Johannes Giarra (JGU Mainz)

31.03.2017

Johannes Giarra (JGU Mainz)

First: claim that there is something wrong with Ladder trigger

Also seen in extrap. CT tracks \Rightarrow not a problem of ladder trigger

$\begin{array}{l} \mbox{Performance check of spectrometer} \\ \rightarrow \mbox{2d pseudo efficiencies} \end{array}$

pseudo efficiencies = $\frac{\text{hit distribution}}{\text{extrapolated track dist.}}$

Pitch of MWPC was wrong

4 / 10

Johannes Giarra (JGU Mainz)

- Use: target density < density of target cell material
 - \Rightarrow data selection to get vertex distribution in target area

h_XY_full_target_length

Use: target density < density of target cell material
 ⇒ data selection to get vertex distribution in target area

• Slices in ΔZ (=5 cm) along target length (-318.5cm $\leq l_{target} \leq -78.5$ cm)

- Use: target density < density of target cell material
 ⇒ data selection to get vertex distribution in target area
- Slices in ΔZ (=5 cm) along target length (-318.5cm $\leq I_{target} \leq -78.5$ cm)
- each Z-slice \rightarrow 1 d projections along radius for different angle bins (ϕ) 72 angle bins ($\Delta \phi = 5$)

h_z_phi_slices_17_46

- Use: target density < density of target cell material
 ⇒ data selection to get vertex distribution in target area
- Slices in ΔZ (=5 cm) along target length (-318.5cm $\leq l_{target} \leq -78.5$ cm)
- each Z-slice \rightarrow 1 d projections along radius for different angle bins (ϕ) 72 angle bins ($\Delta \phi = 5$)
- Search the peak and fit its position \rightarrow not that trivial because e.g different background contributions hzphi_slices_11_34 hzphi_slices_10_14

• Peak is found \rightarrow slighly cut the edges around peak \Rightarrow only peak surrounding for additional fit

 Expectation of target cell: rectangular function Real → because of e.g. binning smearing of edges of rectangual function ⇒ modified function by defining edges as parts of gaußfunction(s)
 Background: linear function sufficient

• Expectation of target cell: rectangular function Real \rightarrow because of e.g. binning smearing of edges of rectangual function \Rightarrow modified function by defining edges as parts of gaußfunction(s) **Background:** linear function sufficient

 \Rightarrow different values for radius of target cell (in spectrometer frame) for each angle bin

• Plot radii to ϕ dependency for each Z-slice

- Plot radii to ϕ dependency for each Z-slice
- Fit modulation with $r = -\rho \cdot \cos(\phi \theta)\sqrt{(\rho \cdot \cos(\phi \theta))^2 + R^2 \rho^2}$ (assumption that target frame \neq spectrometer frame, target cell is round)

x-z

Applied target cut:

C++ function: reads modulation fit results for each Z-slice (R, ρ, θ) \rightarrow calculating *r* for certain ϕ (angle of particle position in X-Y-plane) \Rightarrow Compare calculated *r* to to absolute value of *r'* (particle)

h_Z_full_length

h_ZX_full_target_length

h_ZY_full_target_length

h_Z_full_length

h_ZX_full_target_length

h_ZY_full_target_length

