Angular distributions of vector mesons

Johannes Bernhard

Institut für Kernphysik Mainz

December 5th 2011

Cross section

Consider the reaction

$$a + b \longrightarrow c + d$$
, (e.g. $p + p \longrightarrow p\omega + p$)

which holds for the crossed channel

where X is the exchange particle with a given J^{PC} defining the production mechanism. The cross section reads¹:

$$\frac{d\sigma}{d\Omega} = \frac{1}{(2s_a+1)(2s_b+1)} \frac{p'}{sp} \sum_{\lambda} \left| \left\langle \lambda_d \bar{\lambda_b} | F(s,t) | \bar{\lambda_c} \lambda_a \right| \right\rangle$$

Boost to rest frame of d, use $\Delta = \vec{p_a} - \vec{p_c}$ as quantisation axis $|m\rangle$: spin states of d with amplitude

$$\langle m; \lambda_c | G(s,t) | \lambda_b \lambda_a
angle = \sum_{\bar{\lambda_b} \bar{\lambda_c} \lambda_a} \langle m \bar{\lambda_b} | F(s,t) | \bar{\lambda_c} \lambda_a
angle \cdot d$$
-functions for $\lambda_{a,b,c}$

d-functions take care of rotations from s to t channel. Construct spin-density matrix

$$\left\langle m|\rho|m'\right\rangle = N \sum_{\bar{\lambda_b}\bar{\lambda_c}\lambda_a} \left\langle m\bar{\lambda_b}|F(s,t)|\bar{\lambda_c}\lambda_a\right\rangle \left\langle m'\bar{\lambda_b}|F(s,t)|\bar{\lambda_c}\lambda_a\right\rangle^*$$

Characteristics of ρ :

- Hermeticity $\rho^{\dagger} = \rho$
- Positive semi-definite: $Tr\{\rho\} \le 1$, $Tr\{\rho^2\} = 1$
- symmetric: $\rho_{ij} = \rho_{ji}$

for spin 1 particles additionally dim(ρ)= 2J + 1 = 3 which also gives in combination $Tr\{\rho\} = 1 = \rho_{00} + 2\rho_{11}$.

$$rac{d\sigma}{d\Omega} \propto
ho_{11} \, \sin^2(heta) +
ho_{00} \, \cos(heta) - \sqrt{2}
ho_{10} \, \cos(\phi) \, \sin(2 heta)
onumber \ -
ho_{-11} \, \cos(2\phi) \, \sin^2(heta)$$

²K. Schilling, P. Seyboth and G. Wolf, Nucl. Phys. B 15 (1969) 397

For unpolarized beam and ${\rm target}^3 \Rightarrow {\rm independent}~{\rm of}~\phi$

$$rac{d\sigma}{d\cos(heta)} \propto
ho_{11} \ \sin^2(heta) +
ho_{00} \ \cos(heta)$$

Q: θ is defined in which reference frame again? A: Depends! Different definitions of frames make θ sensitive to different aspects of production process.

Q: And which vector defines θ ? A: So-called analyser.

³K. Schönning, Dissertation, Uppsala (2009)

Analyser

- Analysing production mechanism: Analyser is the decaying resonance b
 itself.
- Analysing polaristion of resonance:
 - for 2-body decay, use a decay particle
 - for 3 body decay, the story is more complicated
 - decay in one plane at one vertex (no isobars assumed), vertex contribution reads $ig \vec{n} \cdot \vec{e}$, where g coupling, \vec{n} analyser, \vec{e} polaristion vector
 - \vec{e} axial, product $\vec{n} \cdot \vec{e}$ cannot be $0 \Rightarrow \vec{a}$ needs to be axial, too
 - for three spinless decay products $\pi_{1,2,3}$ off a vector meson:

$$\vec{n} = vec\pi_i \times vec\pi_j, i \neq j$$

N.b.: Only $\cos(\theta)$ interesting, *i.e.* \hat{z} and analyser to be defined

- Production plane: $\hat{z} = |\vec{a} \times \vec{b}|$, overall CM system
- Gottfried-Jackson frame: $\hat{z} = |\vec{a}|$, *a* is beam, in CM system of *b*
- Helicity frame: $\hat{z} = |\vec{b}|$, overall CM system
- production-relevant Gottfried-Jackson: $\hat{z} = |\vec{X}|$, X is beam, in CM system of b

Examples⁴: t-channel helicity conserved when $\sin^2(\theta)$ distribution in production-relevant Gottfried-Jackson frame $(J^P(X) = 0^+)$. s-channel helicity conserved when $\sin^2(\theta)$ distribution in helicity frame, deviation means spin-flip

⁴J.Barth, Dissertation, Bonn (2002)

So far only relevant for single X exchange (photo-production, diffractive scattering, *etc.*)

double X exchange (central production, double Reggeon exchange, *etc.*) must be treated separately: two production planes relevant, define with either $\hat{z}_1 = |\vec{a} \times \vec{b}|$ and $\hat{z}_2 = |\vec{c} \times \vec{d}|$ or $\hat{z}_1 = |\vec{a} - \vec{b}|$ and $\hat{z}_2 = |\vec{c} - \vec{d}|^5$.

⁵Symmetrisation not yet clear to me, to be clarified.

Some first results

Cf. Karin's talk at last hadron meeting (Nov. 30th), $p p \rightarrow p \omega p$:

Cos θ w.r.t. beam direction. Black: $x_{E}(p_{fast}) < 0.7$, blue: $x_{E}(p_{fast}) > 0.7$

Difficult to draw conclusions about $x_{_{P}}$ dependence by eye.

Polarisation much stronger at high $x_{_{E}}$

Next

Check for x_F dependence of ρ_{00} as suggested in PRD 68 (2003) 034023:

FIG. 1. Spin alignment of K^{*+} along the normal of the production plane in unpolarized $\rho \rho \rightarrow K^{*+}X$ at ρ_{lnc} =200 GeV.

Publications possible: OZI violation and angular distributions (spin alignment), both x_F , t dependent

Results from summer

