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Collecting and analyzing events

• Rare events hidden in large backgrounds (DIS, DVCS, charm,....)
(the simple experiments have already been done ...)

• Limits in data acquisition bandwidth and storage volume

• Preselection of data to be finally converted and stored
called first level trigger systems

– needs fast processing since intermediate storage is finite
– High purity
– High efficiency
– watch out for absolute acceptance calibration (x-section measurements)

• Trigger strategy
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– select “simple” observables ( available quickly, not too much calibration
effort, good stability)

– correlate the features of different signals and requiring necessary conditions
for the event type in focus

– Example: Horoscope timing and coincidences, mean times, time differences,
pulse height windows
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Traditional Method

• Use trigger discriminators (comparators) on signals to generate a Boolean
function B(t)

• Use comparators for pulse height selection to generate more Boolean functions

• Feed them into a Boolean network and wait for a preselected condition to
become true ->trigger

• Obviously configurable gate arrays (“ Matrices”) will be used.

• The trigger will be used to start conversion of signals stored in analog manor
(cables, buckets, or S&H signals)
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• Or retrieve signals from sampled values stored in FIFOs
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Limitations
Configurable Boolean networks now allow high complexity of networks and flexible
configuration and control
but:

• need hardware “feature extractors” or discriminators with finite dead time and
double pulse resolution

– only one feature per box e.g. leading edge, CFT, integrator.
Requires analog splitters and appropriate filters

– very demanding additional hardware for pile-up detection

• need dedicated hardware for simple operations like mean timing or coincidences

• fine grained quantitative comparison only after TDC/ADC conversion (2nd
level triggering, filtering)
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Alternatives

• immediate digitization of primary signals to a binary data stream

• parallel derived filter streams

• extraction of signal features

– timing (LE,CFT,Zero-crossing,extrapolated strobe of rising and falling
edge(s)

– pulse height and integrals
– double pulse detection and analysis
– quality tags (error estimates)

• numbers to be correlated by processors

– Coincidences: |t1 − t2| < δtc
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– mean times tm = (t1 + t2)/2
– Veto |ttr − tV eto| > δtv
– Additional fine grained conditions

Limitations: sampling rates, sampling accuracy (ENOB), processing speed, ...
(We believe in Moore’s law ...)
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Signals and their features

• Signals reflect properties of events seen by detectors

• There is a chain of processes leading to signals

– beam & target interact at the vertex position at the event time
– particles and quanta are produced and emerge from the vertex with different

momenta
– particles traverse passive and active material of finite extension
– space time distribution of energy loss processes and excitation of the material
– photons or charged particles propagate, diffuse or drift to a detection

electronics with amplifiers
– we assume that an elementary excitation produces a standard response of

the detecting electronics
∗ the single photo electron response of a multiplier
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∗ the current produced by a single ion/electron or electron/hole pair on an
electrode

– we assume the response of the detector to be linear such that the signal
caused by an ensemble of primary excitations is the folding of the elementary
signal with the transport-time and/or arrival time.
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Horoscopes

• the primary excitations produced by a ionizing track have a life time τsz ≈
1 − 5ns

• propagation times vary as a function of emission angle and the number of
internal reflections

– the arrival-time distribution of photons at the photo cathode can be character-
ized by an edge, a centroid, a width an obliqueness ..

– the elementary response of PMs depends on the divider chain and the voltage.
Transit time fluctuations at every stage will fold into the elementary excitation.

– ..
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Pulse shapes

• in many cases the signals are mono-polar, tailing off exponentially to provide a
finite width

• pulses are causal

• Signals are noisy and may also exhibit imperfections caused by transmitting
cables (reflections etc.)

• For simulations I have used elementary responses of “Poissonian” shape

f(t) = tνe−t/τH(t)

• They are signals caused by the δ− function in system with a ν fold real pole
at s = −τ
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• they are strictly causal, enforced by the Heaviside H(t), the are ν − fold
continuous at t=0

• the can be easily folded with “box-like” arrival time distributions (mimicking
the effect of long scintillator bars)
If f(x) = d

dtF (x), then the box responses are f̃(t) = (F (t)−F (t− T ))/T

integrale_pulsform.pdf

• Freiburg colleagues prefer the non causal Moyal shape

fM = e−
1
2(

t
W +e−t/w)
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versch-puls.pdf
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Feature extraction with templates

• If there is a template pulse shape with shape parameters τ, T describing the
observed pulse shapes well

• then the amplitude A the time shift ttr and the pulsshape parameters can be
determined by least square fitting

– overlay the template to the measured samples
– determine the χ2 =

∑ (yi−A·f̃(ti−ttr,T,τ))2

σ2
i

(assuming uncorrelated errors)

– minimize χ2 with respect to {A, ttr, T, τ} and get the (correlated) errors
– This is the optimum way of feature extraction making best use of the signal

information
– if τ turns out to be constant (within errors), we can “freeze” it and only use

one shape parameter
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– if we could also express the other parameter by its average and a few
neighboring values Tn = T̄ + n∆T

• we can set up a Filter moving along the time axis calculating χ2 for each
position tr and amplitude A

– if we apply the filter only at discrete times we will (generally) miss the
minimum !

– but: we will find the i th time before and the i+1 th after the minimum
– we can perform an interpolation (making use of the pulse shape and its

derivatives)

• filtering the search of the minimum can be made on streaming data: -> no
dead time

• But:
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– needs a minimum “activity” threshold to protect feature extractor from noise
(and overload)

– the method needs “learning” of pulse shape parametrization and setup of
several parallel filters for each Tn
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The cubic extractor

• continuous cubic functions are are very effective to approximate general smooth
functions (see splines)

• we fit (least sq ares) a cubic function one a finite interval right and left of a
given sampling point by minimizing

χ2 =
+m∑

k=−m

(yi+k − {ait
3
k + bit

2
k + cit

1
k + di})2

σ2
i+k

If the errors σ2
i+k are independent of the sampled value the minimizing χ2 leads
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to the four coupled linear equations for the coefficients

+m∑
k=−m

yi+k =
+m∑

k=−m

[(ai(k · ∆t)3 + bi(k · ∆t)2 + ci(k∆t) + d] =

bi∆t2
m∑

k=−m

k2 + di∆t0
+m∑

k=−m

1

+m∑
k=−m

yi+k(k · ∆t) =
+m∑

k=−m

(k · ∆t)[(ai(k · ∆t)3 + bi(k · ∆t)2 + ci(k∆t) + d] = k2

ai∆t4
+m∑

k=−m

k4 + ci∆t2
+m∑

k=−m
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+m∑
k=−m

yi+k(k · ∆t)2 =
+m∑

k=−m

(k · ∆t)2[(ai(k · ∆t)3 + bi(k · ∆t)2 + ci(k∆t) + d] =

bi∆t4
+m∑

k=−m

k4 + di∆t2
+m∑

k=−m

k2

+m∑
k=−m

yi+k(k · ∆t)3 =
+m∑

k=−m

(k · ∆t)3[yi+k − (ai(k · ∆t)3 + bi(k · ∆t)2 + ci(k∆t) + d] =

ai∆t6
+m∑

k=−m

k6 + ci∆t4
+m∑

k=−m

k4
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the relation of the moments and the coefficients ai, bi, ci, di is given by

< yx0 >m
i = bi∆t2Lm

2 + di∆t0Lm
0

< yx1 >m
i = ai∆t3Lm

4 + ci∆t1Lm
2

< yx2 >m
i = bi∆t2Lm

4 + di∆t0Lm
2

< yx3 >m
i = ai∆t3Lm

6 + ci∆t1Lm
4

We now can express the coefficients ai, bi, ci, di of the locally fitted cubic
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polynomial by the discrete moments < yxn >m
i and the numbers Lm

j as

ai =
1

∆t3
1

Lm
4 · Lm

4 − Lm
6 · Lm

2

[Lm
4 < yt1 >m

i −Lm
2 < yt3 >m

i ]

bi =
1

∆t2
1

Lm
2 · Lm

2 − Lm
4 · Lm

0

[Lm
2 < yt0 >m

i −Lm
0 < yt2 >m

i ]

ci =
1

∆t

1
Lm

2 · Lm
6 − Lm

4 · Lm
4

[Lm
6 < yt1 >m

i −Lm
4 < yt3 >m

i ]

di =
1

Lm
0 · Lm

4 − Lm
2 · Lm

2

[Lm
4 < yt0 >m

i −Lm
2 < yt2 >m

i ]
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Feature extraction from the cubic filter

• the extracted cubic coefficients can be regarded as the numerical values of the
average values of a smooth function and their first 3 derivatives

• remembering school mathematics features have to be expressed by zeroes
of the function and its derivatives

– the maximum is where the first derivative is zero
– the inflection points are where the second derivative is zero ..
– the are independent of amplitude (like CFT which can be found as a zero

of f(tcft) − ffmax = 0
– extrapolated zero times te = Max(t − f/f ′)
– curvature at the maximum
– (partial)integrals
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• Interpolation between i and i+1 can use linear interpolation (systematic errors
due to curvature of the function are of order 1/10 of sampling time)
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The Holy Grail - Pile-up analysis

• different pile-up situations

– close pile-up (pile-up within the arrival time width) no chance!
– pile-up time < rise time: only distortion of shape parameters detectable
– some unperturbed features of the underlying first pulse exist
– multiple features emerge: additional inflection points or maximum depends

on pile-up ratios eg 1:10 or 10:1
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