Analysis of diffractively dissociated K⁻ $\pi^+ \pi^-$ events produced by a 190 GeV/c² hadron beam on a lH₂ target

at the COMPASS-experiment

bmb+f - Förderschwerpunkt

Großgeräte der physikalischen Grundlagenforschung

Prometeusz Jasinski DPG-Tagung 2011 21.03.2011

The $q\bar{q}$ model in a potential

 $Energy = Mass [MeV/c^2]$

D

Kaon (494)

Energy = Mass $[MeV/c^2]$

D

Kaon (494)

Energy = Mass $[MeV/c^2]$

D

$$\mathrm{K}_{_{1}} \rightarrow \mathrm{K}^{*}(892) \ \pi^{-}$$

Nuclear Physics B187 (1981) 1-41

Diffractive dissociation into K⁻ $\pi^+ \pi^-$

R = Reggeon

"The exchange of a Reggeon is equivalent to the exchange of many particles with different spins"

R = Reggeon

"The exchange of a Reggeon is equivalent to the exchange of many particles with different spins"

P = Pomeron

Pomeron is a Reggeon with vacuum quantum numbers $J^{PC} = 0^{++}$ dominating the exchange process at high energies.

Invariant mass distributions (K⁻ $\pi^+ \pi^-$)

Are those resonances decaying directly into 3 particles? ...

Invariant mass distributions (K⁻ π^+) and ($\pi^+ \pi^-$)

There is structure \rightarrow Assuming an decay chain...

Acceptance corrected measurement of diffractive dissociation into $K^- \pi^+ \pi^$ at the COMPASS experiment

The COMPASS Spectrometer @ SPS

CEDAR particle identification

CEDAR particle identification

Difference of the cherenkov ring radii of a pion and a kaon is below 0.1 mm at 190 GeV/c beam momentum !

Beam divergence lowering the performance

Measured beam properties

MC

data

RPD: measurement of coplanarity

data

RPD: measurement of coplanarity

RICH final state PID

Acceptance in the $K^- \pi^+ \pi^-$ invariant mass

Acceptance in the K⁻ π^+ and $\pi^+ \pi^-$ invariant mass

Acceptance in the Gottfried Jackson frame

Acceptance in the Gottfried Jackson frame

Conclusions

- Open strangness single diffractive mechanisms show resonant behavior
- Those states are understood to be $q\overline{q}$ bar states with isospin $\frac{1}{2}$
- The $K^- \pi^+ \pi^-$ final state is shown to decay via substates
- Tools of partial wave analysis (pwa) are used to determine resonances
- pwa need acceptance corrections as an input
- Several spectrometer detector responses were taken into account
- The overall acceptances in all important variables show a flat acceptance

For final results concerning pwa I refer to my PhD thesis, available soon.

Thank you!

backup slides

Measured strange meson level scheme

Strange Meson Level Scheme

FIGURE 2

The quark model level diagram summarizing the status of strange meson spectroscopy; the C parity is that of the neutral, non-strange members of the relevant SU(3) multiplet.

resonances fitting the $q\overline{q}$ model

$n^{2s+1}\ell_J$	J^{PC}	$I = 1$ $u\overline{d}, \overline{u}d, \frac{1}{\sqrt{2}}(d\overline{d} - u\overline{u})$	$I = \frac{1}{2}$ $u\overline{s}, d\overline{s}; \overline{ds}, -\overline{us}$	$ I = 0 \\ f' $	I = 0 f	$egin{array}{ccc} heta_{ ext{quad}} & heta_{ ext{lin}} \ [^{\circ}] & [^{\circ}] \end{array}$
$1 {}^{1}S_{0}$	0-+	π	K	η	$\eta'(958)$	-11.5 -24.6
$1 {}^{3}S_{1}$	1	ho(770)	$K^{*}(892)$	$\phi(1020)$	$\omega(782)$	38.7 36.0
$1 {}^{1}P_{1}$	1+-	$b_1(1235)$	K_{1B}^{\dagger}	$h_1(1380)$	$h_1(1170)$	
$1 {}^{3}P_{0}$	0++	$a_0(1450)$	$K_0^*(1430)$	$f_0(1710)$	$f_0(1370)$	
$1 {}^{3}P_{1}$	1++	$a_1(1260)$	K_{1A}^{\dagger}	$f_1(1420)$	$f_1(1285)$	
$1 {}^{3}P_{2}$	2^{++}	$a_2(1320)$	$K_{2}^{*}(1430)$	$f_2^\prime(1525)$	$f_2(1270)$	29.6 28.0
$1 \ {}^{1}D_{2}$	2^{-+}	$\pi_2(1670)$	$K_2(1770)^\dagger$	$\eta_2(1870)$	$\eta_2(1645)$	
$1 {}^{3}D_{1}$	1	ho(1700)	$K^{*}(1680)$		$\omega(1650)$	
$1 {}^{3}D_{2}$	2		$K_2(1820)$			
$1 {}^{3}D_{3}$	3	$ ho_{3}(1690)$	$K_{3}^{*}(1780)$	$\phi_{3}(1850)$	$\omega_3(1670)$	32.0 31.0
$1 \ {}^{3}F_{4}$	4++	$a_4(2040)$	$K_{4}^{*}(2045)$		$f_4(2050)$	$f' = \psi_8 \cos\theta - \psi_1 \sin\theta$
$1 \ {}^{3}G_{5}$	5	$ \rho_5(2350) $				$f = \psi_8 \sin \theta + \psi_1 \cos \theta$
$1 {}^{3}H_{6}$	6++	$a_6(2450)$			$f_6(2510)$	
$2 {}^{1}S_{0}$	0^{-+}	$\pi(1300)$	K(1460)	$\eta(1475)$	$\eta(1295)$	$\psi_8 = \frac{1}{\sqrt{6}}(uu + dd - 2s)$
$2 {}^{3}S_{1}$	1	ho(1450)	$K^{*}(1410)$	$\phi(1680)$	$\omega(1420)$	$\psi_1 = \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s})$

[†] The 1^{+±} and 2^{-±} isospin $\frac{1}{2}$ states mix. In particular, the K_{1A} and K_{1B} are nearly equal (45°) mixtures of the $K_1(1270)$ and $K_1(1400)$. The physical vector mesons listed under 1³ D_1 and 2³ S_1 may be mixtures of 1³ D_1 and 2³ S_1 , or even have hybrid components.

The double structure of the $J^P = 1^+$ wave

PHYSICAL REVIEW D 75, 014017 (2007)

Clues for the existence of two $K_1(1270)$ resonances

L. S. Geng* and E. Oset[†]

 $T_4 = (1 - iK\rho)^{-1}R$ the direct production amplitude

 $T_5 = D$ the pure Deck background