# Overview: Pion and Kaon Multiplicities in Muon-Nucleon Scattering from 2006 Data

Bonn Xmas Meeting 2013

Nicolas du Fresne von Hohenesche Institut für Kernphysik, Mainz

On behalf of the COMPASS collaboration

17<sup>th</sup> December 2013





- Hadronisation in QDC
- Fragmentation functions  $D_i^h$
- Hadronisation of quark with flavour i to hadron h
- Normalised, universal and process independent
- Favoured and unfavoured FFs



$$\sum_{h} \int_0^1 D_i^h(z) \, dz = 1$$

$$D_{fav.} >> D_{unfav.}$$

## How to Access Fragmentation Functions

 $\bullet \ e^+e^-$  annihilation

Precise and clean data Only depends on FF  $q\overline{q}$  fragmentation not distinguishable Charge sum (LEP, BELLE,...)



• pp collision Gluon FF Strongly dependant on PDFs Difficult theoretical description (RHIC, Fermi Lab., ...)



• Semi-Inclusive Deep Inelastic Scattering  $\Rightarrow \ell + N \xrightarrow{\gamma^*} \ell' + h + X$ 

Allows flavour separation Wide coverage in x and  $Q^2$  (COMPASS, HERMES,...)



$$Q^{2} \equiv -\mathbf{q}^{2} = -(\mathbf{k} - \mathbf{k}') \stackrel{\text{lab}}{\simeq} 4EE' \sin \frac{\theta}{2}$$
$$\mathbf{x} = \frac{Q^{2}}{2} \stackrel{\text{lab}}{\simeq} Q^{2}$$

$$2\mathbf{P} \cdot \mathbf{q} = 2M\nu$$
$$y \equiv \frac{\mathbf{P} \cdot \mathbf{q}}{\mathbf{P} \cdot \mathbf{k}} \stackrel{\text{lab}}{=} \frac{\nu}{E}$$
$$z \equiv \frac{\mathbf{p}_{h} \cdot \mathbf{P}}{\mathbf{q} \cdot \mathbf{P}} \stackrel{\text{lab}}{=} \frac{E_{h}}{\nu}$$

## The Strange Quark Helicity Density

Strangeness contribution to long. spin:

$$\Delta S = \int dx \left[ \Delta s(x) + \Delta \overline{s}(x) \right]$$

• From inclusive measurements:

 $g_1(x,Q^2)$  for proton and deuteron NLO QCD fits

$$\Delta s + \Delta \overline{s} = -0.08 \pm 0.01_{stat.} \pm 0.02_{sys.}$$

• From SIDIS (LO):

Semi-inclusive asymmetries In combination of PDFs And fragmentation functions

 $\Delta s + \Delta \overline{s} = -0.02 \pm 0.02_{stat.} \pm 0.02_{sys.}$ 

Semilncl - Phys. Lett. B693 (2010) 227

$$R_{SF}=D_{\overline{s}}^{K^+}/D_u^{K^-}$$





## Multiplicities as Observables

- Factorisation theorem
- SIDIS cross section in leading-twist

Hard scattering cross section Parton distribution function Fragmentation functions

$$\sigma^{\rm h} = \sum_{i} \sigma^{\rm 0} \cdot \boldsymbol{q}_{i}(\boldsymbol{x}) \cdot \boldsymbol{D}_{i}^{\rm h}(\boldsymbol{z}, \boldsymbol{Q}^{\rm 2})$$

Extraction of FF from hadron multiplicities

$$M^{h}(x, Q^{2}, z) = \frac{1}{\sigma^{D/S}} \frac{d\sigma^{h}}{dx \, dz \, dQ^{2}} = \frac{\sum_{q} e_{q}^{2} q(x, Q^{2}) D_{q}^{h}(z, Q^{2})}{\sum_{q} e_{q}^{2} q(x, Q^{2})}$$

Depends on the unpolarised parton distribution functions  $q(x, Q^2)$ 

- Unpolarised up/down PDFs well known
- Strange PDFs poorly known

# The COMPASS Experiment

COmmon Muon and Proton Apparatus for Structure and Spectroscopy Fixed target experiment @CERN Polarised  $\mu$  beam from SPS



CERN-PH-EP/2007-001 hep-ex/0703049 High acceptance, high beam flux and PID

2006 data  $\approx$  700 runs (6 weeks)

- Rescale momentum function
- Best primary vertex with
  - PaAlgo::InTarget()
  - Target Cells Z cut -59 to -33, -20 to 32 and 39 to 67 (all cm)
  - PaAlgo::CrossCells()
- Outgoing  $\mu'$  Incoming  $\mu$
- 140 < Beam energy < 180 GeV
- Q<sup>2</sup> > 1 GeV<sup>2</sup>
- 0.1 < y < 0.9
- 5 < W < 17 GeV</p>
- BMS Chi<sup>2</sup> Cut flag
- Middle trigger correction
- Only OT and MT
- Radiative correction PaAlgo::GetRadiativeWeigth(x,y,2)

For unidentified hadron candidates:

- Loop over outgoing particles
- Reject  $\mu'$
- ZFirst > 350 cm and ZLast > 350 cm
- RICH cuts
  - 0.01 < θ < 0.12</li>
  - RICH pipe cut
- PID with RICH
- z cut 0.2 < 0.85</p>
- momentum cut 10 40 GeV for  $\pi$
- momentum cut 12 40 GeV for K

### Monte Carlo simulation

- Taking into account geometric acceptance of the apparatus
- Detector efficiencies

LEPTO generator with PDFs JETSET for hadronisation GEANT3 with COMPASS detector models

## LEPTO extrapolation:

Not all bins are completly filled (cuts) Fill up with LEPTO model

## Double ratio

$$\textit{Acc} = \frac{\textit{N}_{h\_rec} / \textit{N}_{DIS\_rec}}{\textit{N}_{h\_gen} / \textit{N}_{DIS\_gen}} = \frac{\textit{M}_{rec}(\textit{from rec DIS})}{\textit{M}_{gen}(\textit{from gen DIS})}$$

As used in April 2013 release, but error estimation more complicated Assumption: hadron and DIS events are independent

$$A_h = rac{N_h \ rec}{N_{h\_gen}}$$
 and  $A_{DIS} = rac{N_{dis\_rec}}{N_{dis\_gen}}$ 

 $\Delta Acc = \Delta (A_h/A_{DIS}) = A_h/A_{DIS} \times \sqrt{((\Delta A_h/A_h)^2 + (\Delta A_{DIS}/A_{DIS})^2)}$ 

# Single ratio $Acc = \frac{N_{h\_rec}(\text{from rec DIS})}{N_{h\_gen}(\text{from rec DIS})}$

Advantage: Easier error estimation and muon acceptance is out

$$(\Delta Acc)^2 = \frac{(A+1)(G-A+1)}{(G+2)^2(G+3)}$$

with A for accepted events and G for generated events

# Comparison Old/New for h<sup>+</sup>



N. du Fresne Multiplicities



# Closer Look 2,4



## Closer Look 7,4



$$Acc = \frac{N_{h\_rec}/N_{DIS\_rec}}{N_{h\_gen}/N_{DIS\_gen}} = \frac{N_{h\_rec}(z)}{N_{h\_gen}(z)} \cdot \frac{N_{DIS\_gen}}{N_{DIS\_rec}}$$
vs.
$$Acc = \frac{N_{h\_rec}(z) (\text{from rec DIS})}{N_{h\_gen}(z) (\text{from rec DIS})}$$

Where the blue numbers are the same! Why do we see a z-dependence? Looking at acceptance( $\phi_{\mu}$ ) in correlation of the hadron angle and z Under construction, discussion with DVH

#### **Radiative Corrections**

QED radiative effects with TERAD

#### Muon dependent systematics

Muon acceptance and systematic uncertainties cancel out

#### MC model dependence

Using different quark fragmentation models in JETSET Different parton distribution functions in LEPTO  $\approx 5\%$ 

#### LEPTO dependence

Effects in smaller and larger z region Only using bins where LEPTO contribution is small (<10%) Small systematic uncertainty

# Unidentified Hadron Multiplicities



N. du Fresne

Multiplicities

## Rich Unfolding

Experimental method to extract RICH efficiencies and missidentification Tagging hadrons from known decays

$$\Lambda^0 \to p + \pi^-$$
 for protons,  $K_s^0 \to \pi^+ + \pi^-$  for pions and  $\phi \to K^+ + K^-$  for kaons

| RICH table example                    |
|---------------------------------------|
| • $\pi^+  ightarrow \pi^+ pprox 98\%$ |
| • $\pi^+ \rightarrow K < 2\%$         |
| • $\pi^+ \rightarrow p < 1\%$         |
| Hadron momentum dependence            |

$$\begin{pmatrix} I_{\pi} \\ I_{K} \\ I_{\rho} \end{pmatrix} = \begin{pmatrix} P_{\pi}^{\pi} & P_{K}^{\pi} & P_{\rho}^{\pi} \\ P_{\pi}^{K} & P_{K}^{K} & P_{\rho}^{K} \\ P_{\pi}^{\rho} & P_{\rho}^{\rho} & P_{\rho}^{\rho} \end{pmatrix} \begin{pmatrix} T_{\pi} \\ T_{K} \\ T_{\rho} \end{pmatrix}$$
$$\vec{T} = \vec{I} \cdot P^{-1}$$

## Systematics:

1% - 3% for pions 5% - 10% for kaons

# **Pion Multiplicites**



N. du Fresne

Multiplicities

# Kaon Multiplicites



N. du Fresne

Multiplicities

Dependence on strange quark distribution s(x) and  $D_s^{K}(z)$ 

$$\int M^{K^++K^-}(z)dz = \frac{1}{dN^{DIS}/dx}\frac{dN^K}{dx} = \frac{Q(x)\int D_Q^K(z)dz + S(x)\int D_S^K(z)dz}{5Q(x) + 2S(x)}$$



No visible x dependence  $\rightarrow$  small  $D_{S}^{K}$ ?

- 2006 run at COMPASS with <sup>6</sup>LiD target and 160 GeV  $\mu^+$  beam
- Measured preliminary pion and kaon multiplicities in x, z, and y
- Final radiative corrections
- Estimation for exclusive vector meson production
- More statistic
- More MC
- QCD fits of FFs
- 2012 run on liquid hydrogen
- >2015 long runs with  $\approx$  300 pb<sup>-1</sup>
- Dihadron FFs

Thanks for your attention