Vortrag zum Modul Methodenkentniss der Forschungsphase:

Bestimmung von Multiplizitäten in Muon-Nukleon-Streuung bei COMPASS

Johannes Giarra

16.12.2015

- keine freien Quarks beobachtbar (Confinement)
- Hadronisierung durch Fragmentationsfunktionen (FF) beschrieben

 $\textbf{Quarks} \Longleftrightarrow \textbf{Hadron}$

Wie lassen sich die FF bestimmen?

• Information über Hadron

 \rightarrow semiinklusive tiefinelastische Lepton-Nukleon Streuung (SIDIS)

- expermienteller Zugriff
 - $\rightarrow \, \mathsf{Hadronmultiplizit\"aten}$

Inhalt

- Physikalischer Hintergrund
 - SIDIS
 - FF und Multiplizitäten
- 2 COMPASS Experiment
 - 2012 COMPASS Aufbau
 - RICH-Detektor
 - LH-Methode
 - Teilchenidentifikation am RICH
 - LH Vergleich

3 RICH Effizienzen

- Definition und Methode
- Datenselektion
- Teilchenidentifikation in Abhängigkeit vom Impuls und Winkel
- Fit
- Berechnung der RICH Effizienzen

4 Zusammenfassung und Ausblick

Physikalischer Hintergrund

COMPASS Experiment RICH Effizienzen Zusammenfassung SIDIS FF und Multiplizitäter

kin. Variablen:

SIDIS FF und Multiplizitäten

FF und Multiplizitäten

Fragmentationsfunktionen:

 $D^h_{q_f}(z)
ightarrow$ Anzahl der Hadronen h mit Energiebruchteil z aus dem Quark q_f

⇒ experimenteller Zugang durch Hadronmultiplizitäten

2012 COMPASS Aufbau RICH LH-Methode Teilchenidentifikation am RICH LH Vergleich

COMPASS Aufbau 2012

2012 COMPASS Aufbau RICH LH-Methode Teilchenidentifikation am RICH LH Vergleich

RICH-Detektor

Ring Imaging CHerenkov-Detektor

- Basiert auf Cherenkoveffekt
- $\bullet\,$ Photonen auf Photodetektoren projiziert $\rightarrow\,$ Ring Abbildung

radiale Photonenverteilung einer Teilchenart zuweisen \rightarrow Likelihood Methode

2012 COMPASS Aufbau RICH LH-Methode Teilchenidentifikation am RICH LH Vergleich

Cherenkov Winkel als Funktion des Impulses

2012 COMPASS Aufbau RICH **LH-Methode** Teilchenidentifikation am RICH LH Vergleich

LH-Methode oder auch Maximum LH-Methode

Vorgehen:

- Aufstellen der LH-Funktion
 - z.B. Stichprobe $\vec{x} = (x_1, ..., x_n)$ x_i : Elemente der Probe
 - $\rightarrow x_i$ sind unabhängig

 $ightarrow x_i$ folgen Wahrscheinlichkeitsdichte der Grundgesamtheit f(x| heta)

- $\theta = \theta_1, .. \theta_m$: Satz von Parametern
- d.h. z.B. Normalverteilt mit Parametern μ und σ^2

LH-Funktion:
$$L(x_1, ..., x_n | \theta) = \prod_{i=1}^n f(x_i | \theta)$$

- d.h. Wahrscheinlichkeit für auftretten der Stichprobe gleich Produkt der Wahrscheinlichkeiten für Auftreten jedes Elements
- Maximum LH-Prinzip: Wähle aus allen Parametersätzen θ den Satz $\hat{\theta}$ aus, für den gilt

$$L(x_1,...,x_n|\hat{ heta}) \geq L(x_1,...,x_n| heta) \ \forall heta$$

d.h. bestimmung des Maximums \rightarrow beste Abschätzung der Parameter

2012 COMPASS Aufbau RICH LH-Methode Teilchenidentifikation am RICH LH Vergleich

Teilchenidentifikation am RICH

genaue Kentnisse des Modells und Parameter d.h. Parameter vorgegeben

- \rightarrow LH-Funktion für jede Teilchenart
- \rightarrow Werte der LH-Funktionen abh. von Photonverteilung

$$L_{N} = \prod_{k=1}^{N^{photon}} [(1-\epsilon)G(\Theta_{rec,k}^{photon}, \phi_{rec,k}^{photon}) + \epsilon B(\Theta_{rec,k}^{photon})]$$

2012 COMPASS Aufbau RICH LH-Methode Teilchenidentifikation am RICH LH Vergleich

LH Vergleich

π

 $\begin{array}{l} p_h > p_{\pi,thr} \\ LH(\pi) > LH(K) \\ LH(\pi) > LH(p) \\ LH(\pi) > LH(p) \\ LH(\pi) > LH(bg) \end{array}$

Κ

 $p_h > p_{K,thr}$ $LH(K) > 1.08LH(\pi)$ LH(K) > LH(p)LH(K) > 1.24LH(bg)

р

 $\begin{array}{l} p_h > p_{p,thr} \\ LH(p) > LH(\pi) \\ LH(p) > LH(K) \\ LH(p) > LH(bg) \end{array}$

 $p_h \leq p_{p,thr} \ LH(bg) > LH(\pi) \ LH(bg) > LH(K)$

Definition und Methode

Datenselektion Teilchenidentifikation in Abhängigkeit vom Impuls und Winkel Fit Berechnung der RICH Effizienzen

RICH Effizienzen

Definition:

$$E(t \rightarrow i) = \frac{N^{t \rightarrow i}}{N^t} (t = \pi, K, p; i = \pi, K, p, unk)$$

- N^t : Gesamtzahl der Teilchen t $N^{t \rightarrow i}$: Anzahl der Teilchen t vom RICH als i identifiziert
- \Rightarrow aus gemesenen Daten

Methode:

- Wissen welche Teilchenart in RICH einfällt → durch Datenselektion
- ② Annahme: Effizenzen abhängig von Impuls und Winkel $\rightarrow N^t$ und $N^{t \rightarrow i}$ durch erweiterten LH-Fit

Definition und Methode Datenselektion Teilchenidentifikation in Abhängigkeit vom Impuls und Winkel Fit Berechnung der RICH Effizienzen

Datenselektion

K_0 - und $\Lambda_0/\overline{\Lambda}_0$ -Zerfall

•
$$K_0 \rightarrow \pi^+ \pi^-$$

•
$$\Lambda_0/\overline{\Lambda}_0 \to \pi^- p/\pi^+ \overline{p}$$

Zerfälle der schwachen WW \Rightarrow Entstehungs- (p) und Zerfallsvertex (s) auflösbar

 \rightarrow feine Schnitte

Φ -Zerfall:

•
$$\Phi
ightarrow K^+ K^-$$

Zerfall der starken WW

- ⇒ Entstehungs- und Zerfallsvertex ununterscheidbar
- ightarrow grobe Schnitte

Daten: Jahr: 2012; Woche: 44 - 48; μ^{\pm} -Strahl (160 GeV); IH₂-Target

Vortrag zur Masterarbeit 2/3

Definition und Methode Datenselektion Teilchenidentifikation in Abhängigkeit vom Impuls und Winkel Fit Berechnung der RICH Effizienzen

Allgemeine Schnitte:

• Entstehungsvertex mit ein- und auslaufendem μ

• Entstehungsvertex innerhalb des Targets

• 0.1 < y < 0.9

Physikalischer Hintergrund COMPASS Experiment RICH Effizienzen Zusammenfassung Berechnung der RICH Effizienzen

Schnitte für K₀-Zerfall:

 $\begin{array}{l} \text{Schnitte}{\rightarrow}\text{Reduktion des} \\ \text{Untergrunds} \end{array}$

wichtige Schnitte:

- "other p. vertex"
 → Spuren aus sek.
 - Vertex
- "p.-s. vertex connected" $\rightarrow K_0$ aus p. Vertex
- "σ"
 - → Vertices unabhängig aufgelöst

Definition und Methode Datenselektion Teilchenidentifikation in Abhängigkeit vom Impuls und Winkel Fit Berechnung der RICH Effizienzen

Vergleich Schnitte für Λ- und Φ-Zerfall:

Teilchenidentifikation in Abhängigkeit vom Impuls und Winkel

Annahme: Effizienzen abhängig von Winkel und Impuls 13 Impulsintervalle: 10 - 50 (GeV/c) 3 Winkelintervalle: 0.0 - 0.12 (rad)

Bsp.: $K_0 \rightarrow \pi^+ \pi^-$

• Teilchenwahl z.B.
$$\pi^+$$

 \rightarrow RICH (LH vgl.) korrekt identifiziert
 \Rightarrow N^t

• zugehöriges π^- in Impuls- und Winkelintervall \rightarrow als π^- , K^- , \overline{p} oder unk^- identifiziert $\Rightarrow N^{t \rightarrow i}$

 \Rightarrow analog für anderes Teilchens, sowie $\Lambda_0,\,\overline{\Lambda}_0$ und Φ

Definition und Methode Datenselektion Teilchenidentifikation in Abhängigkeit vom Impuls und Winkel Fit Berechnung der RICH Effizienzen

Bsp. K_0 ; Impuls: 22 < p < 25; Winkel: 0.01 < θ < 0.04

Physikalischer Hintergrund COMPASS Experiment RICH Effizienzen Zusammenfassung Berechnung der RICH Effizienzen

Fitmodelle

- K₀ :
 - Signal: 2 Gauß
 - Hintergund: Polynom
- $\Lambda_0/\overline{\Lambda}_0$:
 - Signal: 2 Gauß
 - Hintergund: $(x t)^n e^{-a(x-t)} t = m_p + m_\pi$
- •Φ:
 - Signal: Breit-Wigner ⊗ Gauß
 - Hintergund: $(x t)^n e^{-a(x-t)} t = 2m_K$

Modell Parameter \rightarrow Anzahl der Hintergrund- und Signalereignisse

Zwangsbedingung:
$$N^t = \sum_i N^{t o i} o \mathsf{RICH}$$
 eff. auf 1 normiert

Einbinden der Zwangsbedingung in LH-Funktion \rightarrow erweiterte LH-Funktion \Rightarrow Kombinierter Fit pro Impuls- und Winkelintervall

Guter Fit wenn Kovarianzmatrix erfolgreich bestimmt

Definition und Methode Datenselektion Teilchenidentifikation in Abhängigkeit vom Impuls und Winkel Fit Berechnung der RICH Effizienzen

Fitergebniss Bsp. K_0 ; Impuls: 22 < p < 35; Winkel: 0.01 < θ < 0.04

Definition und Methode Datenselektion Teilchenidentifikation in Abhängigkeit vom Impuls und Winkel Fit Berechnung der RICH Effizienzen

Berechnung der RICH Effizienzen

\Rightarrow RICH Effizienzen berechnen

1

 $\Delta E(t
ightarrow i)$ aus Fehlerfortpflanzung mit $N^t = \sum_i N^{t
ightarrow i}$

$$E(t \to i) = \frac{N^{t \to i}}{N^t} = \frac{N^{t \to i}}{\sum_{j}^{N^t \to j}} = \frac{N^{t \to i}}{N^{t \to \pi} + N^{t \to K} + N^{t \to p} + N^{t \to unk}}$$
$$\Rightarrow \Delta E(t \to i) = \sqrt{\sum_{j} \left(\frac{\partial E(t \to i)}{\partial N^{t \to j}}\right)^2 \sigma_j}$$

 \Rightarrow Darstellung als Funktion des Impulses für jeweilige Winkelintervalle

Definition und Methode Datenselektion Teilchenidentifikation in Abhängigkeit vom Impuls und Winkel Fit Berechnung der RICH Effizienzen

RICH Effizenzen $\pi^+ \rightarrow i \ (0.01 < \theta < 0.04)$

π+ -> K⁺ (0.01<theta<0.04) $\pi^+ \rightarrow \pi^+ (0.01 < \text{theta} < 0.04)$ 8 0.12 ffici 0.9 0.08 0.8 0.06 0.7 0.04 0.02 0.6 p (GeV/c) p (GeV/c) $\pi^+ \rightarrow p^+ (0.01 < \text{theta} < 0.04)$ $\pi^+ \rightarrow \text{unk}^+ (0.01 < \text{theta} < 0.04)$ efficiency efficien 0.05 0. 0.04 0.2 0.03 0.15 0.02 0.01 0.05 -0.01 p (GeV/c) p (GeV/c)

22 / 26

Johannes Giarra

Definition und Methode Datenselektion Teilchenidentifikation in Abhängigkeit vom Impuls und Winkel Fit **Berechnung der RICH Effizienzen**

RICH Effizenzen $\pi^+ \rightarrow i \ (0.4 < \theta < 0.12)$

 $\pi^+ \rightarrow \pi^+ (0.04 < \text{theta} < 0.12)$

π+ -> K+ (0.04<theta<0.12)

Johannes Giarra Vortrag zur Masterarbeit 2/3

Definition und Methode Datenselektion Teilchenidentifikation in Abhängigkeit vom Impuls und Winkel Fit Berechnung der RICH Effizienzen

RICH Effizenzen $K^+ \rightarrow i \ (0.01 < \theta < 0.04)$

24 / 26

Johannes Giarra

Definition und Methode Datenselektion Teilchenidentlifkation in Abhängigkeit vom Impuls und Winkel Fit Berechnung der RICH Effizienzen

RICH Effizenzen $p \rightarrow i$ (0.01 < θ < 0.04)

Zusammenfassung und Ausblick

Zusammenfassung:

- wichtige Zusammenhänge für die Bestimmung der FF SIDIS → Multiplizitäten → flavourseparierte FF
- korrekte Teilchenidentifikation sehr wichtig
- RICH und Verfahren zur Bestimmung der RICH Effizienzen

Ausblick:

- Bestimmen der Spektrometerakzeptanz
 - \rightarrow vgl. MC Daten und Experiment
- Bestimmung der roh Multiplizitäten $\frac{N_h}{N_{DIS}}$
 - \rightarrow Korrektur auf RICH Effizienzen
 - \rightarrow Akzeptanzkorrektur
 - \rightarrow Strahlungskorrekturen