Large Angle Spectrometer Trigger at COMPASS

DPG-Frühjahrstagung Münster HK 28.3

Nicolas du Fresne von Hohenesche Institut für Kernphysik, Mainz CERN

March 22^{cd} 2011

The COMPASS Experiment

COmmon Muon and Proton Apparatus for Structure and Spectroscopy M2 beamline at SPS located at CERN

Beam:160 GeV μ , pol. 80% and 190 GeV hadron beam (p, π , K)

Muon Trigger

Selection of physical interesting events with 1st level trigger pairs of scintillator hodoscopes in coincidence different triggers for different kinematic regions

Drell-Yan

Drell-Yan

$$\pi + \boldsymbol{p} \rightarrow \mu^+ + \mu^- + \boldsymbol{X}$$

- annihilation of a quark antiquark pair into a lepton pair
- hadrons are absorbed
- transverse dependent quark distribution (pol. and unpol.)
- Triggering on muon pair (μ^+ and μ^-)

GPD

Deeply virtual compton scattering

$$\mu + N \rightarrow \mu' + N + \gamma$$

- hard exclusive photon production
- access to Generalized Parton Distribution (GPD)
- Measuring logitudinal parton distribution and transverse expansion (3D-Tomography)
- DVCS vs. Bethe-Heitler

Upgrade Large Angle Spectrometer Trigger

- Set up of new trigger (H1,H2) in the large angle spectrometer (target pointing)
- For GPD: triggering on $Q^2 > 10 (GeV/c)^2$ and high x_{Bj}
- \bullet For DY: triggering on pairs of muons (\pm)
- Position: H1 in front of RICH and H2 in front of SM2 and behind the Muon Filter 1
- Size of H2 defined by Muon Wall 1
- Installation end May 2010 and first data taken

H1

Dimension: 230 cm × 192 cm

- slabs: $230 \text{cm} \times 6 \text{cm} \times 1 \text{cm}$
- Thickness due to RICH (Particle ID)
- central hole with air light guide
- Photo multiplier tubes: XP2982

Rohacell casing provides mechanical stability

Dimension: 500 cm × 420 cm

- \bullet 252 cm \times 13.6 cm \times 2 cm
- two hodoscope halves
- central hole with bend light guide
- Photo multiplier tube: EMI 9813KB

Mechanical structure made of aluminium

Electronics

Digital signal to GANDALF-Board (FPGA) for meantimer and matrix (see: Talk from J. Bieling (HK 14.4))

Rates

Rates produced with the online monitoring tool H1 rate ≈300kHz Central hole in H2 visible

Timing

H1 timing

Trigger timing

Timing in respect to Beam Momentum Station (BMS)

Timing

H2 left side timing

H2 right side timing

Efficiencies

Efficiency determined with calorimeter trigger Comparison of tracks with hits in hodoscopes

Kinematics Q² vs Y

- Test production 2010
- Expected kinematic distribution

H1 and H2

Outlook

- Two new hodoscopes were constructed and implemented in the COMPASS experiment
- The new trigger is based on known and proven principles
- First look in data (test production) for calibration
- Calibration for mass production of data
- Hodoscope efficiencies are are good (>95%)
- Deeper look into data to improve purity

Thank you for the attention