert.
- Erfolgreicher Nachweis: Entsprechendes Triggerbit ist gesetzt.

Zusammenfassung

Modifikation des Outer-Triggers f ür DVCS

Anpassung der Geometrie & neue Stufenauslese.

• Prüfung der Lichtdichtigkeit der Szintillatorstreifen

• Für alle Hodoskope und Vetos bis auf LAS.

Bestimmung der T₀-Parameter

- Implementation der T₀-Bestimmung.
- Neue Behandlung des LAS-Triggers in der Rekonstruktion.

Bestimmung der Arbeitspunkte

- Entwicklung der Messungen am Teststand.
- Implementation der Messung am Experiment.
- Einstellen der Arbeitspunkte unter nominalen Experimentbedingungen.

• Bestimmung der Hodoskop- und Triggereffizenzen

• Bis auf wenige Ausnahmen weisen alle Systeme eine Effizienz > 97% auf.

4 1 1 4 1 1 1

Vielen Dank für eure Aufmerksamkeit!

Fragen?

Ben	jam	in I	Mor	itz '	Veit

Master Vortrag

7. November 2017 25 / 34

3

Image: A matrix

COMPASSonline I

Online Trigger-Qualitätsanalyse basierend auf django und jsroot.

- Zugriff auf die Datenbank des Experiments
 - \rightarrow Darstellung von Run-Parametern und Scaler Werten.
- Decodieren eines Teildatenstrom
 - \rightarrow Ermitteln von \mathcal{T}_0 und vorläufigen Matrixeffizienzen.
- Rekonstruktion des aufgenommenen Datenstroms

 \rightarrow Ermittlung von Vertexverteilung und Hodoskopeffizenzen (benötigt jedoch korrektes Allignment).

イロト 不得 トイヨト イヨト

Trigger Akzeptanz vor 2014

Auswirkungen der Myonwand

Ohne Schnitt auf die Myonwand kommen Randeffekte durch die Myonidentifkation zum Tragen.

Benjamin Moritz Veit

Master Vortrag

7. November 2017 28 / 34

(日)

Extrapolierte Kalorimeter Spuren

Kalorimeter Trigger grundsätzlich unabhängiges Triggersystem. Bei der Rekonstruktion werden jedoch Informationen der Hodoskop Trigger verwendet:

Weiter Untersuchungen und dedizierte Produktionen für die Bestimmung von quantitativen Triggereffizienzen nötig.

Benjamin Moritz Veit

7. November 2017 29 / 34

Trigger Elektronik

7. November 2017 30 / 34

2

< □ > < □ > < □ > < □ > < □ >

Matrix Elektronik

Veto System

Benjamin Moritz Veit

Master Vortrag

7. November 2017 32 / 34

æ

A D N A B N A B N A B N

COMPASSonline II

							Order in
unNb Ru	urType 1	ipilis 🛛	Stan Date	End Date	Computation Status	Aztiona	Show
79940 7	1	190	Oct. 27, 2016, 11:17 a.m.	Oct. 27, 2016, 12:18 p.m.	Related	Belect Action	Select View
79929 7			Out. 27, 2016, 11:09 a.m.	Oct. 27, 2016, 11.15 a.m.	Enclose	Select Action	Select View
79938 7	1		Oct. 27, 2016, 18.48 a.m.	Oct. 27, 2016, 11,95 a.m.	Rector	Select Action	Select View
19927 9			Oct. 27, 2016, 18:06 a.m.	Oct. 27, 2016, 10:48 a.m.	RECEIVE	Compute ALL	of Vew
78936 7		10	Oct. 27, 2016, 9:31 a.m.	Oct. 27, 2016, 10:05 a.m.	ROOM	Compute Decode & RD Compute CORAL & PH	KOT AGT ICL'VIEW
79935 7		14	Oct. 27, 2016, 9:10 a.m.	Oct. 27, 2016, 9:38 a.m.	ROOM	Compute Decode	of Vew
79934 7		17	Oct. 27, 2016, 6:36 a.m.	Oct. 27, 2016, 9:08 a.m.	ROOM	Compute FDOF Compute COINE	of Vew
79983 7		190	Oct. 27, 2016, 7:30 a.m.	Oct. 27, 2016, 0:55 a.m.	ROOM	Select Actor	Select Vew
79982 7		190	Oct. 27, 2016, 6:22 a.m.	Oct. 27, 2016, 7:29 a.m.	ROOM	Select Actor	Select Vew
	- Provisionse 2	0 Pans	Next 30 Flans -				

Direkter interaktiver Zugriff auf die generierten Daten über Webinterface.

Benjamin Moritz Veit	Master Vortrag		7. Noven	nber 2017		33 / 34
	4	₫ >	<.≣.►	◆憲→	æ	୬ବ୍ଦ

T_0 -Langzeitstabilität:

Strahlladungsabhängige T_0 -Werte im LAS durch fehlerhafte magnetische Abschirmung.

	4	· · · · · · · · · · · · · · · · · · ·	≣ ≁) Ϛ (Ψ
Benjamin Moritz Veit	Master Vortrag	7. November 2017	34 / 34