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Collecting and analyzing events

Rare events hidden in large backgrounds (DIS, DVCS, charm,....)
(the simple experiments have already been done ...)

Limits in data acquisition bandwidth and storage volume

Preselection of data to be finally converted and stored
called first level trigger systems

— needs fast processing since intermediate storage is finite

— High purity

— High efficiency

— watch out for absolute acceptance calibration (x-section measurements)

Trigger strategy



— select “simple” observables ( available quickly, not too much calibration
effort, good stability)

— correlate the features of different signals and requiring necessary conditions
for the event type in focus

— Example: Horoscope timing and coincidences, mean times, time differences,
pulse height windows



Traditional Method

Use trigger discriminators (comparators) on signals to generate a Boolean
function B(t)

Use comparators for pulse height selection to generate more Boolean functions

Feed them into a Boolean network and wait for a preselected condition to
become true ->trigger

Obviously configurable gate arrays (* Matrices”) will be used.

The trigger will be used to start conversion of signals stored in analog manor
(cables, buckets, or S&H signals)



e Or retrieve signals from sampled values stored in FIFOs



Limitations

Configurable Boolean networks now allow high complexity of networks and flexible
configuration and control

but:

e need hardware “feature extractors’ or discriminators with finite dead time and
double pulse resolution

— only one feature per box e.g. leading edge, CFT, integrator.
Requires analog splitters and appropriate filters
— very demanding additional hardware for pile-up detection

e need dedicated hardware for simple operations like mean timing or coincidences

e fine grained quantitative comparison only after TDC/ADC conversion (2nd
level triggering, filtering)



Alternatives
immediate digitization of primary signals to a binary data stream
parallel derived filter streams

extraction of signal features

— timing (LE,CFT, Zero-crossing,extrapolated strobe of rising and falling

edge(s)
— pulse height and integrals
— double pulse detection and analysis

— quality tags (error estimates)

numbers to be correlated by processors

— Coincidences: [t — to| < dt.



— mean times t,, = (t1 +t2)/2
— Veto |ty — tyeto] > Oty
— Additional fine grained conditions

Limitations: sampling rates, sampling accuracy (ENOB), processing speed, ...
(We believe in Moore's law ...)



Signals and their features

Signals reflect properties of events seen by detectors

There is a chain of processes leading to signals

— beam & target interact at the vertex position at the event time

— particles and quanta are produced and emerge from the vertex with different
momenta

— particles traverse passive and active material of finite extension

— space time distribution of energy loss processes and excitation of the material

— photons or charged particles propagate, diffuse or drift to a detection
electronics with amplifiers

— we assume that an elementary excitation produces a standard response of
the detecting electronics
* the single photo electron response of a multiplier



* the current produced by a single ion/electron or electron/hole pair on an
electrode
— we assume the response of the detector to be linear such that the signal
caused by an ensemble of primary excitations is the folding of the elementary
signal with the transport-time and/or arrival time.



Horoscopes

e the primary excitations produced by a ionizing track have a life time 74, =
1 —dns

e propagation times vary as a function of emission angle and the number of
internal reflections

— the arrival-time distribution of photons at the photo cathode can be character-
ized by an edge, a centroid, a width an obliqueness ..

— the elementary response of PMs depends on the divider chain and the voltage.
Transit time fluctuations at every stage will fold into the elementary excitation.

10



Pulse shapes

in many cases the signals are mono-polar, tailing off exponentially to provide a
finite width

pulses are causal

Signals are noisy and may also exhibit imperfections caused by transmitting
cables (reflections etc.)

For simulations | have used elementary responses of “Poissonian” shape

f(t) =t'e " YTH(t)

They are signals caused by the d— function in system with a v fold real pole
at s = —7

11



e they are strictly causal, enforced by the Heaviside H(t), the are v — fold
continuous at t=0

e the can be easily folded with “box-like” arrival time distributions (mimicking

the effect of long scintillator bars) )
If f(x) = LF(x), then the box responses are f(t) = (F(t) — F(t—T))/T

integrale_pulsform.|pdf

e Freiburg colleagues prefer the non causal Moyal shape

Jvm = e_%(%"‘e_t/w)
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Feature extraction with templates

e If there is a template pulse shape with shape parameters 7,T" describing the
observed pulse shapes well

e then the amplitude A the time shift ¢;,. and the pulsshape parameters can be
determined by least square fitting

— overlay the template to the measured samples

— A f(ti—t, T,7))? :
= > (yi=A- L 7)) (assuming uncorrelated errors)

— determine the y?

— minimize x? with respect to {A,tztf,a,T, 7} and get the (correlated) errors

— This is the optimum way of feature extraction making best use of the signal
information

— if 7 turns out to be constant (within errors), we can “freeze” it and only use
one shape parameter
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— if we could also express the other parameter by its average and a few
neighboring values T}, =T + nAT

e we can set up a Filter moving along the time axis calculating x? for each
position t,. and amplitude A

— if we apply the filter only at discrete times we will (generally) miss the
minimum |

— but: we will find the i_th time before and the i+1_th after the minimum

— we can perform an interpolation (making use of the pulse shape and its
derivatives)

e filtering the search of the minimum can be made on streaming data: -> no
dead time

e But:
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— needs a minimum “activity  threshold to protect feature extractor from noise
(and overload)

— the method needs “learning” of pulse shape parametrization and setup of
several parallel filters for each T,
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The cubic extractor

e continuous cubic functions are are very effective to approximate general smooth
functions (see splines)

e we fit (least sq ares) a cubic function one a finite interval right and left of a
given sampling point by minimizing

+m 3 2 1 2
5 (Yirk — {aily, + bity, + city, + di})
X = E 2

k=—m O-'H'k

If the errors 0§+k are independent of the sampled value the minimizing x? leads
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to the four coupled linear equations for the coefficients

+m +m
ST ovie = > @ik A+ bi(k - A + (KAL) + d] =
k=—m k=—m
m +m
b > K+ dA Y]
k=—m k=—m
+m +m
> yinlk-At) = > (k- AD)[(ai(k - AL+ bi(k - AL)? + ci(kAtL) + d] =
k=—m k=—m

+m

+m
a; At* Z k* + ¢ At Z

k:—m k:—m
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+m +m
> yinlk- A = Y (k- At [(ai(k - AL + bi(k - AL)? + ci(kAL) + d] =
k=—m k=—m

+m +m

bt > K diA Y K

k=—m k=—m
+m +m
> yinlk- AP = Y (k- AP [yigr — (ai(k - At)® + bi(k - At)® + (kAL
k=—m k=—m

+m +m
CL@AtG Z ]f6—|-CZ'At4 Z k4

k:—m kj:—m
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the relation of the moments and the coefficients a;, b;, ¢;, d; is given by

< yz® >"= b; At LY + d; AP LY

<yx' >"= ;ALY + ¢; At LY

< yx® >M=b; At LT + d; At LY

<yx® >"= ;ALY + ¢; At L

We now can express the coefficients a;, b;, c;,d; of the locally fitted cubic
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polynomial by the discrete moments < yx™ >/ and the numbers L7" as

1 1

.= LT <yt >™ L7 < yt? >
N 5 7 N Y
1 1
b, = LT <yt >™ LT < yt* >
APTE Ly —Lp - Ip i <Y Y
1 1
.= LI <yt > L < yt3 >
‘= AtLp Ly — L L <Y 1=
1 m 0 m 2
d; = L) <yt® > L3 < yt* >

Lm. Lm— Lo Lo

i)

i)
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Feature extraction from the cubic filter

the extracted cubic coefficients can be regarded as the numerical values of the
average values of a smooth function and their first 3 derivatives

remembering school mathematics features have to be expressed by zeroes
of the function and its derivatives

— the maximum is where the first derivative is zero

— the inflection points are where the second derivative is zero ..

— the are independent of amplitude (like CFT which can be found as a zero
of F(tese) — £ = 0

— extrapolated zero times t, = Maxz(t — f/f')

— curvature at the maximum

— (partial)integrals
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e Interpolation between ¢ and 7+ 1 can use linear interpolation (systematic errors
due to curvature of the function are of order 1/10 of sampling time)
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The Holy Grail - Pile-up analysis

different pile-up situations

— close pile-up (pile-up within the arrival time width) no chancel!

— pile-up time < rise time: only distortion of shape parameters detectable

— some unperturbed features of the underlying first pulse exist

— multiple features emerge: additional inflection points or maximum depends
on pile-up ratios eg 1:10 or 10:1
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