Status / Hadron Spectroscopy at COMPASS

Johannes Bernhard¹

Institut für Kernphysik Mainz

January 22nd 2010

bmb+f - Förderschwerpunkt

COMPASS

Großgeräte der physikalischen Grundlagenforschung

¹ johannes.bernhard@cern.ch

Introduction 0000000	Recoil Proton Detector	Trigger 000	Analysis and Results	Summary and Outlook
Outline				

- 2 Recoil Proton Detector
- 3 Trigger
- 4 Analysis and Results
- **5** Summary and Outlook

Introduction	Recoil Proton Detector	Trigger	Analysis and Results	Summary and Outlook
• 00 0000	000000	000	0000000000000000	

Spectroscopy with Mesons

- Simplified meson model: $q\bar{q}$ bound states
- characterized by

 - Flavour (u,d,s,c,b,t)
 Quantum numbers I^GJ^{PC}

• allowed J^{PC} combinations: $0^{-+}, 0^{++}, 1^{--}, \dots$ • exotic J^{PC} combinations: $0^{--}, 0^{+-}, 1^{-+}, \dots$

Introduction	Recoil Proton Detector	Trigger	Analysis and Results	Summary and Outlook
000000	000000	000	000000000000000000000000000000000000000	

extend the simplified model by adding additional degrees of freedom:

• qq mesons

Introduction	Recoil Proton Detector	Trigger	Analysis and Results	Summary and Outlook
000000	000000	000	0000000000000000	

- qq mesons
- glueballs

Introduction	Recoil Proton Detector	Trigger	Analysis and Results	Summary and Outlook
000000	000000	000	0000000000000000	

- $q\bar{q}$ mesons
- glueballs
- hybrids

Introduction	Recoil Proton Detector	Trigger	Analysis and Results	Summary and Outlook
000000	000000	000	000000000000000	

- qq mesons
- glueballs
- hybrids
- bound qqqq states

Introduction	Recoil Proton Detector	Trigger	Analysis and Results	Summary and Outlook
00000	000000	000	0000000000000000	

- qq mesons
- glueballs
- hybrids
- bound qqqq states
- mesonic molecules

Summary and Outlook

Formation processes

Diffractive Scattering:

Central Production:

Introduction	Recoil Proton Detector	Trigger	Analysis and Results	Sur
000000	000000	000	00000000000000000000	

- SPE (single pomeron exchange)
- search for hybrid-candidates: $\pi(1600), \pi(1800)$

mary and Outlook

Recoil Proton Detector	Trigger	Analysis and Results	Summary and Outlook

Central Production:

Context: Definition of Central Production

- Original definition, not only DPE (double pomeron exchange)
- formation of resonances at central rapidities

CP of charged pionic modes (e.g. $\pi^-\pi^+\pi^-\pi^+$)

 \rightarrow well suited for the search for scalar and tensor glueballs f_0 family of resonances most interesting to study

Some examples of central production studies with 4π final states F. Binon et al. GAMS Collaboration. *Nuovo Cimento*, 78, 1983 S. Abatzis et al. WA91 Collaboration. Phys.Lett.B 324, 1994 F. Antinori et al. WA102 Collaboration, Phys.Lett.B 353, 1995 C. Amsler et al. Crystal Barrel Collaboration. Phys.Lett.B 380, 1996

Introduction	Recoil Proton Detector	Trigger 000	Analysis and Results	Summary and Outlook
<u> </u>				

How to search for glueballs?

- flavour-neutral decay modes: X is supposed to be seen in $\pi^+\pi^-$, $\pi^0\pi^0$, $K\bar{K}$, 4π , $\eta\eta$, $\eta\eta'$
- formation kinematics: small $dP_t = p_t^{fast} p_t^{slow}$

Introduction

Recoil Proton Detector

Trigger 000 Analysis and Results

Summary and Outlook

The COMPASS collaboration

 Introduction
 Recoil Proton Detector
 Trigger

 0000000
 0000000
 000

Analysis and Results

Summary and Outlook

The COMPASS spectrometer

Installation of new components:

- Cold Silicon Microstrip Detectors (@200*K*)
- new LH₂ target
- Recoil Proton Detector

 Introduction
 Recoil Proton Detector
 Trigger
 Analysis and Results
 Summary and Outlook

 Changes for the Hadron Run 2008/2009: New components

Installation of new components:

- Cold Silicon Microstrip Detectors (@200*K*)
- new LH₂ target
- Recoil Proton Detector
- upgrade on tracking (PixelGEMs, MicroMegas)

Installation of new components:

- Cold Silicon Microstrip Detectors (@200*K*)
- new LH₂ target
- Recoil Proton Detector
- upgrade on tracking (PixelGEMs, MicroMegas)
- beam PID with CEDARS
- el.mag. calorimetry upgrade with new laser monitoring

Introduction 0000000	Recoil Proton Detector	Trigger 000	TriggerAnalysis and Results000000000000000000000000000000000000	Summary and Outlook	

Recoil Proton Detector

Function:

- 1 fast trigger on recoil proton
- **2** Proton **PID** via TOF and dE/dx measurement

Introduction 0000000 Recoil Proton Detector

Analysis 000000

Analysis and Results

Summary and Outlook

Recoil Proton Detector

RPD during its assembly

- layout: 2 cylindrical layers of scintillators (r₁ = 120 mm and r₂ = 755 mm surrounding the target)
- inner ring w/ 12 scintillator slabs (5 mm × 500 mm BC404, U Mainz)
- outer ring w/ 24 scintillator slabs (10 mm × 1080 mm, IHEP Protvino)
- large dynamical range of the signals due to small attenuation length $(\lambda_{eff} \approx 70 \, {\rm cm})$

head of project: IRFU-SPhN

- small e^- and π^- background
- time resolution $\sigma < 350 \, {\rm ps}$

Introduction 0000000	Recoil Proton Detector	Trigger 000	Analysis and Results	Summary and Outlook
Calibrati	ion I			

How to come to proton tracks?

- RPD measures times and hits
- $\bullet\,$ with effective speed of light $\rightarrow\,$ hit postions
- combine measurements of TOF and positions to calculate angles and $\beta = \frac{v}{c}$
- ullet no magnetic field around the target \rightarrow no direct p measurement
- combine with E_{loss} meas. to obtain p
- calibration of energy and TOF necessary

Introduction 0000000	Recoil Proton Detector	Trigger 000	Analysis and Results	Summary and Outlook
Calibrat	ion II			

Strategy of calibration:

- test measurements w/ cosmics, μ- and e⁻ beam to determine eff. speed of light and MIP pulse spectra (HV settings), also energy cal.
- online calibration w/ hadron/ μ on recoil proton signal to set β in the correct range
- offline calibration w/ elastic and diffractive events for final tuning

recoil proton signal (rec. data)

		000		
Introduction	Recoil Proton Detector	Trigger	Analysis and Results	Summary and Outlook

of β with elastic events, determine offsets in time and space from position and slope

Introduction Recoil Proton Detector 0000000 000000	Recoil Proton Detector	on Detector Trigger	Analysis and Results	Summary and Outlook
	000	000000000000000000000000000000000000000		
C 111	13.7			

Calibration IV

correct for second order effects like

- vertex offsets due to no point-like beam $(\text{RMS}\approx1\text{cm})$
- energy loss in the target material

 Introduction
 Recoil Proton Detector
 Trigger
 Analysis and Results
 Summary and Outlook

 coopcool
 coopcool
 coopcool
 coopcool
 coopcool
 Summary and Outlook

Calibration V / MonteCarlo

New developments:

- t_0 calibration for all channels
- time-dependent calculation of the calibration constants
- automized and transparent calibration
- to be done for all 2008 and 2009 data

MonteCarlo implementation on the way:

- RPD software group formed
- detector geometry basically finished
- digitization nearly done (Promme)
- detector response on the way
- will be included in the RPDHelper

Introduction 0000000	Recoil Proton Detector	Trigger ●○○	Analysis and Results	Summary and Outlook
Proton T	rigger			

- no 2nd level trigger, so *fast, efficient* and *pure* trigger necessary
- trigger on slow recoil proton with RPD
- coincidence of one ring A element and one out of three possible ring B elements

calculated energy losses in both rings for different incident angles and particles

[•] identify proton by TOF and dE/dx meas. (with thresholds to cut out e^- and π^{\pm})

0000000	0000000	0●0	000000000000000000000000000000000000000	Summary and Outlook
DI	The second			

Physics Trigger

- **Beam Definition:** Beamtrigger
- Target Pointing: Proton Trigger
- Vetos

Physics Trigger $DT0 = Beamtrigger \land RPD \land !(Vetos)$

Introduction
occoccoRecoil Proton Detector
coccoccoTrigger
coccAnalysis and Results
 \bullet coccoccoccoccoccoccoccoSummary and OutlookExample for a Hadron analysis: The 4π channel

Compass 2008 Run (shown here: 13% of 2008 data) $\pi^- p \rightarrow \pi^-_{fast}(\pi^+ \pi^- \pi^+ \pi^-) p_{recoil}$

Cuts:

Cut	%
-no-	100
1 Primary Vertex	67.9
DT0 Trigger	58.4
5 Outgoing Charged Tracks	3.52
PV in Target	3.51
CEDAR Kaon Veto	3.46
Charge Conservation $\Sigma Q = -1$	2.52
Exclusivity (190 \pm 5) GeV	0.27
$Q_{\mathrm{fast}} = -1$	0.18

Introduction 0000000	Recoil Proton Detector	Trigger 000	Analysis and Results	Summary and Outlook
Exclusivity	/			

Summary and Outlook

Invariant Mass of 4π System

Recoil Proton Detector

Analysis and Results

Summary and Outlook

Enhancement of CP events: xF

One Approach to Select CP: Feynman x_F

$$x_F = \frac{|\vec{p}_l|}{|\vec{p}_l^{max}|} = \frac{2\,|\vec{p}_l|}{\sqrt{s}},$$

- $|\vec{p_l}|$: longitudinal momentum
- \sqrt{s} : total center-of-mass energy of the interaction
- $|\vec{p_l}^{max}|$: the maximum allowed longitudinal momentum

 roduction
 Recoil Proton Detector
 Trigger
 Analysis and Results
 Sum

 00000
 000
 000
 0000000
 000
 00000000

Summary and Outlook

Invariant Mass of 4π System

Introduction 0000000 Recoil Proton Detector

Trigger

Analysis and Results

Summary and Outlook

Invariant Mass of 4π System

Mass $(\pi^{\dagger}\pi^{-}\pi^{\dagger}\pi^{-})$ GeV

WA102:

- d) $dP_t < 0.2 \text{ GeV}$
- e) 0.2 GeV $< dP_t < 0.5$ GeV

f)
$$dP_t > 0.5 \text{ GeV}$$

COMPASS: all dP_t up to now, binning in dP_t with the full data set to come

Introduction 0000000	Recoil Proton Detector	Trigger 000	Analysis and Results	Summary and Outlook
RPD info	ormation			

RPD not only used in the trigger, but also in the offline analysis:

• measures TOF and $dE/dx \rightarrow$ recoil particle momentum and PID

Introduction	Recoil Proton Detector	Trigger	Analysis and Results	Summary and Outlook
0000000	000000	000	00000000000000000	
	ormation			

RPD information

RPD not only used in the trigger, but also in the offline analysis:

- \bullet measures TOF and $dE/dx \rightarrow$ recoil particle momentum and PID
- information on both t_1 and t_2

duction Recoil Proton Detector Trigger 0000 000000 000

Analysis and Results

Summary and Outlook

Different Approach: Cut on $M(5\pi)$

ntroduction Recoil Proton Detector Trigger Analysis and Results Summary and Outlook

3π analysis (2004 data)

cf. CERN-PH-EP/2009-018 (submitted to PRL)

COMPASS 2004 vs. BNL 853

Selected results: PWA on 2004 3π data

Analyse decay in the *isobar model*:

- intermediate two-particle decays
- introduce reflectivity basis: M = -L, -L + 1, ..., L - 1, L $\Rightarrow |M|\epsilon = |M| \text{sgn}(M)$
- amplitudes in the *helicity* formalism: expand to D-Functions
- 1 Mass-independent PWA in $40 MeV/c^2$ bins
 - extended log-Likelihood fit with an extended set of waves (42)
 - acceptance corrected
- 2 Mass-dependent χ^2 fit
 - contains the 6 dominant waves
 - Breit-Wigner parametrization of the resonances

troduction	Recoil Proton Detect
000000	0000000

Analysis and Results Summary and Outlook

PWA results

major waves

Introduction	Recoil Proton Detector	Trigger	Analysis and Results	Summary and Ou
0000000	000000	000	000000000000000000000000000000000000000	

PWA results

Introduction 0000000	Recoil Proton Detector	Trigger 000	Analysis and Results	Summary and Outlook
PWA resu	lts			

summary

Results for the 3π channel already published for 2004 data

- complete Partial Wave Analysis performed
- search mainly for the $\pi(1600)$ confirmed!
- as an appetizer, some 2008 data:

Introduction 0000000	Recoil Proton Detector	Trigger 000	Analysis and Results	Summary and Outlook
Summarv	and Outlook			

- COMPASS Hadron program a first glance at upcoming results
- huge amount of data, mostly 200x more than previous experiments
- only a few days of 2008 data taking (13%) used yet in most of the analyses, 2009 proton data to come!
- Partial Wave Analysis results available for a few channels, but not yet published

Next steps:

- 0 acceptance correction for 2008/2009 data
- ② introduce the next level of event selection (eg. glueball filter)
- include both central and diffractive mechanisms in the PWA
- develop new formalisms for the PWA

Introduction	Recoil Proton Detector	Trigger 000	Analysis and Results	Summary and Outlook

Summary and Outlook

Stay tuned for 2009 data:

- Primakoff
- spectroscopy with different target materials (Pb, Ni, C, W)
- low t

and, of course:

- GPD@COMPASS (DVCS, DVMP)
- Drell-Yan

